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We study the spin-1/2 Ising model and the Blume-Capel model at various values of the parameter D on the
simple cubic lattice. To this end we perform Monte Carlo simulations using a hybrid of the local Metropolis,
the single cluster and the wall cluster algorithm. Using finite size scaling we determine the value D�

=0.656�20� of the parameter D, where leading corrections to scaling vanish. We find �=0.832�6� for the
exponent of leading corrections to scaling. In order to compute accurate estimates of critical exponents, we
construct improved observables that have a small amplitude of the leading correction for any model. Analyzing
data obtained for D=0.641 and 0.655 on lattices of a linear size up to L=360 we obtain �=0.63002�10� and
�=0.03627�10�. We compare our results with those obtained from previous Monte Carlo simulations and
high-temperature series expansions of lattice models, by using field-theoretic methods and experiments.

DOI: 10.1103/PhysRevB.82.174433 PACS number�s�: 05.50.�q, 05.70.Jk, 64.60.F�

I. INTRODUCTION

In the neighborhood of a second-order phase transition
various quantities diverge. For example, the correlation
length, which characterizes the decay of the two-point corre-
lation function, behaves as

� = f��t�−��1 + b��t�� + ct + d��t��� + e��t�2� + ¯� , �1�

where t= �T−Tc� /Tc is the reduced temperature, f+ and f− are
the amplitudes in the high- and the low-temperature phase,
respectively, and � is the critical exponent of the correlation
length. These power laws are affected by confluent correc-
tions, such as b��t��, d��t���, e��t�2�, and nonconfluent ones
such as ct. Critical exponents such as � and ratios of ampli-
tudes such as f+ / f− are universal. This means that they as-
sume exactly the same value for any system within a given
universality class. Also correction exponents such as �=��
�0.5 and ratios of correction amplitudes as b+ /b− are uni-
versal. A universality class is characterized by the dimension
of the system, the range of the interaction and the symmetry
of the order parameter. For reviews on critical phenomena
and the renormalization group �RG� see, e.g., Refs. 1–4. The
critical exponents 	 of the specific heat, 
 of the magnetic
susceptibility, � of the two-point correlation function at the
critical point, � of the correlation length, � of the magneti-
zation at the critical temperature as a function of the external
field, and � of the spontaneous magnetization at a vanishing
external field are related by so called scaling and hyperscal-
ing relations. This allows to deduce all of them from two
independent exponents.

Here we are concerned with three dimensions, short-range
interactions, and a Z2 symmetry of the order parameter. The
best know model undergoing a phase transition in this uni-
versality class is the spin-1/2 Ising model in three dimen-
sions with nearest neighbor interactions. Therefore this uni-
versality class is called the three-dimensional Ising
universality class. This universality class is supposed to be
realized in a huge range of experimental systems: binary
mixtures, uniaxial magnets, or micellar systems, see, e.g.,
Refs. 4–6. Typically the estimates of critical exponents ex-
tracted from experimental data are less accurate than those

obtained by using the theoretical methods discussed below.
For example, recent experimental estimates obtained from
turbidity data for a methanol-cyclohexane mixture are �
=0.632�2� and �=0.041�5�.7

Critical exponents and amplitude ratios have been com-
puted by various theoretical methods such as field-theoretic
methods or high-temperature �HT� series expansions and
Monte Carlo �MC� simulations of lattice models. First let us
briefly discuss results obtained by the  expansion,8 where
the dimension d of the system is given by d=4− and the
perturbative expansion in d=3.9 The  expansion of critical
exponents has been computed up to O�5� �Ref. 10� while the
perturbative expansion in d=3 has been computed up to
seven loops11 for the Ising universality class. Since both ex-
pansions are divergent, some kind of resummation is needed
to extract numerical results for critical exponents. In the case
of the  expansion the estimates reported in the literature are
consistent among each other. As a representative result we
report in Table I the one of Ref. 12. In Table I we also give
results obtained from the perturbative expansion in d=3 us-
ing different resummation techniques. For a more complete
compilation see, e.g., Ref. 4. In Table I we give the expo-
nents �, �, and the correction exponent �, since these are
directly computed by using field-theoretic methods. In addi-
tion, we report the value of 
 that can be compared with the
results of the high-temperature series expansions reported
below. Typically, the errors reported for the critical expo-
nents obtained from the perturbative expansion in d=3 are
smaller than those obtained from the  expansion. While the
estimates for � are all consistent within the quoted errors,
clear variations can be observed for �, 
, and �. For a dis-
cussion of the different resummation schemes that have been
used, we refer the reader to Ref. 16.

In Table II we summarize recent results obtained from
lattice models. For an exhaustive summary of previous
works see Ref. 4. The authors of Ref. 17 have analyzed the
high-temperature series expansion of improved models on
the simple cubic lattice up to O��25�, where �=1 /kBT is the
inverse temperature. One of these models is studied here
using Monte Carlo simulations. Improved means that the am-
plitudes of leading corrections to scaling such as b� in
Eq. �1� vanish. The authors of Ref. 18 have studied the high-
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temperature series expansion of spin-S Ising models on the
simple cubic and the body-centered-cubic lattice up to
O��25�. Note that in the spin-S Ising model the spin-variable
might assume the values −S ,−S+1, . . . ,S−1,S. In Ref. 19
the same authors have studied the �4 model on the simple
cubic and the body-centered-cubic lattice also up to O��25�.
These results from high-temperature series expansions are all
compatible among each other. Note that these expansions
were performed for lattice models with quite different
Hamiltonians. Furthermore, there are results for both simple
cubic and body-centered-cubic lattices. It is highly plausible
that corrections to scaling have different amplitudes in these
different models. Therefore the agreement of the results
gives us confidence that there are no undetected systematic
errors due to leading, or in the case of improved models,
subleading corrections to scaling. The results for the expo-
nents �, 
, and � obtained from the high-temperature series
expansion are clearly more precise than those obtained by
using field-theoretic methods. The results obtained for � us-
ing field-theoretic methods and high-temperature series ex-
pansions of lattice models are consistent. In the case of 
 and
� some of the results obtained by resumming the perturba-
tive expansion in three dimensions can be clearly ruled out

by the high-temperature series expansion. Unfortunately, the
analysis of the high-temperature series expansions does not
provide an accurate estimate for the correction exponent �.

Lattice models can also be studied by using Monte Carlo
simulations. The finite size scaling �FSS� approach25–27 is
well suited to locate the critical temperature and to compute
critical exponents. Typically one simulates the model directly
at the critical point. The critical exponents are then extracted
from the scaling of the observables with the lattice size. For
example, at the critical temperature the magnetic susceptibil-
ity behaves as

� = aL2−� � �1 + bL−� + cL−�� + dL−2� + ¯� + B , �2�

where B is an analytic background and L the linear size of a
cubic lattice with periodic boundary conditions. An exhaus-
tive summary of previous works is given in Table V of Ref.
4. In Table II we only quote recent works. In 1999 four finite
size scaling studies of lattices models in the Ising universal-
ity class had been published. The results of these works are
consistent among each other and the accuracy that had been
achieved is similar to that of the field-theoretic calculations.
I like to mention that in Ref. 23 a special purpose computer

TABLE I. Numerical results for the critical exponents �, 
, �, and � obtained by using field theoretic
methods. The list is by far not exhaustive. We try to give extreme examples; both concerning the values found
as well as the quoted error bar. In the case of the  expansion we have taken the results that fulfil the
boundary condition that for =2 the correct two-dimensional Ising results are obtained.

