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We study the entanglement in the ground state of a chain of free spinless fermions with a single side-coupled
impurity. We find a logarithmic scaling for the entanglement entropy of a segment neighboring the impurity.
The prefactor of the logarithm varies continuously and contains an impurity contribution described by a
one-parameter function while the contribution of the unmodified boundary enters additively. The coefficient is
found explicitly by pointing out similarities with other models involving interface defects. The proposed
formula gives excellent agreement with our numerical data. If the segment has an open boundary, one finds a
rapidly oscillating subleading term in the entropy that persists in the limit of large block sizes. The particle-
number fluctuation inside the subsystem is also reported. It is analogous with the expression for the entropy
scaling, however, with a simpler functional form for the coefficient.
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I. INTRODUCTION

The entanglement properties of many-body systems have
attracted considerable attention and have become the topic of
a large number of studies in the last decade.1,2 In particular,
the study of a suitable measure of entanglement such as the
entanglement entropy was triggered by the need to under-
stand ground-state properties that lead to the emergence of
area laws.3 This keyword refers to a rather generic property
of ground states of bipartitioned systems in which the en-
tropy S of a subsystem scales as the number of contact points
with the environment. The most notable and well-understood
counterexamples are represented by one-dimensional �1D�
critical quantum systems with an underlying conformal sym-
metry where the area law is violated in the form of universal
terms, scaling as the logarithm of the subsystem size.4 In the
translationally invariant case this can be written as

S =
c

3
ln L + k0 �1�

with c being the central charge of the conformal field theory
�CFT� and k0 a nonuniversal constant.

The presence of impurities has interesting effects on the
entanglement entropy.5 An example is given by critical lat-
tice models where single defective links separate the two
subsystems. This can lead to a modified prefactor for the
logarithm varying continuously with the defect strength in
models with free fermions6–9 while for interacting electrons
the defect either renormalizes to a cut or to the homogeneous
value in the L→� scaling limit.10,11 In the more general
context of a conformal interface separating two CFTs the
effective central charge has been calculated recently and was
shown to depend on a single parameter.12

Another broad and intensively studied class of impurity
problems is related to the Kondo effect.13 From the view-
point of block entropies a spin-chain version of the Kondo
model has been studied14,15 using density-matrix

renormalization-group �DMRG� methods.16,17 Here a differ-
ent geometry was considered with an impurity spin coupled
to one end of a finite chain. The induced change in the en-
tropy varies between zero and ln 2 and its qualitative behav-
ior for various system sizes and coupling values can be de-
scribed in terms of an impurity valence-bond picture.

A counterpart of the Kondo effect can be found in a
single-impurity model introduced by Anderson.18 A similar,
exactly solvable model was studied independently by Fano19

where the interaction of a discrete state with a continuum of
propagation modes leads to scattering resonances. The exact
form of these resonances is controlled by the couplings be-
tween the modes. Here we consider a simple geometry where
an impurity is side coupled to a linear chain of electron-
conduction sites. This setting can also be realized experimen-
tally with gated semiconductor heterostructure quantum dots.
In accordance with theoretical predictions,20 Fano reso-
nances were detected as dips in the conductance measure-
ments at low temperatures.21 Despite the large amount of
theoretical and experimental work on Fano resonances,22 the
question how they affect entanglement properties is still un-
answered.

