
Signatures of asymmetric and inelastic tunneling on the spin torque bias dependence

A. Manchon,1,2 S. Zhang,2 and K.-J. Lee3

1Materials Science and Engineering, Division of Physical Science and Engineering, KAUST, Thuwal 23955, Saudi Arabia
2Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

3Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea
�Received 24 March 2010; revised manuscript received 18 September 2010; published 15 November 2010�

The influence of structural asymmetries �barrier height and exchange splitting�, as well as inelastic scattering
�magnons and phonons� on the bias dependence of the spin transfer torque in a magnetic tunnel junction is
studied theoretically using the free-electron model. We show that they modify the “conventional” bias depen-
dence of the spin transfer torque, together with the bias dependence of the conductance. In particular, both
structural asymmetries and bulk �inelastic� scattering add antisymmetric terms to the perpendicular torque
��V and �je�V�� while the interfacial inelastic scattering conserves the junction symmetry and only produces
symmetric terms ���V�n, n�N�. The analysis of spin torque and conductance measurements displays a signa-
ture revealing the origin �asymmetry or inelastic scattering� of the discrepancy.
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I. INTRODUCTION

The recent observation of current-driven magnetization
control1 in magnetic tunnel junctions2 �MTJs� offers promis-
ing opportunities for magnetic recording and memories
applications.3 The observed critical switching current has
now reached 106 A /cm2, which makes MTJs competitive
candidates for magnetic random access memories.4

However, due to the specific transport properties in MTJs,
the characteristics of the spin transfer torque in these devices
display significant differences with the current-driven torque
usually observed in metallic spin valves.5 Uncovering the
precise form of the bias dependence of the spin torque is
essential to understand and control the dynamical properties
of the magnetization. In MTJs, it has been demonstrated both
theoretically6–12 and experimentally13–18 that the torque pos-
sesses two components, usually referred to as the in-plane �or
Slonczewski� torque, T� and the perpendicular �or out-of-
plane� torque, T�. The first one is purely nonequilibrium and
competes with the damping, whereas the second one arises
from spin reorientation at the interfaces, possesses both equi-
librium �interlayer exchange coupling19� and nonequilibrium
components and acts like an effective magnetic field on the
magnetization. The presence of this perpendicular torque
results in original dynamical properties of the
magnetization.13–18

Up until now, most of the experimental efforts have been
focused on the bias dependence of the perpendicular torque
T�. Although this component is vanishingly small in metallic
spin valves, it cannot be neglected in MTJs due to the mo-
mentum filtering imposed by the tunnel barrier.9 Most of the
theories, using tight-binding,7,8 free-electron,9–11 or ab
initio12 calculations, have addressed the bias dependence of
the spin torque within a symmetric and purely elastic tunnel-
ing junction �referred to as SE tunneling�. It has been shown
that for SE tunneling at low-bias voltage, the form of the
spin torque is

T� = �a1V + a2V2�M � �M � P� , �1�

T� = �b0 + b2V2�M � P , �2�

where P and M are the magnetization directions of the
pinned and free layers, respectively. These bias dependencies
have been well observed in spin-diode-type experiments13

performed on MgO-based MTJs. The linear bias dependence
of the in-plane torque that has been measured �a2�0� is
consistent with Ref. 12 which suggests that MgO-based
MTJs behave like half-metallic junctions.

In contrast, a number of experiments using dynamical and
switching properties of the MTJs,14–18 as well as recent the-
oretical investigations8,10,11 have recently questioned the va-
lidity of the “conventional” bias dependencies represented by
Eqs. �1� and �2�. In particular, Xiao et al.10 and Wilczynski et
al.11 employing the free-electron model numerically showed
that structural asymmetries could alter the convention bias
dependence of the perpendicular torque, whereas Tang et al.8

predicted a nonmonotonic bias dependence of T�, demon-
strating the importance of band filling. From the experimen-
tal side, Li et al.16 measured a fieldlike effect of the form
�je�V� and interpreted their data by considering the electron-
magnon scattering in the bulk of the ferromagnets. In con-
trast, Sun et al.17 suggested the possibility of nonmacrospin
processes or heating artifacts that would induce a bias-
dependent effective field. Very recently, Oh et al.18 demon-
strated the possibility to tune the bias dependence of the
perpendicular torque by engineering the structural asymme-
tries of a MgO-based MTJ, consistently with theoretical
simulations.8,10,11 One of the authors also proposed that an
incomplete absorption of the transverse spin density within
the free layer could lead to an asymmetric perpendicular
torque.9 Finally, we recently studied the influence of interfa-
cial electron-magnon scattering on the bias dependence of
the torque20 and found that an additional symmetric term of
the form ��V� arises.

