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The electronic properties, exchange interactions, finite-temperature magnetism, and transport properties of
random quaternary Heusler Ni2MnSn alloys doped with Cu and Pd atoms are studied theoretically by means of
ab initio calculations over the entire range of dopant concentrations. While the magnetic moments are only
weakly dependent on the alloy composition, the Curie temperatures exhibit strongly nonlinear behavior with
respect to Cu doping in contrast with an almost linear concentration dependence in the case of Pd doping. The
present parameter-free theory agrees qualitatively and also reasonably well quantitatively with the available
experimental results. An analysis of exchange interactions is provided for a deeper understanding of the
problem. The dopant atoms perturb electronic structure close to the Fermi energy only weakly and the residual
resistivity thus obeys a simple Nordheim rule. The dominating contribution to the temperature-dependent
resistivity is due to thermodynamical fluctuations originating from the spin disorder, which, according to our
calculations, can be described successfully via the disordered local moments model. Results based on this
model agree fairly well with the measured values of spin-disorder-induced resistivity.
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I. INTRODUCTION

Heusler alloys were first studied by the German chemist
Friedrich Heusler in 1903, starting with the ordered alloy
Cu2MnSn. Because of their interesting physical properties
they have been studied intensively in the past as well as more
recently.1 The most widely studied Heusler alloys are those
with the formula Ni2MnZ �Z=Sn,Ga, In� and Co2XY �X
=Mn,Fe;Y =Al,Si�. The former group is of interest because
of potential technological applications based on their mag-
netic shape memory effect,2 the magnetocaloric effect,3 and
the recently observed giant �negative� magnetocaloric
effect.4 The latter group holds the promise of application in
spintronic devices, thanks to their halfmetallicity at room
temperature and above, lattice constant matching with the
III-V semiconductors, and large band gaps. Large tunneling
magnetoresistance was measured recently in
Co2MnSi /Al-O /Co2MnSi magnetic tunneling junctions.5

Structurally, most Heusler alloys crystallize in two differ-
ent cubic phases, having either the L21�X2YZ� or the C1b
�XYZ� symmetry. They can be best visualized as being com-
posed of four interpenetrating fcc sublattices, shifted along
the body diagonal in the order X-Y-X-Z or X-Y-E-Z, where E
denotes the empty, i.e., unoccupied, sublattice.1 An important
feature of Heusler alloys is the presence of chemical or sub-
stitutional disorder. It is often the nonstoichiometric compo-
sition with respect to the ideal systems such as Ni2MnSn or
Ni2MnSb which interpolates between the L21 Heusler and
the C1b semi-Heusler alloys.6 Examples are the magnetic
shape memory alloys of the type Ni2Mn1+xSn1−x �Mn-
nonstoichiometry� or the Ni2−xMnSb �Ni-nonstoichiometry�
alloys.

In addition to the chemical disorder due to nonstoichiom-
etry, a native chemical disorder exists even in “ideal” ordered
alloys X2YZ and XYZ. In particular, half-metallic Heusler
alloys are very susceptible to such native disorder, a typical
example being the Co2MnSi alloy which exists in the B2-like
structure due to Mn-Si disorder.

Finally, there are complex quaternary alloys such as the
semi-Heusler �Ni,Cu�MnSb alloys7,8 and closely related
Heusler alloys such as �Ni,Cu�2MnSn �Ref. 9� or
�Ni,Pd�2MnSn �Ref. 10� with disorder on the X sublattice.
The magnetic properties of these alloys are simplified by the
fact that the Mn sublattice is effectively nonrandom �al-
though there can be some magnetic disorder in a certain con-
centration range7�. In addition, Mn atoms carry essentially all
of the system magnetic moment. However, despite these sim-
plifying features the magnetic, thermodynamic, and transport
properties of these alloys are not easy to understand. Several
factors: disorder on sublattices neighboring the unperturbed
Mn sublattice, varying carrier concentration, the presence of
atoms with different degrees of d electron localization and
thus different levels of hybridization with Mn atoms, all con-
tribute to the complexity of the problem.

A reasonably successful interpretation of the results of
experiments in Refs. 9 and 10 was provided by Stearns11,12

and co-workers using a qualitative model. According to this,
magnetic behavior of ferromagnetic �FM� Heusler alloys is
controlled by three types of magnetic interactions, namely:
�i� interaction between extended s-like electrons and local-
ized d electrons mediated by the sd hybridization, �ii� inter-
action between localized and delocalized �itinerant� d elec-
trons, and �iii� the superexchange mediated by sp element on
the Z sublattice �Sn in the present case�. The dominating
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interaction is that between the localized and itinerant d elec-
trons and as such the value of the Curie temperature Tc of
Heusler alloys is essentially controlled by the amount of itin-
erant d electrons. This, in turn, is related to the localization
of the corresponding d orbitals of the X atoms.

It should be mentioned that in developing the theory for
�ordered� Heusler alloys, Stearns and co-workers focused on
FM systems for which the superexchange term is not the
dominant part of the magnetic interaction. For systems where
superexchange plays an important/dominant role, their pre-
diction may fail. Examples are cases where one end point of
the alloy system is FM �e.g., NiMnSb, CoMnSb�, while the
other end-point system is antiferromagnetic �AFM� �e.g.,
CuMnSb�. The doping of Ni/Co sublattices with Cu lowers
Tc in this case,7,13–15 as the addition of Cu increases the su-
perexchange interaction, until the substance becomes AFM.
This, however, should not be taken as a major failure of the
Stearns model, formulated to explain the trends observed
among the FM Heusler or semi-Heusler alloys, for which it
is immensely successful.