Ref. Year Method � 
 � �

12 1998  exp 0.6305�25� 1.2380�50� 0.0365�50� 0.814�18�
13 1991 3D exp 0.630 1.238 0.0355 0.845

11 1991 3D exp 0.6301�5� 1.2378�6� 0.0355�9�
12 1998 3D exp 0.6304�13� 1.2396�13� 0.0335�25� 0.799�11�
14 1999 3D exp 0.6305 1.241 0.0347�1� 0.805

15 2001 3D exp 0.6303�8� 1.2403�8� 0.0335�6� 0.792�3�
16 2008 3D exp 0.6306�5� 1.2411�6� 0.0318�3� 0.782�5�

TABLE II. Numerical results for the critical exponents �, 
, �, and � obtained by analyzing high-
temperature �HT� series and Monte Carlo �MC� simulations of lattice models in the Ising universality class.
In the case of the MC simulations, some of the authors have quoted the statistical and the systematical errors
of � and � separately. The numbers marked by � are not directly given by the authors but are computed by
using the scaling relation 
=��2−��. Note that the error of 
 is computed naively, assuming that the errors
of � and � are purely statistical and that the estimates of � and � are uncorrelated. For an exhaustive
summary of previous work see Ref. 4.

Ref. Year Method � 
 � �

17 2002 HT 0.63012�16� 1.2373�2� 0.03639�15� 0.825�50�
18 2002 HT 0.6299�2� 1.2371�1� 0.0360�8��

19 2005 HT 0.6301�2� 1.2373�2� 0.0363�9��

20 1999 MC 0.6294�5� �Ref. 5� 1.2353�21�� 0.0374�6� �Ref. 6� 0.87�9�
21 1999 MC 0.6298�2� �Ref. 3� 1.2365�11�� 0.0366�6� �Ref. 2�
22 1999 MC 0.6296�3� �Ref. 4� 1.2367�15�� 0.0358�4� �Ref. 5� 0.845�10�
23 1999 MC 0.63032�56� 1.2372�13�� 0.0372�10� 0.82�3�
24 2003 MC 0.63020�12� 1.2372�4�� 0.0368�2� 0.821�5�
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for the cluster simulation of the Ising model had been used.
In the most recent work,24 which provides the most accurate
estimates so far, 11 different models were studied on lattices
up to a linear site of L=128. The results obtained for �, 
,
and � are essentially consistent with those obtained from the
high-temperature series expansions. The estimate obtained
for � is more accurate than that of the high-temperature se-
ries expansion and it is clearly larger than most of the esti-
mates obtained from the perturbative expansion in three di-
mensions.

The purpose of the present work is to corroborate the
lattice results discussed above. To this end we shall simulate
lattices that are considerably larger than those of Ref. 24.
Furthermore we shall use improved observables that have
been applied in Ref. 28 to study Ising models with quenched
dilution. Here, improved means that the amplitude of the
leading correction vanishes for any model. Since these ob-
servables are constructed numerically, in practice some re-
sidual amplitude remains. Using these improved observables
in the study of improved models, leading corrections are
highly suppressed, allowing us to ignore them in the finite
size scaling analysis.

Accurate numerical estimates of critical exponents might
serve as benchmark for future experiments, see, e.g., Ref. 6,
the analysis of the perturbative expansion in three dimen-
sions, as discussed above, or new theoretical approaches
such as new ideas in the so called exact renormalization
group29 or the Kallen-Lehmann approach.30

The outline of the paper is the following. First we define
the model and the observables that are studied. Then we
discuss the Monte Carlo algorithm that has been used. We
give the details of our numerical study. We estimate the fixed
point values of the phenomenological couplings and the in-
verse transition temperatures. We give a numerical estimate
of the correction exponent � and obtain a new estimate of
D�, the value of the parameter where leading corrections to
scaling vanish. Next we construct various improved observ-
ables. Based on this we compute estimates for the critical
exponents � and �.

II. MODEL

The spin-1/2 Ising model is characterized by the reduced
Hamiltonian

H = − ��
�xy�

sxsy − h�
x

sx, �3�

where the spin might assume the values sx� �−1,1	. x
= �x0 ,x1 ,x2� denotes a site of the simple cubic lattice, where
xi� �0,1 ,2 , . . . ,Li−1	. �xy� denotes a pair of nearest neigh-
bors on the lattice. We employ periodic boundary conditions
in all directions of the lattice. Throughout we shall consider
L0=L1=L2=L and a vanishing external field h=0. The parti-
tion function is given by

Z = �
�sx	

exp�− H� , �4�

where ��sx	 denotes the sum over all configurations.

The Blume-Capel model is characterized by the reduced
Hamiltonian

H = − ��
�xy�

sxsy + D�
x

sx
2 − h�

x

sx, �5�

where now the spin might assume the values sx� �−1,0 ,1	.
In the limit D→−� the “state” s=0 is completely sup-
pressed, compared with s= �1, and therefore the spin-1/2
Ising model is recovered. In d�2 dimensions the model un-
dergoes a continuous phase transition for −��D�Dtri at a
�c that depends on D. For D�Dtri the model undergoes a
first-order phase transition. References 31–33 give for the
three-dimensional simple cubic lattice Dtri�2.006, Dtri
�2.05, and Dtri=2.0313�4�, respectively.

Numerically it has been shown that on the line of second-
order phase transitions there is a point, where leading correc-
tions to scaling vanish. In the following we shall call the
model at this point “improved model.” In Ref. 34 we find
D�=0.641�8�. One should note that no effort was made to
estimate the systematical error due to subleading corrections
to scaling. The authors of Refs. 24 and 35 have simulated the
model at D=ln 2=0.693147. . .. At this value of D correc-
tions to scaling are still small compared with the spin-1/2
Ising model. At D=ln 2 the Blume-Capel model can be
mapped into a spin-1/2 Ising model with twice the number of
sites. This model can be simulated with a cluster algorithm
without additional local updates as it is the case for general
values of D.

III. OBSERVABLES

The energy is defined as minus the derivative of the re-
duced free energy with respect to �

E =
�

��
ln Z = �

�xy�
sxsy . �6�

This definition is convenient for our purpose. One should
note however that it deviates from the standard textbook
definition. The magnetic susceptibility � and the second mo-
ment correlation length �2nd are defined as

� 

1

V���x

sx2� , �7�

where V=L3 and

�2nd 
� �/F − 1

4 sin2 �/L
, �8�

where

F 

1

V���x

exp�i
2�xk

L
sx�2� �9�

is the Fourier transform of the correlation function at the
lowest nonzero momentum. In our simulations, we have
measured F for the three directions k=0,1 ,2 and have aver-
aged these three results.