As seen from this brief overview, the bias dependence of
the spin torque is far from universal, and a number of mecha-
nisms has been shown to modify this dependence. However,
the role of asymmetries has been investigated numerically
within the tight-binding model8 and the free-electron
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model10,11 and little is known concerning the role of inelastic
scattering.16,20 In this paper, we derive analytic solutions for
T� and T� in the case of structural asymmetries and �bulk and
interfacial� inelastic scattering by magnons and phonons,
leading to a discrepancy between the actual torques and the
conventional ones �Eqs. �1� and �2��. In particular, both
structural asymmetries and bulk �inelastic� scattering add
antisymmetric terms to the perpendicular torque ��V and
�je�V�� while the interfacial inelastic scattering conserves
the junction symmetry and only produces symmetric terms
���V��. Moreover, we suggest that a connection exists be-
tween the tunneling conductance and the out-of-plane torque
which constitutes a signature of the origin of the discrepancy.

This paper is organized as follows: in Sec. II, we briefly
discuss the form of the tunneling spin torque with and with-
out spin diffusion. Section III addresses the bias dependence
of the spin torque and conductance in the presence of struc-
tural asymmetries. The influence of bulk and interfacial in-
elastic scattering is described in Sec. IV and the conclusion
is given in Sec. V.

II. SPIN CURRENT VS SPIN DENSITY

In most of the theoretical studies on the spin transfer
torque in MTJs, the torques are associated with the trans-
verse spin current density at the interfaces between the elec-
trodes and the tunnel barrier.6–12 This definition is only valid
in the case of semi-infinite electrodes where the spin diffu-
sion is neglected. A more correct approach is to relate the
spin torque to the spin density rather than to the spin current
�see Ref. 21 for a detailed discussion�. The spin torque is
then the torque exerted by the transverse spin density on the
local magnetization and has the form

T = �
�

J

�
m � Md� , �3�

where J is the s-d exchange coupling, m is the itinerant spin
density, M is the local magnetization, and � is the volume of
the magnetic layer. The spin density can be computed from
the well-known spin continuity equation,21

�m

�t
= − � · Js −

J

�
m � M −

m

�sf
, �4�

where Js is the spin current and �sf is the spin relaxation
time. In the case of a magnetic tunnel junction, where the
resistance is dominated by the barrier, the spatial variation in
the spin density is usually neglected and the torque is di-
rectly related to the spin current:6–12 T=−	�� ·Jsd�. There-
fore, in the case of a semi-infinite magnetic layer, the torque
reduces to the interfacial transverse spin current.

However, in realistic junctions, the free layer is usually
thin �t�2–3 nm� and the torque arising at the interface
between the barrier and the ferromagnetic electrode must
be balanced by the torque arising at the second interface: T
=Js�x=0�−Js�x= t�, which may introduce some deviations
from the conventional bias dependence of the torque.9 On the
other hand, in MgO-based junctions, the junction behaves
like a half-metallic MTJ �Ref. 12� and the spin density �or

transverse spin current� is strongly absorbed near the barrier
interface9,12 �a few monolayers�. Therefore, the usual identi-
fication T=Js�x=0� is essentially valid in MgO-MTJs if one
neglects the spin diffusion in the electrodes.

Nevertheless, we will show that it is possible to account
for the spin relaxation �1 /�sf �0 in Eq. �4�� in the bulk of the
electrodes �impurities- or magnons-induced spin-flip scatter-
ing� as long as this relaxation does not significantly modify
the interfacial densities of states, and thereby the tunneling
process itself. In this case, we find that the resulting spin
torque is a mixing between the two transverse components of
the spin current. This issue will be addressed in detailed in
Sec. IV.

III. STRUCTURAL ASYMMETRIES

In Ref. 18, the authors demonstrated the possibility to add
a linear component to the bias dependence of the perpendicu-
lar torque by intentionally introducing structural asymme-
tries in the junction. Depending on the asymmetry, it is pos-
sible to change the sign of the linear component, therefore
artificially tuning the form of the spin torque. This finding is
consistent with numerical studies.8,10,11 Although a connec-
tion is suggested between the bias dependence of the con-
ductance and the one of the perpendicular torque,8,10,11,18 this
connection remains unclear and analytical formulas are
needed.

In this section, we study the influence of two types of
structural asymmetries. First, we consider the presence of
different exchange splittings in the ferromagnetic electrodes.
The exchange splittings of Fe, Co, and Ni have been mea-
sured experimentally near the � point,22 as shown in Table I.
As a consequence, varying the composition of the electrodes,
one can obtain different exchange splittings up to JR−JL
�0.5 eV.