All of the above-mentioned interactions are naturally
present in the first-principles description of magnetism in the
framework of the spin density-functional theory �DFT�. In
general, it is very difficult to separate out the individual con-
tributions from the calculated total interactions. In this work
we employ state-of-the-art electronic-structure calculations
to understand the properties of disordered quaternary Heusler
alloys �Ni,Cu�2MnSn and �Ni,Pd�2MnSn. The exchange in-
teractions are computed from the ab initio electronic struc-
ture and then used to estimate the Tc using various approxi-
mations. Such a program has been carried out in recent years
for a number of conventional �ordered� Heusler alloys. No-
table are the pioneering work of Kübler16 and extensive stud-
ies of electronic and magnetic properties of Heusler alloys,
including estimates of the Curie temperature, by Kübler,17

Galanakis,18 Picozzi,19 and Şaşıoğlu and Sandratskii.20 The
study of disordered Heusler alloys is, however, much more
involved from a theoretical standpoint because of the pres-
ence of disorder violating the translational symmetry. Al-
though in some cases, such as the Heusler alloys with sp
disorder on the Z sublattice, it is possible to use conventional
band structure methods �the supercell approach21�, more so-
phisticated methods, typically using the coherent potential
approximation �CPA� implemented within DFT formalism,
need to be employed22,23 to treat disorder, in general. This is
particularly true for systems with general compositions such
as the magnetic shape memory alloys or the Heusler alloys in
narrow concentration ranges where abrupt changes in physi-
cal properties are known to occur �e.g., around the austenite-
martensite transition�. So far, such studies have been typi-
cally limited to the electronic structure and simple magnetic
properties, e.g., magnetic moments. The first attempts to
study thermodynamical properties �including Tc� of random
alloys have appeared6,8 only recently. Particularly worth
mentioning is the extensive study of the semi-Heusler alloys
�Cu,Ni�MnSb �Ref. 7� comprising the electronic structure,
magnetic, thermodynamical, and transport properties of ran-
dom alloys in the framework of a unified DFT description.7

The aim of the present work is to study electronic, mag-
netic, thermal, and transport properties of two related disor-

dered Heusler quaternary systems based on the reference al-
loy Ni2MnSn, namely, the �Ni,Cu�2MnSn and the
�Ni,Pd�2MnSn systems. Both systems have magnetic mo-
ments around 4 �B over the whole concentration range but
dramatically different concentration dependence of their Tc:
strongly nonlinear in the former case and almost linear in the
latter. The Tc of end-point alloys, namely, X2MnSn, with X
=Cu, Ni, and Pd, have decreasing values in this order. Thus
they seem to obey the criterion advanced by Stearns11 for the
dependence of Tc on the localization of d electrons of the
element X. Localization of the d electrons increases left to
right across a transition metal row, and decreases across a
column as we go from 3d to 4d and then to 5d. Thus Cu d
electrons are more localized than Ni d electrons, which are
more localized than Pd d electrons, explaining the differ-
ences in Tc of the three systems in the order mentioned
above.

Transport properties of Heusler alloys have not been stud-
ied extensively. Some measurements of the temperature de-
pendence of resistivity have been carried out.24,25 No theo-
retical studies of transport in Heusler alloys have appeared so
far. We attempt to fill this gap, using a simplified approach.

II. FORMALISM

The electronic-structure calculations were performed us-
ing the tight-binding linear muffin-tin orbital �TB-LMTO�
scheme26 in the framework of the local density approxima-
tion �LDA�. The effect of substitutional disorder on the X
sublattice �either Ni-Cu or Ni-Pd� is described by CPA for-
mulated in the framework of the TB-LMTO Green’s function
method.27 The same atomic sphere radius was used for all the
constituent atoms and lattice constants were taken from
experiments.9,10 The calculations employed an s , p ,d , f basis.
For the parameterization of the local density functional the
Vosko-Wilk-Nusair exchange-correlation potential28 was
used.

The thermodynamical properties of the system are as-
sumed to be given by a classical Heisenberg Hamiltonian

Heff = − �
i,j

Jijei · e j , �1�

where i , j are site indices, ei is the unit vector pointing along
the direction of the local magnetic moment at site i, and Jij is
the exchange integral between sites i and j. The exchange
integrals, by construction, contain the atom magnetic mo-
ments, their positive �negative� values being indicative of
ferromagnetic �antiferromagnetic� coupling.