In addition to elementary quantities such as the energy,
the magnetization, the specific heat, or the magnetic suscep-
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tibility, we compute a number of so-called phenomenological
couplings, that means quantities that, in the critical limit, are
invariant under RG transformations. We consider the Binder
parameter U4 and its sixth-order generalization U6, defined
as

U2j 

�m2j�
�m2� j , �10�

where m= 1
V�xsx is the magnetization of the system. We also

consider the ratio RZ
Za /Zp of the partition function Za of a
system with antiperiodic boundary conditions in one of the
three directions and the partition function Zp of a system
with periodic boundary conditions in all directions. Antipe-
riodic boundary conditions in the zero direction are obtained
by replacing sxsy by −sxsy in the Hamiltonian for links �xy�
that connect the boundaries, i.e., for x= �L−1,x1 ,x2� and y
= �0,x1 ,x2�. The ratio Za /Zp can be efficiently evaluated us-
ing the boundary flip algorithm.36 Here we use a modified
version of the boundary flip algorithm as discussed in Ap-
pendix A2 of Ref. 37. In the following we shall refer to the
RG-invariant quantities U2j, RZ
Za /Zp and R�
�2nd /L us-
ing the symbol R.

In our analysis we need the observables as a function of �
in some neighborhood of the simulation point. To this end
we have computed the coefficients of the Taylor expansion of
the observables up to the third order. For example, the first
derivative of the expectation value �A� of an observable A is
given by

��A�
��

= �AE� − �A��E� . �11�

IV. SIMULATION ALGORITHM

Analogous to Ref. 38, we have simulated the Blume-
Capel model using a hybrid of local updates and cluster up-
dates. The cluster algorithm only changes the sign of spins.
Therefore, in order to get an ergodic algorithm for the
Blume-Capel model with finite D, local Metropolis updates
are used that also can change the modulus �sx� of the spins.
Following Ref. 39 even in the case of the spin-1/2 Ising
model such a hybrid of local and cluster updates is superior
to the cluster algorithm alone. The authors of Ref. 39 also
found that such a hybrid algorithm is much less susceptible
to systematic errors caused by the imperfection of pseudo-
random numbers than a pure cluster algorithm. Here we have
used a hybrid of local Metropolis updates that are imple-
mented by using the multispin coding technique,40 single
cluster updates,41 and wall cluster updates.21 In the single
cluster update, the cluster that includes a randomly chosen
site is flipped. In contrast, in the wall cluster update all clus-
ters that include sites that are part of a given plane �the
“wall”� of the lattice are flipped.

Motivated by the multispin coding implementation of the
local update we have simulated Nbit=64 copies of the system
in parallel. In the first stage of our study, we have used a
single random number sequence for the local Metropolis up-
dates of these Nbit systems. This leads to some degradation of

the performance. To diminish this problem, we have used a
modified sequence of the pseudorandom numbers in the sec-
ond stage of our study. Details are given below. In the case of
the cluster updates we could not make use of the multispin
coding technique. Therefore we have updated the systems
one by one, using different random number sequences for
each of the systems.

Let us discuss the implementation of the local Metropolis
algorithm in more detail. We have implemented the spin sx
� �−1,0 ,1	 using two bits. To this end we write sx=�x�x,
where �x� �−1,1	 and �x� �0,1	. In terms of these new
variables the partition function becomes

Z = C�
��x	

�
��x	

exp���
�xy�

�x�y�x�y − D̃�
x

�x , �12�

where D̃=D−ln 2. Note that subtracting ln 2 corrects for the
double counting of the sx=0 state.

In our local updating scheme we performed consecutive
updates of �x and �x. In the first step, the proposal is given by
�x�=−�x. It is accepted with the standard Metropolis accep-
tance probability

Pacc = min�1,exp�− 2��x�x �
y.nn.x

�y�y� , �13�

where y .nn .x means that y is a nearest neighbor of x. In the
second step, the proposal is given by �x�=1−�x. A natural
choice for the acceptance is

Pacc = min�1,exp��2�x − 1��− ��x �
y.nn.x

�y�y + D̃�� .

�14�

Instead, for technical reasons we have implemented a two

stage acceptance step. For D=0.641 and D=0.655, where �D̃�
is small, we have chosen

Pacc,1 = min�1,exp���1 − 2�x��x �
y.nn.x

�y�y� �15�

and

Pacc,2 = min�1,exp��2�x − 1�D̃�� . �16�

Detailed balance can be easily proven by going through the
four cases which are given by positive or negative arguments
of the exponential function in Eqs. �15� and �16�. We take
two uncorrelated random numbers r1 and r2 from a uniform
distribution in �0,1�. If both Pacc,1�r1 and Pacc,2�r2 the
proposal is accepted.

In the first stage of our study, we have used the same
random number sequence for all Nbit=64 systems that we
have simulated in parallel. In the second stage of the study,
we have used a modified sequence of the random numbers
for the acceptance step �13�. We have used a 64-bit integer
random number in addition to the random number r that is
uniformly distributed in �0,1�. If the ith bit of this integer
random number is 1 we take r itself for the acceptance step
of the ith system. Otherwise, if the bit is 0, we take 1−r
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instead. This modification considerably reduces the correla-
tion among the Nbit=64 systems that are simulated in paral-
lel.

We have compared the performance of this local update
with that of a local heat bath using a standard implementa-
tion. To this end, we have simulated a 163 lattice at �
=0.3877218, which is close to �c as we shall see below. The
integrated autocorrelation times in units of sweeps of the
energy density and the magnetic susceptibility are by a factor
of about 1.3 larger for the Metropolis update discussed here
than for the heat bath update. One sweep over Nbit=64 sys-
tems in parallel using the multispin coding technique takes
about four times as much CPU time as one sweep over a
single system using the standard implementation of the heat-
bath update. In order to compare the efficiency of the two
local updates, we have computed the statistical error of the
energy and the magnetic susceptibility, taking into account
the possible correlation among the Nbit=64 systems in the
case of the multispin coding implementation. To this end we
have performed a Jackknife analysis, where we have first
averaged the measurements of the Nbit=64 systems at a
given iteration of the Monte Carlo simulation. Taking one
over the statistical error squared times the CPU time needed
as measure of the efficiency, we find a performance gain of a
factor of about 10 of the multispin coding implementation of
the local Metropolis update compared with the standard
implementation of the heat-bath update.

During the simulation, local Metropolis sweeps, single
cluster and wall cluster updates are performed in a certain
sequence. In the following we denote an elementary building
block of the sequence by cycle. In the case of our most
recent simulations �D=0.655� such a cycle is composed of
�a� 4� �two Metropolis sweeps followed by L /16 single
cluster updates�, �b� three Metropolis sweeps, and �c� one
wall-cluster update.