Another type of structural asymmetry is the presence of a
different barrier height at the left and right interfaces of the
junction. Since the work functions of Co, Fe, and Ni are
different23 �see Table I�, the asymmetry can be created by
using different electrode compositions but also by modifying
the composition of the barrier itself.24

We consider the junction presented in Fig. 1, where two
ferromagnetic electrodes are separated by an insulator. The
magnetizations form an angle � between them. The barrier of
average height 	= �	R+	L� /2 possesses an asymmetry 
	
=	R−	L, whereas the electrodes have an average exchange
splitting J= �JR+JL� /2 with an asymmetry 
J=JR−JL. To
determine the influence of these asymmetries on the spin
torque and conductance, we use the same approach as Brink-

TABLE I. Exchange splitting and work functions for the three
standard ferromagnetic transition metals.

Fe Co Ni

J a �eV� 1.5 1.1 0.6

Wb �eV� 4.67–4.81 5 5.04–5.35

aReference 22.
bReference 23.
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man et al.25 Using the free electron model within Keldysh
formalism developed in Ref. 9, the wave functions are deter-
mined for the complete structure �see Ref. 9�. The analytic
forms of the torque and current are obtain up to the first order
in exp�−2d�0�, where d is the barrier thickness and �0
=
2m	 /�2 is the barrier wave vector for perpendicularly
incident Fermi electrons �see Appendix A�. The effective
mass of the electrons within the barrier is taken equal to 1.
Therefore, the general form of the torques and current is

T�,T�,Je =� � dEdk�e−2d��E,k��F�E,k�� , �5�

where F�E ,k�� is a function given explicitly in Appendix B,
E is the electron energy, and k� is the wave-vector compo-
nent in the plane of the layers. The factor e−2d��E,k�� arises
from the WKB approximation and represents the tunneling
transmission. Following the spirit of Brinkman et al.,25 we
assume that the barrier is thick and high enough so that the
energy dependence is essentially contained in the exponen-
tial factor e−2d��E,k��. Therefore, F�E ,k���F�EF�eV /2,0�,
and we obtain

T� = T�0�a1
eV

	
+ a2� eV

	
2�sin � , �6�

T� = T�0�1 + b1
eV

	
+ b2� eV

	
2�sin � , �7�

Gp�V� = G0
p�1 + g1

peV

	
+ g2

p� eV

	
2� , �8�

Gap�V� = G0
ap�1 + g1

apeV

	
+ g2

ap� eV

	
2� �9�

at the second order in bias voltage V. The torques T� and T�

are exerted on the right layer and Gp,ap�V� is the conductance
defined as Gp,ap�V�=�Je

p,ap /�V, where Je
p,ap is the charge cur-

rent in the parallel and antiparallel configurations, respec-
tively. The coefficients a1¯g2

ap are given explicitly in Ap-
pendix C. Notice that up to the first order in the barrier, the
angular dependence of the in-plane and perpendicular
torques is a simple sin �. The introduction of asymmetries

does not modify the angular dependence of the torque, as
long as the barrier is either high enough or thick enough
�=d�0�1�.

To illustrate the influence of the structural asymmetries on
the torques and conductance, the analytical expressions
given in Eqs. �6�–�8� have been plotted in Fig. 2, together
with the full numerical simulation of the model developed in
Ref. 9. The torques and conductance are represented in their
reduced form: the in-plane torque is normalized to the in-
plane torquance ��T� /�V� in the absence of asymmetries,
whereas the perpendicular torque and conductance are nor-
malized to their value at zero bias. Several points are worth
noting.

First, since the in-plane torque is already asymmetric
against the bias voltage in SE tunneling �a1 and a2 do not
vanish in the absence of structural asymmetries�, the conven-
tional bias dependence given in Eq. �1� is conserved in the
presence of asymmetries and only the actual magnitude of a1
and a2 is modified, as illustrated in Figs. 2�a� and 2�b�. Note
that the small discrepancy between the numerical model
�solid lines� and the analytical expressions �squares� can be
attributed to the presence of a cubic term �V3 in the torque
T�. The change in the slope of the torque can be simply
understood by considering the polarization �defined as Slon-
czewski’s polarization—see Appendix B� of the electrons re-
sponsible for the in-plane torque T�.