We evaluate exchange integrals in Eq. �1� using a two-
step model,29,30 where the band energy is equated to the
Heisenberg form and then expressed via multiple scattering
formalism based on the TB-LMTO-ASA Green’s function in
terms of the moments directed along ei and e j. The reference
state for this calculation is chosen to be the disordered local
moment �DLM� state.31 Such a choice was recently sug-
gested for the study of semi-Heusler alloys,8 as it has some
advantages over the conventional choice of the ferromag-
netic reference state.29 The DLM state is closer to the state at
which the magnetic transition occurs, compared with the
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state with a global magnetization. There is no preferred mag-
netic configuration assumed and there are no induced mo-
ments for the DLM state �see recent discussion of the prob-
lem of induced moments in the Heisenberg model in Ref.
32�. The DLM reference state was successfully used recently
in the study of magnetic overlayers on nonmagnetic
substrates.33 Ideally one would hope the resulting magnetic
properties to be robust, i.e., �almost� independent of the as-
sumed reference state. In practice, some dependence on the
reference state is unavoidable and in some cases the DLM
reference state has been found to provide better estimates of
the Curie temperatures.

We determine the Curie temperature corresponding to the
effective Heisenberg model in Eq. �1� by making use of the
random-phase approximation �RPA�. For comparison, we
also include results obtained in the framework of the mean-
field approximation �MFA�. The RPA-Curie temperatures are
known to be close to those obtained from Monte Carlo
simulations.30

We have used interactions up to �4 lattice constants
which are found to be sufficient to achieve reasonably con-
verged results. While it is not a problem to include even
more distant interactions in the evaluation of the RPA-Curie
temperature, problems arise in connection with integration of
the inverse lattice Fourier transform of real-space exchange
integrals over the Brillouin zone which becomes a rapidly
oscillating function for distant shells. As a result, the RPA
Curie temperature oscillates as a function of the shell number
included in the above-mentioned lattice Fourier transform. It
should be noted that such problems do not arise for the MFA
or while dealing with semi-Heusler alloys,7,8 where the ex-
change integrals are strongly damped in real space due to
their half-metallicity.6 We have adopted the approach pro-
posed in Ref. 34 and used in the context of Heusler alloys in
Ref. 6. It relies on using a set of exponential damping pa-
rameters to compute the Tc, thereby reducing the oscillations
and finally extrapolating the results to the zero damping case.
This approach was successfully applied to the evaluation of
the stiffness constant of ferromagnets in real space, where
the problems associated with using only a limited number of

shells are even more severe.34 The above-mentioned oscilla-
tions are even stronger for the ferromagnetic reference state.

Without an external magnetic field, there are essentially
three different contributions to the resistivity of magnetic
alloys: �i� phonon scattering, �ii� magnetic scattering due to
thermodynamical fluctuations, which are largest close to the
Curie temperature,35 and �iii� the residual resistivity due to
the presence of chemical disorder on the Ni-Cu and Ni-Pd
sublattices.

In this study we consider the residual resistivity and also
present a simplified treatment of the resistivity due to mag-
netic �spin-disorder� scattering. The residual resistivity is de-
termined by the linear-response theory as formulated in the
framework of the TB-LMTO-CPA approach using the Kubo-
Greenwood formula,36 i.e., on the same formal footing as
used for the determination of the exchange integrals. This
approach, formulated for the multisublattice case, allows us
to include both the substitutional disorder on the Ni sublat-
tice as well as magnetic disorder on the Mn sublattice on an
equal footing.37 The disorder-induced vertex corrections are
included in the formalism.38 The spin disorder is described
here in the framework of the DLM, and treated formally as
“substitutional” disorder via CPA. We refer the reader to Ref.
27 for details on the implementation of the DLM in the
framework of the TB-LMTO formalism.

III. RESULTS AND DISCUSSION

In this section we present results for the electronic, mag-
netic, and transport properties of �Ni,T�2MnSn �T=Cu,Pd�
alloys over a broad range of concentrations and compare our
results with available experimental data.

A. Density of states

Figure 1 shows the calculated local densities of states
�LDOSs� of nonmagnetic X2MnSn�X=Cu,Ni,Pd� alloys.
Several conclusions follow immediately: �i� all DOSs have a
pronounced peak at the Fermi energy �EF�, indicating insta-
bility against formation of the ferromagnetic state �Stoner
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FIG. 1. Total- and component-resolved densities of states, per formula unit and spin, for nonmagnetic Heusler alloys: �a� ordered
Cu2MnSn, �b� ordered Ni2MnSn, and �c� ordered Pd2MnSn.
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criterion�. �ii� The dominant contribution to the peaks is from
the Mn-LDOS, which suggests that the magnetism is prima-
rily due to the Mn sublattice. �iii� The height of Mn-LDOS
�EF� �which is � total DOS�EF�� is approximately the same
in all cases, indicating similar magnetic moments for all
these compounds �see Fig. 3 below�. �iv� The increasing
bandwidth of the d states dominating local X-LDOS in the
order Cu-Ni-Pd is clearly seen. This is indicative of decreas-
ing localization �increasing itinerancy� of the d electrons,
resulting in decreasing Tc in the same order, according to the
model proposed by Stearns.11 �v� The Cu and Ni bands are
well separated in energy resulting in a strong diagonal disor-
der while their bandwidths are approximately the same
�weak off-diagonal disorder�. On the contrary, Ni and Pd
bands differ mainly in their widths �off-diagonal disorder�. In
all cases, however, X bands are well separated energetically
from the Fermi energy so that disorder on the X sublattice
influences states at EF only weakly. Hence, the residual re-
sistivity �due to chemical disorder� should be in the weak-
scattering regime.