In the present paper we address this question by investi-
gating the simplest model capturing the main features of the
Fano resonance. The Fano-Anderson model23 is described by
a free fermion Hamiltonian, thus standard techniques are
available for the study of its entanglement properties.24 We
find that the entropy scaling of a block neighboring the im-
purity is of the form in Eq. �1� with a prefactor ceff which
decreases monotonously as the parameters are tuned toward
the Fano resonance and depends only on a well-defined scat-
tering amplitude. The numerical analysis leads to the same
functional form of ceff that has recently been derived for
simpler fermionic models with interface defects9 and also
seems to be closely related to the one found for conformal
interfaces.12 If the subsystem contains an open boundary we
find a rapidly oscillating subleading term in the entropy that
persists even in the large L limit.
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In the following we first introduce the model and the ge-
ometries considered, along with the methods used to calcu-
late the entropy. In Sec. III we treat an impurity attached to
an infinite hopping model, determine the correlation matrix
and present results on the scaling of the entropy as well as
the particle-number fluctuations. The effects of an open
boundary will be detailed in Sec. IV followed by our con-
cluding remarks in Sec. V. The derivation of an asymptotic
form of the correlation functions and some of the necessary
formulas for the semi-infinite case are presented in Appendi-
ces A and B, respectively.

II. MODEL AND METHODS

We consider a model of noninteracting spinless electrons
described by a 1D tight-binding chain that is coupled to an
impurity. The impurity is represented by an additional site
from which tunneling events can only occur to a specific site
n0 of the chain. The Hamiltonian is

H = −
t

2�
n

�cn
†cn+1 + cn+1

† cn� + �0�
n

cn
†cn − g�cn0

† d + d†cn0
�

+ �dd†d , �2�

where cn and d are the fermion annihilation operators along
the chain and at the impurity site, respectively, while t and g
are the corresponding tunneling strengths. The potential �0
sets the filling of the chain and �d is the site energy of the
impurity.

We will consider two different geometries: �1� in the
infinite geometry the N+1 sites are indexed as
n=−N /2, . . . ,N /2 while the impurity is located at the center
of the chain �n0=0� and we take periodic boundary condi-
tions and �2� in the semi-infinite geometry one has N sites
with n=1, . . . ,N while n0 is arbitrary and we have open
boundary conditions.

The two geometries are depicted in Fig. 1. In the follow-
ing we set t=1. After a Fourier transformation one has

H = �
q

�qcq
†cq + �

q

tq�cq
†d + d†cq� + �dd†d , �3�

where �q=�0−cos q. The couplings and the allowed wave
numbers are tq=− g

�N+1
with q= 2�

N+1n for the infinite and
tq=−g� 2

N+1sin n0q with q= �
N+1n for the semi-infinite case,

respectively, where n runs over the corresponding site indi-
ces. The Fermi-level �qF

is set to zero by applying a potential
�0=cos qF.

Hamiltonian �3� is known as the Fano-Anderson model
and is diagonalized by introducing new fermionic operators
fq by the transformation23

d = �
q

�qfq , cq = �
q�

�qq�fq�, �4�

where

�q =
tq

�−��q�
����q� = �q − �d − 	��q � i
� , �5�

�qq� = 
qq� −
tq�q�

�q − �q� + i

�6�

with the self-energy term defined as

	��q � i
� = �
q�

tq�
2

�q − �q� � i

. �7�

The infinitesimal terms �i
 are needed to regularize the
sum. Note that the number of different q values equals the
number of all sites, including the impurity. In the limit N
→� one has a continuum of the unmodified single-particle
spectrum �q of the chain while additional bound states can
emerge as real solutions � of the equation

� − �d − 	��� = 0. �8�

Our aim is to calculate the entanglement entropy
S=−Tr�� ln �� of a block of L sites neighboring the impurity,
where � denotes the corresponding reduced density matrix.
Since one is dealing with free fermions, this can be obtained
through the eigenvalues �l of the correlation matrix Cmn
= �cm

† cn� restricted to the block 1m ,nL as25

S = − �
l

�l ln �l − �
l

�1 − �l�ln�1 − �l� . �9�

III. INFINITE GEOMETRY

We first consider the infinite geometry and calculate the
matrix Cmn analytically; this result is, in turn, used to nu-
merically obtain the entropy. The particle-number fluctua-
tions are also considered where explicit calculations are per-
formed using an asymptotic form of the correlations.