θθθθ

EφφφφL+eV/2

φφφφR-eV/2

EF+eV/2

Left electrode Tunnel barrier Right electrode

x

x=0

EF-eV/2

JL

JR

x=d

FIG. 1. �Color online� Potential profile of an asymmetric mag-
netic tunnel junction. The right and left parabolae represent the
dispersion of tunneling electrons.
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FIG. 2. �Color online� Bias dependence of the ��a� and �b��
in-plane torque, ��c� and �d�� perpendicular torque, and ��e� and �f��
parallel conductance in the case of ��a�, �c�, and �e�� barrier height
and ��b�,�d�, and �f�� exchange splitting asymmetries. The solid
lines correspond to numerical calculations based on the model pre-
sented in Ref. 9 and the squares are calculations using Eqs. �6�–�8�.
The parameters are EF=10 eV, J=1 eV, 	=5 eV, and d=1 nm.
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Second, the terms b1 and g1
p,ap are proportional to 
J and


	 so that in the absence of structural asymmetry, the per-
pendicular torque and the conductance are quadratic in bias
voltage. However, when structural asymmetries are present,
the perpendicular torque and the conductance both acquire
an additional linear component �b1 and g1

p,ap�. This is consis-
tent with numerical simulations reported earlier8,10,11 and the
analytical expressions satisfactorily reproduce the numerical
results, as shown in Figs. 2�c�–2�f�.

An interesting feature here is the sign of the deviations.
For 
	�0 and 
J=0, the junction is more conductive for
negative bias �	R�	L�, therefore a shift is observed in the
conductance and torque toward positive voltages
�b1 ,g1

p�0—see Figs. 2�a� and 2�c��. However, in the case

J�0 and 
	=0, the tunneling from left to right is slightly
more efficient �since JR�JL� and the conductance displays a
shift toward negative voltages �g1

p�0—see Fig. 2�d��. In
contrast, the electrons from the right electrodes are more
polarized than the ones from the left electrode and the torque
displays a shift toward positive voltages �b1�0—see Fig.
2�b��. This difference in the signature of the structural asym-
metry allows for the identification of the source of the linear
term in the out-of-plane torque, as demonstrated by the study
of Oh et al.18

These results are consistent with previous numerical
studies8,10,11 at low bias. However, the comparison with the
tight-binding model studied in Ref. 8 presents some differ-
ences. The free-electron model yields an open parabolic band
dispersion whereas the tight-binding model produces a
closed band dispersion. Therefore, the free-electron model is
only correct for low-bias dependence and provides results for
low band filling. As a consequence, the free-electron model
is surprisingly well adapted to the case of Fe. It also implies
that the bias voltage must be smaller than the half bandwidth
of the conduction electrons. As a consequence, neither band
filling-induced sign reversal of IEC nor the oscillatory bias
dependence8 of the perpendicular torque can be obtained
within the free-electron model. The above results are limited
to reasonably small bias and low band filling systems.

IV. INELASTIC SCATTERING

In this section, we consider that the �bulk or interfacial�
scattering by phonons, magnons, or impurities in the left and
right electrodes are symmetric �i.e., the interactions have the
same amplitude in the left and right electrodes�. This way,
the electron scattering conserves the symmetry of the junc-
tion �it may not be true when the electrodes compositions are
different�. Although the symmetry of the system is con-
served, the spin torque does not have the same expression in
the case of bulk or interfacial scattering. As mentioned in
Sec. II, in the case of interfacial scattering the spin torque is
directly related to the interfacial spin current, T=Js�x=0�,
whereas in the case of bulk scattering, the spin relaxation in
the electrodes cannot be neglected anymore and T=Js�x
=0�−	�d�m /�sf. Therefore, although the symmetry of the
MTJ is conserved in both cases, the bias dependence of the
spin torque will experience a different modification depend-
ing on whether the scattering occurs at the interfaces or in
the bulk of the electrodes.

A. Interfacial scattering

We consider two types of interfacial inelastic scattering
processes: electron-magnon and electron-phonon. The influ-
ence of electron-magnon scattering on Tunneling Magnetore-
sistance �TMR� �Refs. 26 and 27� and spin transfer
torque20,28 has been studied within the transfer Hamiltonian
formalism. The current density is expressed in the form of a
2�2 spinor matrix,

Ĵ = 2�
e

�
�
k,p

��̂kT̂kp�̂p�T̂kp�+fL�1 − fR�

− �̂p�T̂kp�+�̂kT̂kpfR�1 − fL�� , �10�

where fL�R� and �̂k�p� are the Fermi distribution function and
electronic density of states at the left �right� interfaces, and

T̂kp �T̂pk� is the spin-dependent transfer matrix accounting
for both elastic and inelastic tunneling. In the spinor formal-
ism, the charge current and spin current are expressed je