In the case of the wall-cluster update we chose the wall to
be perpendicular to the 0-, 1-, and 2-axis in three subsequent
cycles. The position of the wall along the axis is chosen
randomly each time. The parameters of the cycle are chosen
such that roughly the same amount of CPU time is spent in
each of its three components.

In order to study the performance of the algorithm, we
have performed preliminary simulations for D=0.655, where
we have determined the autocorrelation function ��t� of the
magnetic susceptibility and the energy density. The statistics
of these runs is 300 000 update cycles for the lattice sizes
L=16, 32, 64, and 128 and 82 000 update cycles for L
=256 at �=0.3877218, which is close to our final estimate of
�c. The integrated autocorrelation time is given by

� =
1

2
+ �

t=1

tmax

��t� , �17�

where we have chosen tmax=6�, self-consistently. Fitting our
results for integrated autocorrelation times in units of update
cycles we get

�� = 0.70�4�L0.34�1� �18�

for the magnetic susceptibility and

�E = 0.47�2�L0.42�1� �19�

for the energy density. This means that the autocorrelation
times are only a few cycles, even for our largest lattices.

We have estimated the statistical errors of the observables
using the Jackknife method. As input of this analysis we
have taken data that are already averaged over the Nbit=64
systems that are simulated in parallel and might be correlated
by the use of a common sequence of random numbers during
the Metropolis updates. Therefore the possible correlation
among these Nbit=64 systems does not affect the correctness
of the estimate of the statistical errors.

To figure out how much this correlation does affect the
efficiency of the algorithm, we have computed the statistical
error, taking only one system, and for comparison, averaging
over all Nbit systems. If the simulations were independent,
the square of the ratio of these errors, denoted by R2 in the
following, would be equal to Nbit. In fact we see some per-
formance loss due to the use of a common random number
sequence. For L=16 we get for the energy density R2

�28.6 and for the magnetic susceptibility R2�36.2. Fortu-
nately these numbers increase with increasing lattice size.
For L=256 we get for the energy density R2�42.2 and R2

�48.8 for the magnetic susceptibility.
In order to give an accurate result for the performance

gain that is achieved by using our particular multispin coding
implementation of the local update, one would have to tune
the parameters of the update cycle for both types of the local
update. For lack of time this could not be done. Since the
local update is only one of the three components of the com-
plete update cycle, likely the gain is moderate, certainly less
than a factor of two.

Simulations: CPU time and statistics

In a first stage of the study we have simulated the spin-1/2
Ising model and the Blume-Capel model at D=0.641, ln 2,
1.15, and 1.5. Note that D=0.641 is the estimate of Ref. 34
for D� and D=ln 2 has been simulated before by the authors
of Refs. 24 and 35. At D=1.15 the amplitude of leading
corrections to scaling has about the same magnitude as for
the spin-1/2 Ising model but opposite sign. A preliminary
analysis of these data resulted in D��0.655. Therefore we
have simulated at D=0.655 in a second stage of our study.

We have simulated lattices of a linear size L up to Lmax
=96, 200, 360, 300, 64, and 48 for the spin-1/2 Ising model
and the Blume-Capel model at D=0.641, 0.655, ln 2, 1.15,
and 1.5, respectively. In Table III we have summarized in
detail the lattice sizes that we have simulated and the statis-
tics of these simulations.

In total we have spent the equivalent of 3.5, 9, 16, 3, 3,
and 0.1 CPU years on a single core of a Quad-Core AMD
Opteron�tm� Processor 2378 running at 2.4 GHz for the spin-
1/2 Ising model and the Blume-Capel model at D=0.641,
0.655, ln 2, 1.15, and 1.5, respectively.

As random number generator we have used the SIMD-
oriented �single instruction multiple data� fast Mersenne
Twister algorithm.42 As a check we have repeated our simu-
lations at D=0.655 using the WELL random number
generator43 with about one third of the statistics reported in
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Table III. In particular, we have used the program
WELL44497A.C provided by the authors. We found that the
estimates of individual observables are consistent. We have
also repeated part of the finite size scaling analysis using
these data. For given ansätze we found consistent, even
though less precise results for the critical exponents. One
should note that the statistical error of the fit parameters is
often much smaller than the final error that also includes
systematical errors due to subleading corrections. The fol-
lowing analysis is only based on the simulations using the
Mersenne Twister algorithm.42

V. �c AND THE FIXED POINT VALUES OF
PHENOMENOLOGICAL COUPLINGS

In a first step of the analysis we have studied the finite
size scaling behavior of the phenomenological couplings at
D=0.655 since here we have accumulated the best statistics

and second, as we shall see below, this value of D is closest
to D� among the values that we have simulated.

At the critical point a phenomenological coupling behaves
as

R�L,�c� = R� + aL−� + bL−�� + cL−2� + ¯ , �20�

where ��0.8 as discussed in Sec. I. Below we shall find
�=0.832�6�. The subleading corrections exponent is ��
=1.67�11�.44 Furthermore, there should be corrections with
���2 due to the breaking of the rotational symmetry by the
lattice45 or due to the analytic background of the magnetic
susceptibility. Motivated by Eq. �20�, we have fitted our data
with three different ansätze

R�L,�c� = R�, �21�

R�L,�c� = R� + aL−1, �22�

TABLE III. We give the number of update-cycles divided by 64�15 000 as a function of the lattice size
and the value of the parameter D. For a discussion see the text.

L Ising 0.641 0.655 ln 2 1.15 1.5

10 10000 10000 4005 10000

11 4005

12 9593 20000 4000 4083 10000 1000

13 4005

14 11747 10000 4005 3003 10000

15 3994

16 9740 20200 3999 2371 9917 1000

17 4000

18 11524 10000 3993 1807 11102

20 6959 12000 3995 1828 7208

22 11320 4003 1813 12328

24 12000 10971 4000 2471 13239 1000

28 4374 7024 3999 2920 5420

32 5091 2291 3011 2533 4582 692

36 3951 3362 3444

40 1658 2349 1657 1466 1474

48 1890 2202 1502 206

50 968 624

56 629 824 688

64 719 697 286 485

70 894

72 848

80 1053

96 273

100 753 435

128 136

150 319 179

200 149 106

250 118 58

300 62 14

360 11
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R�L,�c� = R� + aL−1 + bL−2, �23�

where we have used in Eq. �22� the choices 1=0.83, 1
=1.6, or 1=2 and in Eq. �23� 1=0.83 and 2=1.6 or 2=2.
Here and in the following ansätze, we denote a correction
exponent with a fixed value by . Instead, if it is a free
parameter we shall denote it, as usual, by �. Here we need
the phenomenological couplings R as a function of the in-
verse temperature. To this end we have used the Taylor ex-
pansion around the value �s of the inverse temperature that
we have used in the simulation. We have checked that the
result for �c and �s are sufficiently close to avoid significant
truncation effects. This way, for example Eq. �21� becomes

R�L,�s� = R� − c1�L,�s���c − �s� −
c2�L,�s�

2!
��c − �s�2

−
c3�L,�s�

3!
��c − �s�3, �24�

where R� and �c are the two parameters of the fit. Since we
have chosen �s as a good approximation of �c, we could
ignore the relatively small statistical error of the Taylor co-
efficients c1, c2, and c3, which simplifies the fit.