A. Correlation functions

The correlations �cm
† cn� are calculated by first going over

to Fourier modes cq and subsequently applying the transfor-
mation Eq. �4�. The expectation values to be evaluated are
then trivial and read �fq

†fq��=
qq���q�, where in the ground
state ��q�=1 for the modes �q�0 and zero otherwise. More-
over, in the infinite geometry it was shown that Eq. �8� al-
ways gives two real solutions with �+�1 and �−�−1 corre-
sponding to bound states above and below the band.26 The
energies �� are obtained numerically by solving the quartic
Eq. �8� with

FIG. 1. �Color online� Model geometry for �a� the infinite case
and �b� the semi-infinite case.
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	���� = �
g2

���
2 − 1

. �10�

These modes f� have to be dealt with separately in the trans-
formation Eq. �4� with the factors

�� = �N� �q� = �N�

tq

�� − �d
, �11�

where N� is set by the normalization condition ����2
+�q��q��2=1. Since �f−

† f−�=1, one has a contribution Cmn
b

=Cb�m+n� to the correlations coming from the lower bound
state. Setting tq=−g /�N+1 and taking N→� the sums are
replaced with integrals over the full band �−� ,�	 and can be
rewritten as contour integrals over the complex plane. Evalu-
ating the residues one has

Cb�l� =
g2

2�−
2 − �−�d − 1

e−l/�− �12�

with l=m+n for m ,n�0 while the correlation length is de-
fined by � −

−1=arcosh�−�−�.
There are two contributions from the conduction band.

First we have the translationally invariant terms

Cmn
0 = C0�m − n� =

sin qF�m − n�
��m − n�

�13�

that give the correlations without the impurity arising from
the 
qq� term in Eq. �6�. The remaining term gives rise to the
correlation contributions Cmn

1 =C1�m+n�; these can be evalu-
ated by applying the same methods used for determining
Cb�l�. The calculation yields the simple form

C1�l� = 

0

qF dq

�
sin 
�q�sin�lq + 
�q�	 , �14�

where the scattering phases for q�0 are defined as

tan 
�q� =
	q

�q − �d
=

g2

sin q��d − �q�
. �15�

Here 	q=Im 	��q+ i
� is the imaginary part of the retarded
self-energy with the real part being zero.

Collecting all the contributions, the correlation matrix is
given by

Cmn = Cmn
0 − Cmn

1 + Cmn
b . �16�

The integrals in Eq. �14� must be evaluated numerically and
are shown in Fig. 2 together with the contribution of the
bound state for some fixed values of the parameters g and �d.
The values of C1�l� are found to oscillate around the expo-
nentially decaying curve of Cb�l�. Since they appear with
opposite signs in Eq. �16�, the average value will cancel,
corresponding to the screening of the impurity induced local-
ized state by the conduction electrons.

The overall contribution is shown in the inset of the fig-
ure. A careful analysis shows that the asymptotic behavior
has the form of Friedel oscillations

Cb�l� − C1�l� � CF�l� =
1

�l
sin 
F cos�qFl + 
F� , �17�

where only the scattering phase 
F=
�qF� at the Fermi-level
enters. CF�l� is depicted by the dashed lines in the inset of
Fig. 2 and shows a good agreement with the numerical data.
The derivation of Eq. �17� is summarized in Appendix A. It
relies on an appropriate transformation of the integrals in Eq.
�14� and is valid for l� l0 where the length scale l0 is given
in Eq. �A7�.

B. Entanglement entropy

The elements of the correlation matrix Eq. �16� will be
used to obtain the entanglement entropy of a block numeri-
cally as described in Sec. II. In some simple cases one can
already give an answer by looking at the limiting form of the
correlations. Taking �d→ ��, the impurity site will either be
completely empty or completely occupied and therefore it
becomes decoupled from the rest of the chain. One has

�q��0 while the contributions from the bound state also
vanish Cb�l�=0, hence Cmn=C0�m−n� and the entropy will
just be that of a homogeneous hopping model given by Eq.
�1� with c=1. Obviously, the limit of a vanishing coupling
yields the same behavior.