=Tr�Ĵ� and T����=Js
x�y�=Tr��̂x�y�Ĵ�, where �̂x�y� are the Pauli

spin matrices.
In the case of electron scattering by interfacial phonons,

although no spin flip takes place, the increase in the conduc-
tance is expected to modify the TMR �Ref. 27� and, corre-
spondingly, the spin torque. In the presence of electron-
magnon and electron-phonon interactions, the transfer
matrices can be written as

T̂kp
e−m = T̂kp

d � Î +
Qm

N
�� . Str

R + � . Str
L �� , �11�

T̂kp
e−ph = T̂kp

d �1 +
Qq
ph

N
�bq + bq

+�� Î , �12�

where T̂kp
d is the direct tunneling matrix, Qm �Qq

ph� is the
phenomenological electron-magnon �electron-phonon� effi-
ciency, N is the number of atoms per cell, � is the vector of
Pauli spin matrices, and Str

L�R� are the transverse part of the
magnetizations of the left and right electrodes. Details about
the derivation of Eq. �11� can be found in Ref. 20. The in-
teraction efficiency �Qm and Qq

ph� can be related to quantum
mechanical quantities, Qm�J2 /EF

2 and Qq
ph��Mq

2� /EF
2 ,

where J is the exchange splitting, EF is the Fermi energy, and
Mq is the electron-phonon interaction29 that depends on the
type of coupling �acoustic, optical, or polar coupling�.

1. Electron-phonon scattering

In the case of electron-phonon scattering, the transfer ma-
trix �Eq. �12�� is diagonal in spin space and obviously, the
presence of phonons does not induce spin flip. However, the

direct tunneling matrix is renormalized by �1+
Qq
ph

N �bq
+bq

+�� and becomes bias dependent.27 We then expect that the
modification of the conductance due to phonons alters the
bias dependence of the spin torque. Performing the matrix
products displayed in Eq. �10� and using the definition of the
spinor current stated above, we find
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je�E,q� =
G0

e
�1 + Qq

ph�bq
+bq� + Qq

ph�bqbq
+���1 + cos �PLPR�

��fL�1 − fR� − fR�1 − fL�� , �13�

T��E,q� =
G0

e
PL�1 + Qq

ph�bq
+bq� + Qq

ph�bqbq
+��

��fL�1 − fR� − fR�1 − fL��sin � , �14�

T��E,q� =
G0

e
�1 + Qq

ph�bq
+bq� + Qq

ph�bqbq
+��

��PR�LfL�1 − fR� + PL�RfR�1 − fL��sin � ,

�15�

where PL,R is the polarization at the left �right� interface and
�R,L is a coefficient that accounts for the spin rotation during
tunneling.20 The integration rules are described in Ref. 20.
Assuming that the electron spin-dependent densities of state
do not vary much over the range of electron volt, and con-
sidering acoustic phonons ���q and Qq�q� with a density
of states of the form �ph������, we obtain, at T=0 K and
low-bias voltage,

G�V� = G0�1 + PLPR cos ���1 + �ph�V��+2� , �16�

T� = G0PL sin ��1 + �ph�V��+2�V , �17�

T� − T�0 = G0PR	L sin ��ph�V��+3, �18�

�ph being a coefficient that depends on the electron-phonon
coupling, Fermi energy, Debye temperature �D, etc. The bias
dependence of the conductance ���V��+2� is consistent with
the one suggested by Bratkovsky when �=2. At larger bias,
�V��+2 is replaced by kB�D and the bias dependence of the
torques becomes linear. Note that the symmetry of the out-
of-plane torque against the bias is conserved, whereas the
in-plane torque acquires an antisymmetric component.

At higher temperature and bias, more complex behavior
are found but the bias dependence of G�V� and T� is always
an even function of V ��V�n, n�N�. As an illustration, we
provide below the expressions for large bias at finite tem-
perature �eV�kBT�kB�D�,

G�V� = G0�1 + PLPR cos ���1 + �ph
T

�D
� �eV�

kB�D
�+1� ,

�19�

T� = G0 sin �PL�1 + �ph
T

�D
� �eV�

kB�D
�+1�V , �20�

T� − T�0 = G0PR	L sin ��ph
T

�D
� �eV�

kB�D
�+2

. �21�

Again �ph depends on the electron-phonon coupling, Fermi
energy, Debye temperature, etc. At finite temperatures, the
conductance is enhanced due to phonon-assisted tunneling
and therefore, both in-plane and out-of-plane torques are en-
hanced. The temperature dependence is expected to be linear.

Notice that although the magnitude of the torque increases
with the temperature, its efficiency �ratio between spin
torque and current density� is not modified, since the
electron-phonon interaction does not affect the spin itself,
but rather the tunneling rate.