The spin-polarized LDOS for Ni2MnSn,
�Ni50,Cu50�2MnSn, and Cu2MnSn are shown in Fig. 2 �top
panel�. The following conclusions can be drawn: �i� spin-
polarized Cu-LDOSs in Cu2MnSn are almost identical, indi-
cating practically no polarization, while some small polariza-
tion is seen for corresponding Ni-LDOS in Ni2MnSn.
Similar conclusions are also valid for Cu-LDOS and Ni-

LDOS for the equiconcentration case �Fig. 2�b��. �ii� The
total LDOS is smoothed by strong level disorder in the
equiconcentration alloy. �iii� Due to large level splitting
�large local magnetic moment� the minority Mn bands in all
cases hybridize very little with the X bands. On the contrary,
such hybridization, compared to the nonmagnetic case, is
strong for the majority bands even for Cu2MnSn. �iv� The
majority and minority states at the Fermi energy behave dif-
ferently �corresponding DOSs have different curvature�. This
results in different Fermi surface geometry for these bands
�see, e.g., Ref. 39�. The results for Ni2MnSn,
�Ni50,Pd50�2MnSn, and Pd2MnSn are shown in Fig. 2 �bot-
tom panel�. There are some differences in this case: �i� the
carrier concentration is the same through the entire alloy sys-
tem. As a result, the position of the minority Mn band with
respect to the Fermi level stays fixed. This is different from
the �Ni,Cu�2MnSn alloy system where the carrier concentra-
tion increases with Cu content. �ii� We observe strong hy-
bridization of Ni and Pd bands on the X sublattice, which
differ mostly in their widths. �iii� One thus expects weaker
site off-diagonal disorder and, consequently, also lower re-
sidual resistivity �see Sec. III D below�.

B. Magnetic moments

Experimental and calculated average moments per for-
mula unit �f.u.� are presented in Fig. 3, together with calcu-
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FIG. 2. Total- and component-resolved densities of states, per formula unit and spin, for ferromagnetic Heusler alloys. Top panel: �a�
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lated local moments on Mn sublattices. There is an overall
good agreement between calculated and measured average
moments which are essentially concentration independent
and have values around 4 �B. For the stoichiometric alloys
X2MnSn�X=Ni,Cu,Pd�, very similar values were obtained
in a previous study by the TB-LMTO-ASA method.40 Mn
sites carry almost all the moment per f.u. and this is particu-
larly true for Cu-rich alloys. Although the calculated mag-
netic moments agree with experimental values within a few
percent, even better agreement can be obtained �e.g., for
Ni2MnSn� when calculations are performed using the gener-
alized gradient approximation20 instead of LDA. The weak
concentration dependence of the averaged magnetic moment
can be understood from Fig. 2. The large intra-atomic ex-
change splitting of Mn atoms and the small hybridization of
minority Mn d orbitals with the X atom orbitals lead to the
full occupation of majority Mn d orbitals, to negligible spin
polarization of X- and Sn-atom orbitals, and to composition-
independent occupation of minority Mn d orbitals. These

features result in the nearly constant Mn moment and the
total alloy magnetization. The local moments on Ni sites
have values in the range �0.14,0.19� �B for both systems
and all concentrations. The local Cu moments are very small
�0.01–0.02 �B� while local Pd moments are almost concen-
tration independent with a value �0.1 �B. Finally, local mo-
ments on the Sn sublattice are small and negative, in the
range �−0.02,−0.04� �B.

C. Exchange interactions

1. Calculated results

The exchange integrals are one of the important charac-
teristics of the magnetically polarized state. We have deter-
mined them as a function of the alloy composition using the
DLM reference state. It should be noted that for the DLM
reference state the only nonzero exchange interactions are
those between the Mn sites. The Mn moments are very rigid
and their values in the ferromagnetic and DLM states almost
coincide with each other. The leading exchange integrals in
�Ni1−x ,Cux�2MnSn quaternary Heusler alloys are plotted as a
function of the Cu concentration in Fig. 4�a�. The Mn sub-
lattice is only indirectly perturbed by the alloy disorder on
the X sublattices, via the hybridization of Ni and Cu atoms
with the Mn sublattice. Such a hybridization is weak for Cu
atoms but strong for the Ni atoms �see Figs. 1 and 2�. In
addition to Mn-X hybridization, which varies with the alloy
composition, there is also an increase in the total electron
concentration with the Cu content due to different valency of
Ni and Cu atoms. The resulting concentration dependence is
quite complex with the first three exchange integrals being
dominant. While the first two are FM and increase with the
Cu content, the third one decreases with Cu concentration
almost linearly and changes its sign from FM to AFM at
about 20% of Cu. It should be noted, however, that the fourth
and in particular the sixth neighbor interactions are also non-
negligible. To better understand the contribution of the vari-
ous shells to the magnetic properties we have multiplied the
exchange integrals by their degeneracies �N�, i.e., by the
number of the equivalent atoms in the corresponding shells.
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This is presented in Fig. 4�b�. Such terms provide the actual
contribution of a given shell to the MFA expression of the
Curie temperature.29,30 With the multiplication by the degen-
eracy factors, the contribution of the first shell remains the
largest one, and the contributions of the second and sixth
shells are suppressed compared to that of the third shell. We
have also shown the contribution of the seventh shell, which
is non-negligible due to its large degeneracy, even though
individual atom contribution is very small.