On the other hand, one could take the limit g�1 for very
strong coupling. This corresponds to �
�q��→� /2, that is,
one has resonant scattering at every wavelength. The ground
state will correspond to a singlet formed by the impurity and
site zero that is otherwise decoupled from the rest of the
system. The bound-state correlations contribute only on site
zero Cb�l�=
l,0 /2 while for sites m ,n�0 one has Cmn
=C0�m−n�−C0�m+n�, which is the form for a semi-infinite
chain. The entropy of this geometry is known to scale loga-
rithmically with a coefficient 1/6, which is half of the value
that appears in the homogeneous case.27

The previous analysis shows that resonant scattering tends
to decrease the coefficient of the entropy scaling. However,
in general, a Fano resonance is concentrated around a single
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FIG. 2. �Color online� Contributions to the correlations from the
bound state Cb�l� and from the conduction band C1�l� for the pa-
rameter values g=0.2 and �d=−0.1. The inset shows the difference
between these two contributions, compared to the asymptotic form
in Eq. �17� represented by the dashed lines.
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wave number. This is expected to have the largest effect on
the asymptotic behavior if the location of the resonance co-
incides with the Fermi-level �
�qF��→� /2 yielding the con-
dition �d→�qF

=0. We take this value of the site energy in
Fig. 3, in which we plot the entropy for a range of values for
the coupling g. We see that the entropy crosses over between
the two limiting behaviors, giving a slope of 1/3 for small L
and 1/6 for large L when plotted against ln L. Therefore,
taking the block size large enough the impurity behaves like
a cut in the chain.

This effect is reminiscent of the Kondo screening mecha-
nism, where conduction electrons form a cloud around a
magnetic impurity. The Kondo effect has an associated
length scale28 that being the distance beyond which the im-
purity appears to be screened off. In the present case a natu-
ral length scale also enters, which marks the asymptotic re-
gime of the correlations and could be expected to appear in
the entropy scaling. From Eq. �A7� one has l01 /g2 for �d
=0 and qF=� /2, which seems to be consistent with the lo-
cation of the crossover moving toward larger L in Fig. 3 as
the coupling g decreases. In order to reliably verify the scal-
ing of the crossover length one would have to consider larger
blocks. Unfortunately, the achievable sizes were limited to
L�400 by the increasing numerical difficulty in evaluating
the oscillatory integrands for the matrix elements in Eq. �14�.

For L� l0 the screening cloud is effectively in a singlet
state with the impurity electron and cuts the system in two
parts. The coefficient of the entropy therefore renormalizes
to the value 1/6 corresponding to a semi-infinite chain with
an open boundary. Note that a similar renormalization behav-
ior was found for interacting electrons in the Luttinger-liquid
regime bisected by a hopping defect.10,11

Our further numerical analysis shows that, for arbitrary
parameter values and L�1, the entropy can be written in the
form

S�L� =
ceff

3
ln L + k , �18�

where the effective central charge ceff varies continuously
between the values 1/2 and 1. The same behavior was found

for free fermionic models with hopping defects6,8 where the
dependence of ceff on the defect strength was determined by
data fits. Recently, Sakai and Satoh derived the same form as
Eq. �18� for the case of two conformal field theories coupled
through a conformal interface. In their case they found ceff in
a closed form with dependence only on a single scattering
amplitude.12 These conformal interfaces describe a disconti-
nuity in the compactification radii of two bosonic CFTs,
which correspond to Luttinger liquids with unequal interac-
tion parameters on the left- and right-hand sides.29

Although the result from Ref. 12 is not directly appli-
cable, a closely related form was recently found to describe
the case of free fermions with simple interface defects.9 We
therefore attempted to generalize these results to the present
model. Motivated by Eq. �17�, we argue that the asymptotic
behavior of S�L� and thus ceff should depend only on the
scattering phase at the Fermi level and a suitable scattering
amplitude can be defined as s=cos 
F. Hence, we propose

ceff =
1

2
+

6

�2

0

�

u��1 + �s/sinh u�2 − 1	du , �19�

where 1/2 comes from the unmodified boundary while the
integral is, up to a sign, the same as in Ref. 12 and describes
the contribution of the impurity.