2. Electron-magnon scattering

In the case of electron-magnon interaction, the transfer
matrix �Eq. �11�� possesses nondiagonal elements that are
responsible for spin-flip scattering. We then expect a much
more complex influence on the torque. Assuming a magnon
density of states of the form �m���=��, symmetric elec-
trodes �PL= PR= P and 	L=	R=	� and T=0 K, we find

G�V� � �1 − P2 cos ���V��+1, �22�

T� − T�0 � sin ��P�1 + P� − �1 − P��1 + P cos ���V�+2,

�23�

T� − T�0 � P	 sin ��1 − cos ���V��+2. �24�

The detail of these expressions can be found in Ref. 20.
Interestingly the perpendicular torque and the conductance
both acquire a component that is symmetric against the bias.
Furthermore, since the electron-magnon interaction mixes
the majority and minority channels, the angular dependence
is also affected, contrary to the case of electron-phonon cou-
pling.

The finite-temperature situation has been studied in Ref.
20 and gives rise to a nonlinear dependence as a function of
both voltage and temperature. Actually, competing mecha-
nisms take place when both magnon emission and absorption
are accounted for. Let us consider the torque exerted on the
right electrode magnetization. Magnon emission �absorption�
occurring at the left interface increases �reduces� the effec-
tive spin polarization of the incoming electrons, therefore
enhancing �lowering� the spin torque exerted on the right
electrode. Symmetrically, electron-magnon interactions oc-
curring at the right interface also affect the effective polar-
ization of electrons coming from the right reservoir. Finally,
we must stress out that the detailed temperature and bias
dependencies presented here are strongly conditioned by the
electrons, phonons, and magnon band structures.

B. Bulk scattering

In contrast with interfacial scattering, in the case of bulk
scattering �by impurities or magnons� the spin torque is no
more described by the purely interfacial spin current since
spin relaxation cannot be neglected in the bulk of the layers.
Therefore, the spin torque reads

T = �
�

J

�
m � Md� = �

�
�− �Js −

m

�sf
�d� �25�

The presence of a finite spin relaxation time �1 /�sf �0� in-
duces a coupling between the two components of the spin
torque so that the perpendicular torque now involves a con-
tribution of both in-plane and perpendicular interfacial spin
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current densities. In a MTJ, the interfacial densities of state
are usually only affected by the first few monolayers away
from the interface. Therefore, since the spin-diffusion length
is on the order of 5–15nm, we can assume that the tunneling
process is almost not affected by the presence of spin-flip
scattering. Then, the interfacial spin current can be identified
to the spin torque without spin flip: Js�x=0�=T0. As a con-
sequence, the actual spin torque has the form

T� = T�0 +
�J

�sf
T�0, �26�

T� = T�0 −
�J

�sf
T�0, �27�

where �J=� /J. In the case of a symmetric magnetic tunnel
junction in the absence of interfacial inelastic scattering, T�0
and T�0 are given by Eqs. �1� and �2�. For low-bias voltage,
when the spin flip is dominated by Elliott-Yafet spin scatter-
ing, �sf is bias independent �but temperature dependent� and
the perpendicular torque gains a linear component a1V�J /�sf.

At large bias, or nonzero temperature, the spin-flip scat-
tering is dominated by the electron-magnon interaction. As
showed by Li et al.,14 the spin-flip relaxation time due to
electron-magnon interaction is inversely proportional to �V�.
Consequently, the presence of bulk magnons results in an
additional component in the perpendicular torque of the form
�je�V�. This is in sharp contrast with the case of interfacial
magnons, where the additional component is simply �V�.

V. CONCLUSION

In summary, we studied the influence of structural asym-
metries and inelastic tunneling on the bias dependence of the
spin transfer torque in MTJs, using either the free electron
model or the transfer Hamiltonian formalism. Our results are
summarized below.

�1� Structural asymmetries: the perpendicular torque and
the conductance acquire a antisymmetric linear component of
the form �V while the bias dependence of the in-plane
torque is still described by Eq. �1�. The obtained formulas
provide consistent results in the low-bias region and at low
band filling with the numerical results of the tight-binding
model8 and are in good agreement with the numerical results
of the free-electron model.10,11 Consequently, they can serve
as a guideline to design the spin torque bias dependence, as
demonstrated by Oh et al.18

�2� Inelastic interfacial scattering: the symmetry of the
MTJ is conserved and the perpendicular torque and conduc-
tance acquire a symmetric linear component of the form
��V�n, n�N. The presence of magnons or phonons interac-
tions is usually revealed through peaks in the conductance
derivative. The influence of the temperature has been briefly
discussed.