As an example let us discuss the results obtained for
Za /Zp in more detail. A selection of our results is given in
Table IV. We have fitted the data for all linear lattice sizes L
that are larger than or equal to a certain Lmin. Starting from
the Lmin given in column 5 of Table IV the �2/d.o.f. is close
to one.

Taking into account the variation in the results over the
different ansätze we arrive at our final estimate �c
=0.38772174�2� and �Za /Zp��=0.5425�1�. We performed a
similar analysis for �2nd /L, U4, and U6. Our final results are
summarized in Table V. We find that the estimates of �c

obtained from different phenomenological couplings are con-
sistent within error bars. We take the average

�c = 0.387721735�25� �25�

as our final estimate of the inverse critical temperature. The
error bar is chosen such that it covers all results given in
Table V, including their error bars.

Our result for U4
� is about three times the combined error

smaller than U4
�=1 /0.62341�4�=1.60408�10� given in Ref.

24. We regard our result as more reliable since we have
simulated larger lattices and have carefully estimated sys-
tematic errors due to subleading corrections that are not in-
cluded into the fit.

In the case of the other models we also determined �c by
fitting with the ansätze �Eqs. �21�–�23��. Here however we
have used the results for �Za /Zp��, ��2nd /L��, U4

� and U6
�

given in Table V as input. The final results obtained this way
are summarized in Table VI. For completeness we have in-
cluded the results for D=0.655 given in Eq. �25�. Our result
for �c of the spin-1/2 Ising model is fully consistent with
�c=0.22165455�3� given in Ref. 24. For a summary of pre-
vious results for �c of the spin-1/2 Ising model we refer the
reader to Table I of Ref. 34. Our result for �c at D=ln 2 is by
1.5 times the combined error larger than �c=0.39342225�5�
given in Ref. 24.

VI. THE CORRECTION EXPONENT �
AND THE IMPROVED MODEL

In this section we study the cumulants U4 and U6 at a
fixed value of Za /Zp or �2nd /L. To this end one determines
the inverse temperature � f�L� defined by

TABLE IV. Fitting the data for Za /Zp obtained at D=0.655 with the ansätze �21�–�23�. Lmin is the minimal
lattice size that is included into the fit. For a discussion see the text.

Ansatz 1 2 Lmin �c �Za /Zp�� �2/d.o.f.

�21� 32 0.387721745�10� 0.542489�14� 9.5/10

�22� 0.83 18 0.387721730�12� 0.542589�33� 12.4/14

�22� 1.6 12 0.387721729�10� 0.542558�12� 24.0/20

�22� 2 10 0.387721734�10� 0.542532�8� 27.4/22

�23� 0.83 1.6 10 0.387721746�12� 0.542448�46� 27.6/21

�23� 0.83 2 10 0.387721740�12� 0.542502�38� 26.8/21

TABLE V. Results for the inverse critical temperature �c at D
=0.655 obtained from the FSS study of various phenomenological
couplings. In addition we give the fixed point values R� of these
quantities. For a discussion see the text.

Za /Zp �2nd /L U4 U6

�c 0.38772174�2� 0.38772174�2� 0.38772173�2� 0.38772173�2�
R� 0.5425�1� 0.6431�1� 1.6036�1� 3.1053�5�

TABLE VI. Estimates of the inverse critical temperature �c of
the spin-1/2 Ising model and the Blume-Capel model at various
values of D. For a discussion see the text.

D �c

Ising 0.22165463�8�
0.641 0.38567122�5�
0.655 0.387721735�25�
ln 2=0.69314718. . . 0.39342239�8�
1.15 0.4756110�2�
1.5 0.5575303�10�
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R1�L,� f�L�� = R1,f , �26�

where R1 is either Za /Zp or �2nd /L and Rf ,1 the required
value. As Rf ,1 we take the fixed point values of Za /Zp and
�2nd /L obtained above. We define

R̄2�L� 
 R2�L,� f�L�� , �27�

where R2 is, in our case, either U4 or U6. In the following we

shall denote R̄2 by R2 at R1=R1,f. In practice we have done
these calculations using the Taylor expansion of R1 and R2
around the value �s that we have used in the simulation up to
third order. We have checked carefully that �s and � f are
sufficiently close to avoid significant truncation errors.

One finds, see, e.g., Sec. III of Ref. 37

R̄�D,L� = R̄� + a�D�L−� + b�D�L−�� + ¯ + ca2�D�L−2�

+ ¯ , �28�

where we should note that the correction amplitudes depend
on the parameter D of our model. The improved model is
characterized by a vanishing amplitude of leading correc-
tions to scaling. Hence D� is given by the zero of a�D�. We
have analyzed the data of five different models in combined
fits: The Ising model and the Blume-Capel model at D
=0.641, D=0.655, D=ln 2, and D=1.15. To this end we
have employed various ansätze that are derived from Eq.
�28�,

R̄�D,L� = R̄� + a�D�L−�, �29�

R̄�D,L� = R̄� + a�D�L−� + ca2�D�L−2�, �30�

R̄�D,L� = R̄� + a�D�L−� + ca2�D�L−2� + bL−, �31�

R̄�D,L� = R̄� + a�D�L−� + ca2�D�L−2� + da3�D�L−3�,

�32�

R̄�D,L� = R̄� + a�D�L−� + ca2�D�L−2� + da3�D�L−3� + bL−.

�33�

In the ansatz �29� the free parameters of the fit are R̄�,
a�Ising�, a�0.641�, a�0.655�, a�ln 2�, a�1.15� and the correc-
tion exponent �. In the ansatz �30� we have in addition the
parameter c. In the ansatz �31� we have added the term bL−

to take subleading corrections into account. Here we make
the approximation that the parameter b is model independent.
We fix the subleading correction exponent =1.6 or =2. In
the ansatz �32� we take into account corrections �L−3�. Fi-
nally in the ansatz �33� we add, similar to Eq. �31� a term
bL−.

In the case of the ansatz �29� fits with �2/d.o.f. �2 are
only obtained for Lmin�36. Instead, fitting with ansatz �30�
we get for U4 at Za /Zp=0.5425 �2 /d.o.f.=62.4 /62 already
for Lmin=16. The results for the parameters of this fit are �

=0.832�1�, Ū4
�=1.60357�1�, a�Ising�=−0.2983�6�, a�0.641�

=−0.0067�2�, a�0.655�=−0.0006�2�, a�ln 2�=0.0167�2�,
a�1.15�=0.380�1�, and c=2.08�3�. Note that here and in the

following the errors quoted for results of individual fits are
purely statistical. Extrapolating a�0.641� and a�0.655� we get
D�=0.6564�5�.