The above results confirm the assumptions of a theoretical
model of Stearns,12 which asserts that at least three indepen-
dent magnetic interactions are needed in order to explain the
magnetic properties of Heusler alloys with late 3d and 4d
elements on the X sublattices. This is a probable cause for
the failure of a first-principles study16 in which the authors
tried to estimate the Curie temperature from just two ex-
change integrals, based on the energy differences between
the FM state and two different AFM states �AF I and AF II
with antiparallel alignments of spins along the �100� and
�111� directions�. A bad estimate of the Curie temperature for
such a model for Cu2MnSn can be attributed particularly to
the large contribution of the third shell �see Fig. 4�b��, which
was ignored.

In Fig. 5 we present the results of a similar study for
�Ni1−x ,Pdx�2MnSn Heusler alloy. There are some important
differences with respect to the �Ni,Cu�MnSn alloy: the num-
ber of valence electrons remains unchanged upon alloying,
Ni and Pd being neighbors in the same column of the peri-
odic table. As already mentioned, the effect of disorder is
smaller, as it has predominantly off-diagonal character. The
leading interactions are FM, but some interactions, e.g.,
those from the fourth and sixth shells, are AFM �see Fig.
5�a��. Upon multiplying the exchange integrals by their shell
degeneracy �Fig. 5�b��, the contributions from the first and
third shell are seen to be dominant while the contributions
from the second, fifth, and seventh shells �FM� and those of
fourth and sixth shells �AFM� tend to compensate each other
in the MFA sum. The contributions of all shells are either
almost concentration independent or decrease slightly with
the Pd content, resulting in a linear decrease in the Curie
temperature with Pd concentration �see below�.

There is a natural question as to how many shells are
needed for a reliable estimate of the Curie temperature. We

have just seen that the smallness of exchange integral is not
a sufficient condition, as it can be offset by a large degen-
eracy of the shell. We have ensured that the weighted sum of
exchange integrals as a function of the shell number achieves
its saturation value. For half-metallic alloys with exponen-
tially damped exchange integrals6–8 this condition is fulfilled
for a relatively small number of shells. In transition metal
alloys with strong level disorder �see, e.g., Ref. 41� the situ-
ation is similar, because the disorder influences the states at
the Fermi energy, which are the relevant states dictating the
spatial dependence of exchange integrals.30 However, for the
Heusler alloys considered here, the effect of disorder at the
Fermi energy is not as strong as in half-metallic alloys.
Hence a larger number of shells need to be included. We
illustrate the situation in Fig. 6, where we plot the mean-field
Curie temperature for three typical compositions in
�Ni1−x ,Cux�2MnSn alloy. We note that the mean-field value
of the Curie temperature is directly proportional to the sum
of the exchange interactions.29,30 We observe that for the
shell distance d�4a, where a is the lattice constant, the
results are reasonably saturated. We have thus used all neigh-

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JM
n,

M
n (N

N
)

(m
R

y)

Pd concentration

(a)

1st NN

2nd NN

3rd NN

4th NN

5th NN

6th NN -2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
N

N
*J

M
n,

M
n (N

N
)

(m
R

y)

Pd concentration

(b) 1st NN

2nd NN

3rd NN

4th NN

5th NN 6th NN 7th NN

FIG. 5. The same as in Fig. 4 but for �Ni1−x ,Pdx�2MnSn Heusler alloys.

250

300

350

400

450

500

0 25 50 75 100 125

C
ur

ie
te

m
pe

ra
tu

re
(K

)

shell number

x=0.8, T-400

x=0.0, T

x=0.2, T-150

FIG. 6. The mean-field Curie temperature of �Ni1−x ,Cux�2MnSn
for x=0, 0.2, and 0.8 illustrating the fulfillment of the saturation of
results with respect to the number of shell. Note that curves for x
=0.2 and 0.8 were shifted to fit the frame.

BOSE et al. PHYSICAL REVIEW B 82, 174402 �2010�

174402-6



bors up to 4a and applied the extrapolation procedure briefly
described in the Introduction.34 This procedure is necessary,
as the RPA Tc values oscillate more strongly than the MFA
values due to the contribution from the neighborhood of the
zone center, where the contribution of the distant shells plays
an important role. The estimated error of this procedure is a
few percent of the absolute value of the Curie temperature.

Calculated results for �Ni,Cu�2MnSn are presented and
compared with experiment9 in Fig. 7. The system
�Ni1−x ,Cux�2MnSn exhibits different behaviors in two con-
centration regions: for x� �0.0,0.3� the Curie temperature
stays almost constant with a small minimum at x�0.3 while
for x�0.4 it increases monotonically. Theoretical calcula-
tions in the framework of the RPA reproduce the experimen-
tal data reasonably well, both qualitatively and quantita-
tively. In contrast, the MFA not only overestimates the Curie
temperature but also exhibits a monotonic increase in the
whole concentration range, in contrast to the experiment. Ac-
cording to Stearns,11 the larger Tc of Cu2MnSn compared to
that of Ni2MnSn is due to stronger localization of d elec-
trons, which enhances the Curie temperature. The flat mini-
mum is explained by the competition of this effect with the
weakening of this interaction for larger interatomic distances
�larger lattice constant� with increasing Cu content.9 It is
obvious that this behavior is due to AFM-like exchange in-
teractions of the 3rd shell. For low Cu concentration this
interaction somewhat reduces the RPA sum and for higher
Cu content its effect is compensated by increasing FM-like
interactions.