�3� Bulk spin-flip scattering: the spin torque is no more
equal to the net transfer of angular momentum. The relax-
ation of the spin accumulation induces a mixing between the
two components of the torque, giving rise to an antisymmet-
ric component of the form V and je�V� in the case of

impurity- and magnon-induced spin scattering, respectively.
Since the resistance is dominated by the barrier, the contri-
bution of bulk scattering is usually negligible on the conduc-
tance.

Finally, we suggest that a link exists between the signa-
ture of asymmetry and inelastic scattering in the perpendicu-
lar torque and conductance. Since both are symmetric against
the bias in a symmetric MTJ, the introduction of structural
asymmetries or inelasticity affects both quantities but in dif-
ferent ways. The careful analysis of the perpendicular torque
together with the conductance should give important clues
on the origin of the additional linear terms, as suggested in
Ref. 18 in the case of structural asymmetries. Note, however,
that the conductance remains unaffected by bulk scattering
and therefore, the influence of bulk magnons cannot be ana-
lyzed by comparing the perpendicular torque and the con-
ductance.
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APPENDIX A: WAVE FUNCTIONS IN THE LARGE
BARRIER APPROXIMATION

We use the free-electron model within Keldysh formalism
as described in Ref. 9. The electron wave vectors for major-
ity and minority spins in the left and right electrodes and in
the barrier are then

k1,2 =
2m

�2 �E − E� � JL −
eV

2
 , �A1�

k3,4 =
2m

�2 �E − E� � JR +
eV

2
 , �A2�

� =
2m

�2 �	L +
eV

2
+ EF − E + E� −

x

d
�eV − 
	�� .

�A3�

The indices 1,3 �2,4� refer to the majority �minority� spin.
The wave function of an electron of injected from the ith
electrode with an initial spin � is represented in the vector
form ��

i = ��↑�
i ,�↓�

i �. The wave functions for the electrons
from the left and right electrodes at the interfaces are then9

�↑↑
L =


2k1

k1 + i�1
, �A4�

�↓↑
L = 4
2k1

�1�2�k3 − k4�
den

sin � , �A5�

�↓↓
L =


2k2

k2 + i�1
, �A6�
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�↑↓
L = 4
2k2

�1�2�k3 − k4�
den

sin � , �A7�

�↑↑
R = 4iEn


2k3�1�2

den
�k2 + i�1��k4 + i�2�cos

�

2
, �A8�

�↓↑
R = 4iEn


2k3�1�2

den
�k1 + i�1��k4 + i�2�sin

�

2
, �A9�

�↓↓
R = 4iEn


2k4�1�2

den
�k1 + i�1��k3 + i�2�cos

�

2
, �A10�

�↑↓
R = − 4iEn


2k4�1�2

den
�k2 + i�1��k3 + i�2�sin

�

2
�A11�

with den=2En
2�k1+ i�1��k2+ i�1��k3+ i�2��k4+ i�2�, En

=exp�−d
2m
�2 	0

d�dx� is the exponential factor, and ��x=0�
=�1, ��x=d�=�2. The above equations together with the in-
tegration rules mentioned in Sec. III are sufficient to describe
the transport properties of the junction.

APPENDIX B: CURRENTS AND TORQUES IN THE
LARGE BARRIER APPROXIMATION

By definition, the charge and spin currents are defined as

Ji =
2e

h
� � dEdk����i � ��LfL + ��i � ��RfR� , �B1�

where i=0,x ,y ,z and �= ��x ,�y ,�z� are the spin Paul ma-
trices, �0 is the identity and �¯ �L,R denotes quantum me-
chanical averaging, involving the rightward and leftward
spin-dependent wave functions defined in Ref. 9. fL and fR
are the Fermi distribution functions of the left and right res-
ervoirs. Expanding these wave functions up to the lowest
order in the barrier height, the charge and spin currents for a
majority electron issued from the left reservoir are

JeL
↑ =

2e

h
� � dEdk�

8k1�1�2�k3 + k4���1
2 + k2

2���2
2 + k3k4�

��1
2 + k1

2���1
2 + k2

2���2
2 + k3

2���2
2 + k4

2�

��1 + PL cos ��fL, �B2�

T�L
↑

=� � dEdk�

4k1�1�2�k3 − k4���1
2 + k2

2���2
2 − k3k4�

��1
2 + k1

2���1
2 + k2

2���2
2 + k3

2���2
2 + k4

2�
fL sin � ,

�B3�

T�L
↑

=� � dEdk�

4k1�1�2
2�k3

2 − k4
2���1

2 + k2
2�

��1
2 + k1

2���1
2 + k2

2���2
2 + k3

2���2
2 + k4

2�
fL sin � ,

�B4�

and PL=
�k1−k2���1

2−k1k2�
�k1+k2���1

2+k1k2� is Slonczewski’s polarization.19 The
contribution for a minority electron is obtained by perform-
ing the following replacements: k1,3↔k2,4 and �→−�. Simi-
larly, the contribution of electrons issued from the right res-
ervoir is obtained by performing the following replacements:
�1↔�2, �1,2�↔ �3,4�, and fL→ fR. The final expressions
are then