We estimated the systematic error due to corrections that
are not taken into account in the ansatz �30� from the varia-
tion of the results obtained with the ansätze �31�–�33� and by
using U6 instead of U4. Furthermore we have redone the
analysis for U4 and U6 at �2nd /L=0.6431. We arrive at the
final estimates

� = 0.832�6� , �34�

D� = 0.656�20� . �35�

It also follows from the fits that the amplitude of corrections
to scaling at D=0.655 is at least by a factor of 30 smaller
than that of the spin-1/2 Ising model.

VII. IMPROVED OBSERVABLES

The exponent � can be obtained from the behavior of the
slope of a phenomenological coupling at the critical point

� �R

��
�

�=�c

= aL1/��1 + bL−� + ¯� . �36�

The exponent � can be extracted from the behavior of the
magnetic susceptibility at the critical point

���=�c
= aL2−��1 + bL−� + ¯� . �37�

Note that the coefficients a and b of course take different
values in Eqs. �36� and �37�. Such a procedure requires an
estimate of �c. To avoid this we have studied, following Ref.
22, the slopes and the magnetic susceptibility at � f as defined
in Eq. �26�. These quantities behave as

�R

��

� �R

��
�

�=�f

= a�D�L1/��1 + b�D�L−� + ¯� �38�

and

�̄ 
 ���=�f
= a�D�L2−��1 + b�D�L−� + ¯� . �39�

Again we have computed these quantities using their Taylor
expansion around �s up to the third order.

Here, following Ref. 28, we shall study improved ver-
sions of the slopes and the magnetic susceptibility. This
means in the ideal case that the amplitude of leading correc-
tions vanishes for any model. In practice, as we shall see
below, we can construct quantities for that the amplitude of
leading corrections is suppressed by more than one order of
magnitude. Using such quantities in the case of improved
models ensures that leading corrections to scaling are sup-
pressed by two to three orders of magnitude compared with
standard observables in the case of, e.g., the spin-1/2 Ising
model. This is sufficient to ignore leading corrections to scal-
ing in the analysis of our data.

Let us discuss in detail the construction of the improved
observable at the example of the magnetic susceptibility. We
consider
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�̄imp�L,D� = Ū4�L,D�x�̄�L,D� , �40�

where x is chosen such that the amplitude of leading correc-

tions vanishes. Note that instead of Ū4 also Ū6 could be used.
It is important to take a phenomenological coupling, where
leading corrections to scaling are clearly visible. Let us recall
the finite size scaling behavior of the Binder cumulant

Ū4�L,D� = Ū4
� + bU�D�L−� + ¯ . �41�

Inserting Eqs. �39� and �41� into Eq. �40� we get

�̄imp�L,D� = a�D�Ū4
xL2−��1 + �b�D� + x

bU�D�

Ū4
� �L−� + ¯ .

�42�

Hence the exponent defining the improved observable is
given by

x = − b�D�
Ū4

�

bU�D�
. �43�

Note that ratios of correction amplitudes are universal.
Therefore the exponent x does not depend on D. It can be
best determined by analyzing data obtained for models with
relatively large corrections to scaling. For example, one
might consider the spin-1/2 Ising model to this end. We have

already determined bU�Ising� and Ū4
� in the previous section.

In order to obtain b�D� one would fit �̄�L ,D� with ansätze
motivated by Eq. �39�.

However it turns out to be more efficient to study ratios of
observables taken from two different models. This way, criti-
cal exponents cancel and therefore fits have less parameters
and become more reliable. In particular, we shall study the
spin-1/2 Ising model and the Blume-Capel at D=1.15. We
define

R��L� =
�̄�L,Ising�

�̄�L,D = 1.15�

=
a�Ising�

a�D = 1.15�
�1 + �b�Ising� − b�1.15��L−� + ¯�

�44�

and

RU�L� =
Ū�L,Ising�

Ū�L,D = 1.15�
= 1 +

bU�Ising� − bU�1.15�

Ū�
L−� + ¯ ,

�45�

where now

x = − �b�Ising� − b�1.15��
Ū�

bU�Ising� − bU�1.15�
. �46�

The exponent x can be directly obtained from fits with the
ansatz

RU�L�xR��L� = C , �47�

where x and C are the parameters of the fit. To check for the
effect of subleading corrections we have also fitted the data
with the ansatz

RU�L�xR��L� = C + cL−, �48�

where c is an additional parameter and we have fixed either
=1.6 or =2. Fixing Za /Zp=0.5425, fits with the ansatz
�47� have an �2 /d.o.f.�1 starting with Lmin=16. Using
Lmin=16 we get x=−0.656�1�. Instead using the ansatz �48�
we get �2 /d.o.f.�1 already for Lmin=10. The results for
Lmin=10 are x=−0.665�2� and x=−0.661�2� for =1.6 and
=2, respectively. As our final result we quote x=−0.66�1�,
where the error is chosen such that it covers the three esti-
mates given above. In a similar fashion we arrive at x=
−0.57�2� for fixing �2nd /L=0.6431.

In Fig. 1 we demonstrate the effectiveness of the improve-
ment. We have analyzed our data for � at Za /Zp=0.5425 for
the Ising model and the Blume-Capel model at D=1.15. To
this end, we have fitted our data with the ansatz

�̄ = aL2−� + B , �49�

where B is an analytic background.
Using the standard magnetic susceptibility, we get

�2 /d.o.f.=4.6 /4 for Lmin=32 in the case of the Ising model
and �2 /d.o.f.=2.6 /5 for Lmin=24 in the case of the Blume-
Capel model at D=1.15. Nevertheless for, e.g., Lmin=32 the
results for � obtained from the two different models differ by
more than 20 standard deviations. In contrast, for the im-
proved magnetic susceptibility the results obtained for the
two models are quite similar. In particular, for Lmin=24 the

0.05 0.1 0.15
Lmin

-0.832
0.03

0.035

0.04

0.045

η

D=1.15, standard
D=1.15, improved
Ising, standard
Ising, improved

FIG. 1. �Color online� Results for the critical exponent � ob-
tained by fitting the standard and the improved magnetic suscepti-
bility at Za /Zp=0.5425 for the Ising model and the Blume-Capel
model at D=1.15 using the ansatz �49�. Lmin is the minimal lattice
size that is taken into account. In the case of the improved magnetic
susceptibility, the results obtained from the two different models
fall nicely on top of each other. The dashed lines should only guide
the eyes.
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estimates for � obtained from the Ising model and the
Blume-Capel model at D=1.15 are consistent within the er-
ror bars.