The dependence of the Mn-Mn exchange interactions and
Curie temperatures in X2MnZ Heusler alloys on the atomic
species X and Z has recently been studied and interpreted

systematically in terms of the Anderson’s s-d model and the
MFA.42 This approach provides an alternative qualitative ex-
planation also for the Tc’s of present stoichiometric com-
pounds: the higher Tc of the Cu2MnSn alloy as compared to
that of the Ni2MnSn can be ascribed to a decrease of an
antiferromagnetic superexchange contribution accompanying
the increasing Cu content. The strength of the superexchange
interaction scales with the DOS of the conduction electrons
just above the Fermi energy,42 which decreases with increas-
ing Cu concentration in �Ni,Cu�2MnSn �see Fig. 2�. How-
ever, the non-monotonic shape of the full concentration de-
pendence of the Tc �see Fig. 7� can hardly be understood by
using any simple model since the observed non-linear trend
requires more accurate treatment going beyond the MFA.

The calculated Curie temperature for Cu2MnSn is also
shown in Fig. 7. Experimental values are not discussed in
Ref. 9. There is some controversy in the literature: values
530 and 630 K can be found, although the lower one is
sometimes questioned. The calculated RPA value 560 K lies
in the range of the reported experimental values.

The results for Ni2MnSn alloy can be compared with
other theoretical work.43 The experimental values of the Cu-
rie temperature range from 328 to 360 K. The Curie tempera-
ture estimated in Ref. 43 using the MFA and the FM refer-
ence state is 323 K, if only the Mn-Mn exchange integrals
are considered. Our related test value is 315 K. The Curie
temperature rises to 360 K if Ni-Mn exchange interactions
are also included.43 Our mean-field value based on the DLM
reference state is 373 K. We would like to point out that good
agreement of the Curie temperature obtained in Ref. 43 from
the FM reference state with the experiment is probably for-
tuitous, as the RPA would lower this value. The present RPA
value based on the DLM reference state �322 K� agrees well
with the experiment.

2. Extraction of exchange interactions from experiment

Noda and Ishikawa44 have extracted up to 8 nearest-
neighbor �NN� exchange interactions for Ni2MnSn and
Pd2MnSn from the fit to measured inelastic neutron spin-
wave scattering data. Taking care of the fact that the authors’
exchange integrals do not include spin moments and differ-
ent definitions of the prefactor in the Heisenberg Hamil-
tonian, we compare in Fig. 8 our calculated results with the
values extracted by Noda and Ishikawa.44 The general agree-
ment between the calculated results and the extracted values
from the fit appears to be good. It should be noted that cal-
culated exchange integrals are not limited by the distance 2a
�8 NN� as the fitted ones. In fact, saturation of results with
respect to the number of shells is not achieved for 8 NN
interactions �see Fig. 5�. It is also clear from Table I of Ref.
44 that the fitted values can change significantly depending
on the number of exchange integrals used for a fit. For ex-
ample, in case of Ni2MnSn the second neighbor interaction is
larger than that of the first neighbor for the 8 NN fit and
smaller for the 6 NN fit.

Ideally, one expects the fitted values to decrease in their
sizes. This is not so for a relatively large J�8� in Table I for
Ni2MnSn �Ref. 44� which, for an optimal fit, should be of the
smallest magnitude. This indicates that the fitted values
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should not be taken too literally. Seemingly perfect agree-
ment between the measured magnon spectrum and that cal-
culated from the fitted values for Pd2MnSn in Ref. 44 does
not guarantee similar agreement in other related magnetic
properties.

We also estimate the spin-stiffness constants Dstiff for
Ni2MnSn and Pd2MnSn. The spin stiffness is a property of
the ferromagnetic state, i.e., the state at T=0 K. We have
therefore estimated Dstiff from calculated Mn-Mn exchange
integrals in the FM state. The real-space expression for Dstiff
is nonconvergent and a special treatment is needed for its
determination.34 Estimated values of Dstiff for Ni2MnSn and
Pd2MnSn are 160�25�150�10� meV Å2 and
130�25�98�10� meV Å2, respectively. The values in
brackets are experimental values,44 and the agreement be-
tween the theory and experiment is acceptable. The theoret-
ical error bars were estimated from differences in calculated
Dstiff for various sets of damping constants.34

Finally, corresponding results for �Ni1−x ,Pdx�2MnSn alloy
are shown in Fig. 9. The experimental values10 of the Curie
temperature lie in the range 190–340 K. In line with the
concentration dependence of the exchange integrals �see Fig.
5� one expects a linear decrease of the Curie temperature
with the Pd content. The calculated RPA results show an
almost linear decrease in the Curie temperature found in the
experiment although the decrease is smaller than what is ob-
served experimentally.10 The MFA values are systematically
above the RPA as well as the experimental results but do
show the linear decrease in the Curie temperature. Some dis-
order in Heusler alloys, even for stoichiometric compound, is
rather frequent. In the case of Pd2MnSn alloy one can specu-
late about some disorder between Mn and Sn sites, which
could reduce the calculated Curie temperature �due to anti-
parallel alignment of Mn moments�. Such a study would re-
quire a generalization of the RPA to random systems, which
is beyond the scope of the present article.