Je = JeL
↑ + JeL

↓ − JeR
↑ − JeR

↓ , �B5�

T� = T�L
↑ + T�L

↓ − T�R
↑ − T�R

↓ , �B6�

T� = T�L
↑ − T�L

↓ + T�R
↑ − T�R

↓ . �B7�

APPENDIX C: ANALYTICAL EXPRESSIONS FOR SPIN
TORQUES AND CONDUCTANCE

After some algebra using Eqs. �6�–�8�, we obtain the fol-
lowing results:

T�0 =
�2

2m

�0
6

2�2

�k↑
2 − k↓

2���0
4 − k↑

2k↓
2�

��0
2 + k↑

2�2��0
2 + k↓

2�2e−2, �C1�

T�0 =
�2

2m

�0
7

�22

�k↑
2 − k↓

2��k↑ − k↓���0
2 − k↑

2k↓
2�

��0
2 + k↑

2�2��0
2 + k↓

2�2 e−2, �C2�

G0
p,ap =

2e2

�

�0
4

�2

�
�k↓ + k↑�2�k↑k↓ + �0

2�2 � �k↓ − k↑�2�k↑k↓ − �0
2�2

��0
2 + k↑

2�2��0
2 + k↓

2�2 e−2,

�C3�

and

a1 = 1 +
�0

2�2� − 1�k↑
2k↓

2 + �0
2�k↑

2 + k↓
2��

2k↑k↓�� − 1�k↑
2k↓

2 − � − 3��0
4 + �k↑

2 + k↓
2��0

2�

	

	

−
2� − 1�k↑

2k↓
2�k↑

2 + k↓
2� + 5�0

2�k↑
4 + k↓

4� − 2k↑
2k↓

2�0
2

8k↑k↓�� − 1�k↑
2k↓

2 − � − 3��0
4 + �k↑

2 + k↓
2��0

2�

J

	
,

�C4�

a2 =
�0

2�2� − 1�k↑
2k↓

2 − �0
2�k↑

2 + k↓
2����0

2 + k↑
2���0

2 + k↓
2�

4k↑
3k↓

3�� − 1�k↑
2k↓

2 − � − 3��0
4 + �k↑

2 + k↓
2��0

2�
−



24


	

	
−

k↑
4��0

2 + k↑
2�2�� − 1�k↓

2 − �0
2� + k↓

4��0
2 + k↓

2�2�� − 1�k↑
2 − �0

2�
8k↑

4k↓
4�� − 1�k↑

2k↓
2 − � − 3��0

4 + �k↑
2 + k↓

2��0
2�


J

J
,

�C5�
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b1 =
 − 2

8

k↑k↓�k↑k↓ − 3�0
2��k↑ − k↓� − �2k↑k↓ − �0

2��k↑
3 − k↓

3� + �k↑
5 − k↓

5�
k↑k↓�k↑ − k↓���0

2 − k↑k↓�

J

	
−

k↑k↓� + 3� + �2 − 9��0
2

6�k↑k↓ − �0
2�


	

	
, �C6�

b2 = �

8
−

5

12
 , �C7�

g1
p =

�0
4

2k↑
2k↓

2

k↑
2��0

2 + k↑
2�2 − k↓

2��0
2 + k↓

2�2

k↑
2��0

2 + k↓
2�2 + k↓

2��0
2 + k↑

2�2


J

	
− � 

12
−

3

8

	

	
, �C8�

g1
ap =

�0
2�k↑

2 − k↓
2�2�k↑

2�3k↓
2 + �0

2��k↑
2 + �0

2� + k↓
2�3k↑

2 + �0
2��k↓

2 + �0
2��

16k↑
4k↓

4��0
2 + k↑

2���0
2 + k↓

2�

J

J
−



12


	

	
, �C9�

g2
p,ap =



8
� − 1� , �C10�

where k↑,↓=
2m
�2 �EF�J� and �0=
2m

�2 	. When the barrier becomes thinner, a corrective multiplication factor of the form
�1+ 3

2 + 3
42 � should be inserted into Eqs. �C1�–�C3�. Note that T�0 and G0 are similar to previous derivations using a

free-electron model.19,25 The above relations are limited to low-bias voltage in low band filling systems. Using more realistic
densities of states, these relations may by modified.
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