We also have constructed improved slopes

S̄imp�L,D� = Ū4�L,D�xS̄�L,D� , �50�

where x is chosen such that leading corrections to scaling
vanish. We have determined x analogous to the case of the
magnetic susceptibility discussed above. To this end we have
computed the ratios

RS�L� =
S̄�L,Ising�

S̄�L,D = 1.15�
. �51�

As discussed above for the case of the magnetic susceptibil-
ity, we have fitted

RU�L�xRS�L� = C �52�

with x and C as free parameters and, as check

RU�L�xRS�L� = C + cL−, �53�

where c is an additional parameter and  is fixed to either 1.6
or 2. Our final results for the exponent x are summarized in
Table VII.

Furthermore we have constructed quantities of the type

S̄ij = �S̄i�x�S̄j�1−x, �54�

where x is again chosen such that the amplitude of the lead-
ing correction vanishes. Here we performed fits with the an-
satz

RSi

x RSj

1−x = C , �55�

where x and C are the parameters of the fit and

RSi

x RSj

1−x = C + cL− �56�

with the additional parameter c. Also here we have fixed
either =1.6 or =2. In practice we have combined the slope
of U4 with the slope of Za /Zp or �2nd /L. Our results for the
exponent x are summarized in Table VIII. Notice that the
results obtained for Za /Zp=0.5425 and �2nd /L=0.6431 are
similar but not identical.

VIII. EXPONENT �

We have fitted our data for the improved magnetic sus-
ceptibility at Za /Zp=0.5425 and �2nd /L=0.6431 using the
ansätze

�̄imp = a�D�L2−�, �57�

�̄imp = a�D�L2−� + B�D� , �58�

�̄imp = a�D�L2−��1 + d�D�L−� . �59�

In the ansatz �58� we have taken into account the analytic
background B of the magnetic susceptibility. Since � is
small, the parameter B also takes effectively into account
other corrections that have a correction exponent ���2 like
for example the breaking of the rotational symmetry by the
lattice. In the ansatz �59� we have set =1.6. Using this
ansatz we try to estimate the possible effect of a correction
caused by ��=1.67�11� �Ref. 44� on our estimate of �.

We have fitted the data for D=0.641 and D=0.655 in a
common fit. The parameters of these fits are a�0.641�,
a�0.655�, and � in the case of the ansatz �57� and in addition
B�0.641� and B�0.655� or d�0.641� and d�0.655� in the case
of the ansatz �58� and �59�, respectively. In Fig. 2 we have
plotted estimates of � obtained by fitting with the ansatz �57�
as a function of Lmin

−2 . Up to Lmin=48 the results fall roughly

TABLE VII. Exponent x of improved slopes as defined by Eq.
�50�. In the first column we give the phenomenological coupling
and its value that is used to define � f. In the first row we give the
quantity whose slope is considered. For a discussion see the text.

Fix; slope of Za /Zp �2nd /L U4 U6

Za /Zp=0.5425 0.52�2� 0.77�3� −1.21�5� −2.73�5�
�2nd /L=0.6431 0.54�2� 0.81�2� −1.21�3� −2.71�4�

TABLE VIII. Exponent x of improved slopes as defined by Eq.
�54�. In the first column we give the phenomenological coupling
and its value that is used to define � f. In the first row we give the

quantity whose slope is mixed with that of Ū4. For a discussion see
the text.

Fix; slope of Za /Zp �2nd /L

Za /Zp=0.5425 0.29�1� 0.39�1�
�2nd /L=0.6431 0.31�1� 0.41�1�

0 0.001 0.002 0.003 0.004
Lmin
-2

0.035

0.0355

0.036

0.0365

η

Z /Z = 0.5425a p
xi /L= 0.64312nd

FIG. 2. �Color online� Results for the critical exponent � ob-
tained by fitting the improved magnetic susceptibility at Za /Zp

=0.5425 and at �2nd /L=0.6431 using the ansatz �57�. Data for the
Blume-Capel model at D=0.641 and D=0.655 are taken into ac-
count. Lmin is the minimal lattice size that is taken into account. The
dashed lines should only guide the eyes. For a discussion see the
text.
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on a straight line, indicating that corrections with an expo-
nent �2 are present. For Lmin=128 one finds that �2/d.o.f.
is smaller than one for both taking the improved susceptibil-
ity at Za /Zp=0.5425 and �2nd /L=0.6431. The estimate �
=0.03636�20� covers both results obtained at Lmin=128, in-
cluding their error bars.

Next we have fitted our data with the ansatz �58�. For both
the improved magnetic susceptibility at �2nd=0.6431 and at
Za /Zp=0.5425 we get �2/d.o.f. �2 starting from Lmin=14.
The results for � are plotted in Fig. 3. In the case of �2nd
=0.6431 the estimate of � is increasing with increasing Lmin
while it is decreasing for Za /Zp=0.5425. For Lmin=32 the
two results are consistent within error bars.

We read off our final estimate

� = 0.03627�10� . �60�

The error estimate is chosen such that it also covers results
obtained with the ansatz �59� and Lmin=32.

IX. CRITICAL EXPONENT �

In order to determine the exponent � we performed com-
bined fits of our data for the improved slopes at D=0.641
and D=0.655. In a first step of the analysis we have fitted the
improved slopes with a power law without any correction

S̄imp = a�D�L1/�, �61�

where the amplitudes a�0.641�, a�0.655� and the exponent �
are the parameters of the fit. In Fig. 4 we give the results for
� as a function of Lmin

−2 , where Lmin is the minimal lattice size
that is included into the fit. In the figure we give only results
for taking the slopes at Za /Zp=0.5425. Those for the slopes
at �2nd /L=0.6431 behave in a very similar way.

We find that the result for � obtained from the improved
slope of Za /Zp is increasing with increasing Lmin while the

one obtained from �2nd /L is decreasing. The results obtained
from the improved slope of U4 and U6 are quite similar. They
only slightly increase with increasing Lmin. We have also
plotted results obtained from the combined slopes �Eq. �54��.
In the case of combining the slope of U4 with that of �2nd /L
the estimate of � is decreasing with increasing Lmin while for
combining the slope of U4 with that of Za /Zp it is increasing.
In all cases a rather large Lmin is need to get acceptable
values for �2/d.o.f. In the worst case, for the improved slope
of Za /Zp only for Lmin�56 a �2/d.o.f. smaller than two is
reached. The behavior of the estimates of � for Lmin�48 is
consistent with the fact that the dominating corrections have
an exponent ���2. For larger Lmin, the variation of our es-
timates of � with Lmin seems to be dominated by statistical
fluctuations. For Lmin=128 we get �2/d.o.f. smaller than one
for all quantities that we have considered. The estimate �
=0.6301�3� covers the results, including the statistical error,
of all our fits for Lmin=128. Note that in Ref. 24 L=128 is
the largest lattice size that is simulated.