D. Resistivity

In general, there is very little known about the resistivity
of Heusler alloys, either experimentally or theoretically. In
magnetic alloys there are three contributions to the resistiv-
ity: a temperature-independent part, residual resistivity due

to the alloy disorder and other defects, and two temperature-
dependent terms due to electron-phonon and electron-
magnon scatterings.

1. Residual resistivity

The residual resistivities are calculated using FM refer-
ence state, appropriate for zero temperature. The calculated
resistivities for �Ni1−x ,Tx�2MnSn, T=Cu and Pd are shown in
Fig. 10. The result, an almost parabolic concentration depen-
dence of residual resistivities �Nordheim rule45� for both al-
loys, is in agreement with our discussion of the character of
the disorder at the Fermi energy �see Sec. III A�, namely, its
weakness. Much smaller resistivity of �Ni,Pd�2MnSn alloy is
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due to the site off-diagonal disorder, whose effect on the
resistivity is weaker than that of the diagonal disorder which
dominates in case of �Ni,Cu�2MnSn.

2. Temperature-dependent resistivity

The contribution due to phonons is relatively well
understood45 and it is small in Heusler alloys for tempera-
tures around the room temperature.24,25 The most important
contribution to the temperature-dependent resistivity is due
to magnon scattering or the spin-disorder resistivity. A
simple theoretical model of the spin-disorder-induced resis-
tivity of magnetic alloys was developed some time ago by
Kasuya.35 This theory explains the experimental facts that for
temperatures higher than Tc the resistivity is almost constant
while for temperatures below Tc the resistivity decreases and
it is equal to the residual resistivity at zero temperature. The
increase of the resistivity with temperature �above T=0 and
below Tc� is due to the increasing amount of the spin disor-
der. The spin-disorder itself is best characterized by the spin-
spin correlation function,46 which can be determined from
first-principles using known exchange integrals �see, e.g.,
Ref. 47�. Here we adopt a less ambitious approach. For tem-
peratures above Tc, we assume that a reasonable model of
spin disorder is simply the DLM model, which assumes that
the local magnetic moments on atoms are oriented randomly
with equal probabilities in all directions. The net moment is
zero and the spins are uncorrelated �the spin-spin correlation
function is zero in this case�. The DLM model is formally
equivalent to a random alloy problem31 and the TB-LMTO-
CPA code employing the Kubo-Greenwood formula can be
used conveniently to compute the resistivity.

Schreiner et al.24 studied the temperature dependence of
resistivity of a series of Heusler alloys including Ni2MnSn
and Pd2MnSn.24 The resistivities calculated for the DLM ref-
erence states for �Ni,T�2MnSn�T=Cu,Pd� alloys are pre-
sented in Fig. 11. We remind the reader that this resistivity
accounts only for the spin disorder and does not include the
part due to scattering from phonons. We observe an increase
in the resistivity due to spin scattering for Cu impurities in

the host Ni2MnSn and a decrease for Pd impurities. Figure
11 reflects the decreasing degree of localization �correspond-
ingly, increasing Mn-X hybridization� along the sequence
Cu-Ni-Pd, which leads to a decrease in the relative strength
of the magnetic disorder, and therefore resistivity, along the
same sequence. The corresponding total resistivities mea-
sured in the experiment for the ordered Ni2MnSn and
Pd2MnSn alloys are about 75 �Ohm cm and 50 �Ohm cm,
respectively. The experimental values obtained after subtrac-
tion of the contribution from phonon scatterings are
47 �Ohm cm and 22–30 �Ohm cm. These values compare
reasonably well with the values 50 �Ohm cm and
37 �Ohm cm obtained from the present simple theory. In
particular, larger value of the spin-disorder-induced part of
the resistivity in Ni2MnSn as compared to Pd2MnSn is cor-
rectly reproduced.

We present a simplified treatment of the temperature de-
pendence of resistivity due to spin disorder for temperatures
below Tc.

35,46 We use two simple approaches, based on �i�
simulation of the temperature dependence through the un-
compensated DLM �uDLM� model41,48 and �ii� assuming ex-
perimentally observed quadratic temperature dependence of
the resistivity due to spin disorder in combination with cal-
culated values of Tc and the resistivity above the Curie tem-
perature.

The results of the first model are shown in Fig. 12. For a
given temperature below Tc we identify the magnetization of
the system with that corresponding to the uDLM model with
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a specific ratio of the parallel and antiparallel spins. We cal-
culate the resistivity for this ratio using the conventional
Kubo-Greenwood approach. If there are no antiparallel spins
in the system we have the FM state corresponding to the
temperature T=0 K. On the other hand, for an equal number
of parallel and antiparallel spins we have the DLM state with
zero total magnetization, corresponding to resistivity at and
above the Curie temperature.