Motivated by these observations, we have fitted our data
with the ansatz

S̄imp = a�D�L1/� � �1 + bL−� , �62�

where we have fixed  to either 1.6 or 2. Since already
a�0.641� and a�0.655� are very similar, we have chosen the
parameter b to be model independent. Let us first discuss the
fits with =2. Such fits give �2/d.o.f. close to one already for
Lmin=10. In the lower part of Fig. 5 we have plotted the
results obtained from the slopes of different quantities for
10�Lmin�24. These different estimates of � are consistent
among each other. Furthermore there is little variation in the
results with Lmin.

In the upper part of Fig. 5 we plot the corresponding
result for =1.6. Here the �2/d.o.f. is somewhat larger than
for =2. Also the result for � clearly depends on the quantity
that is analyzed. We conclude that the numerically dominant
corrections have an exponent �2. Motivated by these fits,

10 15 20 25 30 35
Lmin

0.03615

0.0362

0.03625

0.0363

0.03635

0.0364

η

Z /Z = 0.5425a p
xi /L= 0.64312nd

FIG. 3. �Color online� Results for the critical exponent � ob-
tained by fitting the improved magnetic susceptibility at Za /Zp

=0.5425 and at �2nd /L=0.6431 using the ansatz �58�. Data for the
Blume-Capel model at D=0.641 and D=0.655 are taken into ac-
count. Lmin is the minimal lattice size that is taken into account. The
dashed lines should only guide the eyes. For a discussion see the
text.

0 0.002 0.004 0.006
Lmin
-2

0.629

0.6295

0.63

0.6305

0.631

ν

Z /Za p
xi /L2nd
U4
U6
U , Z /Z4 a p
U , xi /L4 2nd

FIG. 4. �Color online� Results for the critical exponent � ob-
tained by fitting improved slopes of various phenomenological cou-
plings at Za /Zp=0.5425 as a function of Lmin

−2 , where Lmin is the
minimal lattice size that is included into the fit. The dashed lines
should only guide the eyes. For a discussion see the text.
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we take �=0.63002 as our final result. Since we cannot ex-
clude that there are also corrections with an exponent 
�1.6, we take these fits into account in our final error of �.
For Lmin=22 and Lmin=24 all results that we have obtained
with the ansatz �62�, including their error bar, are contained
in the interval �0.62992, 0.63012�. Therefore we quote as our
final result

� = 0.63002�10� . �63�

X. SUMMARY AND CONCLUSIONS

We have simulated the spin-1/2 Ising model and the
Blume-Capel model on the simple cubic lattice using linear
lattice sizes L�360. Using finite size scaling methods we
have determined critical properties of the models. In particu-
lar, we have determined the value D�=0.656�20� of the pa-
rameter D of the Blume-Capel model, where leading correc-
tions to scaling vanish. We have accurately determined the
inverse of the critical temperature for various values of D,

in particular, �c�0.641�=0.38567122�5� and �c�0.655�
=0.387721735�25�. We have computed the critical exponents
�=0.63002�10� and �=0.03627�10� as well as the exponent
�=0.832�6� of leading corrections to scaling. The errors
quoted for these final results cover statistical as well as sys-
tematical errors. Systematical errors are due to the fact that
power laws like Eqs. �36� and �37� that govern the finite size
scaling behavior of physical quantities at the critical tem-
perature are subject to an infinite series of correction terms.
Fitting Monte Carlo data, only few of these correction terms
can be taken into account. In the present study, we have
effectively eliminated the leading correction �L−� by simu-
lating an improved model and analyzing improved observ-
ables as discussed in Sec. VII. In our ansätze we take into
account a subleading correction with the exponent ��
=1.67�11� predicted by Ref. 44 or ���2 due to the breaking
of the rotational symmetry by the simple cubic lattice45 or
due to the analytic background of the magnetic susceptibility.
We estimate the error caused by correction terms that are not
included by comparing the results obtained by using different
ansätze and, even more important, by fitting different quan-
tities. One expects that in the generic case the amplitudes of
corrections are different for different quantities. In the case
of the critical exponent � we have studied the slope of four
different phenomenological couplings: The cumulants U4
and U6, the ratio of partition functions Za /Zp, and the second
moment correlation length over the linear lattice size �2nd /L.
We regard the estimates of the error obtained this way as
quite robust and therefore the results obtained here should
serve well as benchmark for experimental studies as well as
new or developing theoretical methods.

Our results are fully consistent with those obtained from
high-temperature series expansion of lattice models;17–19 see
Table II. We find a small discrepancy with the Monte Carlo
results of Ref. 24; see Table II. Note that the authors of Ref.
24 did not take into account a subleading correction with the
exponent ��=1.67�11� �Ref. 44� analyzing their Monte
Carlo data.

The accuracy that is reached now by lattice methods has
clearly outpaced that of field theoretic methods. Furthermore,
comparing with the numbers that are summarized in Table I,
we notice that most of the results for � and � obtained from
the perturbative expansion in three dimensions fixed are at
odds with ours while those of Refs. 11 and 13 are in reason-
able agreement. Note that, as discussed by Nickel,13 the sub-
leading correction exponent ��=1.67�11� �Ref. 44� also
plays a crucial role in the analysis of the perturbative series
in three dimensions fixed. Therefore, it would be highly de-
sirable to get an independent confirmation of this result.

Using Monte Carlo simulations, the error of the estimates
of the critical exponents can be further reduced just by
spending more CPU time. To this end one has to increase the
statistics as well as enlarge the size of the lattices that are
simulated. Keeping the statistical error and the systematical
one proportional, the effort increases as error−2−�3+z�/�� with a
decreasing error, where the first factor error−2 is related to the
increased statistics and the second to the larger linear lattice
size L that is needed to reduce the systematical error. Here
we assume that the systematical error is proportional to L−��,

10 15 20 25
Lmin

0.6298

0.6299

0.63

0.6301

0.6302

0.6303

ν

Z /Za p
xi /L2nd
U4
U6
U , Z /Z4 a p
U , xi /L4 2nd

ε=1.6

10 15 20 25
Lmin

0.62996

0.62998

0.63

0.63002

0.63004

0.63006

0.63008

ν

ε=2

FIG. 5. �Color online� Results for the critical exponent � ob-
tained by fitting improved slopes of various phenomenological cou-
plings at Za /Zp=0.5425 with the ansatz �62� as a function of Lmin.
In the upper part of the figure the correction exponent is fixed to
=1.6 and in the lower part it is fixed to =2. The dashed lines
should only guide the eyes. For a discussion see the text.
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since, as we have shown here, leading corrections can be
eliminated. The effort at a fixed statistical accuracy behaves
as Ld+z, where d=3 is the dimension of the system and z is
the critical dynamical exponent. In a recent study of a spin
glass46 about 1000 years of CPU time on one core of a CPU
of similar performance as the one used here had been spent.
This is about a factor of 30 more CPU time than we have
spent here. One should notice however that this factor in

CPU time only would allow to reduce the errors of the criti-
cal exponents by a factor of about 2.3, where we have as-
sumed ���1.6 and z�0.4; see Eqs. �18� and �19�.
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