Optimally one can determine the magnetization of the
system from the present Heisenberg Hamiltonian using sta-
tistical mechanical methods. Alternatively, one can adopt
some models. We used two, namely, the temperature depen-
dence of the magnetization as obtained from the hyperfine-
field �HF� measurements on Sn atoms in Ni2MnSn �Ref. 49�
and that obtained from similar measurements on Fe atoms in
bcc Fe.50 From the reduced magnetization M /M0 at a given
reduced temperature T /Tc we determine the ratio of parallel
and antiparallel spins for the uDLM model, and associate the
corresponding reduced resistivity � /�c with the reduced tem-
perature T /Tc. For a typical ferromagnetic↔paramagnetic
transition the reduced magnetization curve close to T /Tc=1
has a universal �system-independent� form. So our results for
� /�c obtained this way should be more reliable in this range.
A couple of comments are in order at this point. The HF field
at Sn atoms in Ni2MnSn is not directly proportional to the
magnetization. Several models for the dependence of the HF
field on the magnetization are discussed in the literature and
one such model was used in Ref. 49 by Gavriliuk et al.
The seemingly linear decline of magnetization with tempera-
ture around T=0 contradicts the Bloch T3/2 law, which a
typical ferromagnetic material is expected to obey. It is in
view of this and the uncertainties involved in relating the HF
field at Sn atoms to the magnetization that we include the
second model based on bcc Fe as the prototype of a
ferromagnetic↔paramagnetic transition. The actual magne-
tization vs temperature curve for Ni2MnSn is expected to lie
between the red �squares� and the green �circles� curves
shown in the inset of Fig. 12. A typical convex form of the
temperature dependence of the reduced resistivity is well re-
produced �see Fig. 12� for both cases. The experimental
curve including the phonon contribution lies in between
these two simple model curves. For comparison, in Fig. 12
we also include the quadratic form � /�c= �T /Tc�2 �dashed
curve�, based on the experimental observation that the mag-
non resistivity has a simple quadratic dependence on
temperature.24 The difference between the quadratic form
�dashed curve� and the experimental curve is the contribution
due to the phonons and we see that it is quite small.

In Fig. 13 we display theoretically calculated resistivity
assuming the form24 ��T�= �0+AT+BT2. The quadratic
term is due to the spin disorder,35,46 the linear one is the
phonon contribution �which is valid with exception of very
low temperatures45�, and �0 is the value of the residual resis-
tivity at T=0 K, which is due to all the defects present in the
sample. While the values of �0 and the coefficient A were
taken from the experiment,24 the coefficient B was deter-
mined from the calculated Tc, and the resistivity in the DLM
state. We obtain good agreement between the theory and ex-
periment, in particular, for Ni2MnSn. It should be noted that
some offsets of the calculated curves as compared to the

experiment are due to differences in calculated and measured
Tc which is larger for Pd2MnSn. Theoretical estimates of the
coefficient B are 4.79�10−4 �� cm K−2 and 5.2
�10−4 �� cm K−2 for Ni2MnSn and Pd2MnSn, respec-
tively. The corresponding experimental values are 3.94 and
6.1�10−4 �� cm K−2. Considering the fact that B repre-
sents the second derivative of resistivity with respect to tem-
perature, this agreement is good, as evidenced by Fig. 13.

IV. CONCLUSIONS

We have studied the electronic, magnetic, thermody-
namic, and transport properties of quaternary Heusler alloys
�Ni,T�2MnSn �T=Cu,Pd� by means of first-principles
density-functional method. In agreement with experiments,
magnetic moments per formula unit depend only weakly on
the alloy composition for both alloys, having values around
4 �B. Exchange interactions were determined using the
DLM reference state, which assumes no a priori magnetic
ordering in the system. The Curie temperatures were esti-
mated using RPA applied to the nonrandom Mn sublattice.
The alloy disorder strongly influences values of exchange
integrals in �Ni,Cu�2MnSn alloys while only weak concen-
tration dependence of exchange integrals is found for
�Ni,Pd�2MnSn alloys. Consequently, a linear decrease in the
calculated Curie temperature is obtained in the latter alloys
in agreement with the experiment. A more complex concen-
tration dependence of exchange integrals in �Ni,Cu�2MnSn
alloys, in particular, different behaviors of Ni-rich and Cu-
rich alloys, can be ascribed to the third NN exchange inte-
grals. This result also confirms a model of Stearns11 on the
relevance of the first three exchange integrals for magnetic
properties of Heusler alloys. In fact, a much larger number of
exchange integrals are needed to obtain reasonably stable
results in ab initio theoretical studies. This is in striking con-
trast with the related semi-Heusler alloy �Cu,Ni�MnSb,7

where the exchange interactions are strongly damped due to
their halfmetallicity.
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The residual resistivities obey the weak-scattering Nord-
heim rule. This is due to the fact that strong disorder found,
e.g., in �Ni,Cu�2MnSn alloys influences energy states far
from the Fermi energy relevant for electronic transport. Us-
ing a simple model for the spin disorder, we have estimated
the temperature-dependent resistivity at temperatures above
Tc. Reasonably good agreement with experimental results is
found for calculations which assume that the resistivity
above Tc is essentially captured by the DLM model. Using
this value of resistivity and calculated Curie temperatures,
good agreement with the experiment was obtained also for
the temperature dependence of the resistivity below the Cu-
rie temperature.
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