Figure 4 shows the resulting ceff obtained by fitting Eq.
�18� on different S�L� data sets together with Eq. �19� evalu-
ated as a function of �d for various fixed values of the cou-
pling g and filling qF. One has excellent agreement with the
conjectured analytical form. The only visible deviations arise
for �d�0 which can be understood through the crossover
phenomenon shown in Fig. 3. In this parameter regime the
asymptotic behavior sets in only for larger L and one has
considerable finite-size corrections.

The integral Eq. �19� depends on the model parameters
only through the variable

s2 =
�d

2 sin2 qF

�d
2 sin2 qF + g4 . �20�

Interestingly, the above formula exactly coincides with the
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FIG. 3. �Color online� Crossover in the entropy scaling in the
resonant case �d=0 at half filling and for various coupling strengths
g. The upper and lower-most dashed lines have slopes 1/3 and 1/6,
respectively, acting as guides to the eyes.
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FIG. 4. �Color online� Effective central charge, obtained from
fits of the numerical data, as a function of �d and for various values
of g and qF. The lines show the analytical form in Eq. �19� evalu-
ated for the corresponding values of the parameter s.
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transmission coefficient of the Fano-Anderson model30 with
the Fermi-energy set equal to zero. Therefore, the effective
central charge is directly linked to a simple physical quantity
that, in experimental realizations, is obtainable via conduc-
tance measurements at very low temperatures. Although the
description of Fano resonances measured in various nano-
structure experiments22 typically require more detailed impu-
rity models, the simple relation between ceff and the trans-
mission coefficient might still survive in some parameter
regime. This could open up the possibility of an indirect
measurement of the leading term in the entropy.

It should be pointed out that the impurity integral in ceff
has been obtained analytically for a transverse Ising chain in
a DMRG geometry.9 The calculation relies on a correspon-
dence between transfer-matrix spectra of classical two-
dimensional �2D� Ising models and the single-particle eigen-
values of H in the reduced density matrix �e−H of the
quantum chain. This analogy is well known in the homoge-
neous case24,31 and can be extended by considering the trans-
fer matrix of a 2D strip with a defect line. In turn, an alter-
native representation of the integral in Eq. �19� via
dilogarithm functions was obtained. In our present model,
however, a direct calculation of ceff through the single-
particle eigenvalues seems to be a far more challenging prob-
lem.

We also extracted the subleading contribution k in Eq.
�18� from our data as shown in Fig. 5 for different values of
the filling. Its value k0 without the impurity also depends on
qF �see Ref. 32� and was subtracted in the figure. One has a
peaked structure around �d=0, however, unlike ceff the con-
stant k is, in general, not symmetric with respect to �d. In-
stead, one has the relation

S�g,�d,qF� = S�g,− �d,� − qF� �21�

which is a direct consequence of the symmetry property Eq.
�A8� of the correlations proven in Appendix A.

C. Particle-number fluctuation

In the last part of this section we will investigate the fluc-

tuations in the number of electrons N̂=�n=1
L cn

†cn contained in

the block next to the impurity. Although being a simpler
physical quantity, its scaling properties were shown to be
similar to that of the entanglement entropy in a variety of 1D
quantum systems33 and, in the case of free fermions, also in
arbitrary dimensions.34,35 Therefore it is an interesting ques-
tion whether this connection persists for the present impurity
problem.

The particle-number fluctuation is a simple quadratic
function of the correlation matrix and without the impurity is
readily evaluated as36

��N̂2�0 = tr C0�1 − C0� �
1

�2 ln L + k0� �22�

with k0�= �ln 2+�+1� /�2. Note that here the leading-order
logarithmic behavior was seen to emerge from the large dis-
tance decay properties of the correlations. Therefore, we will
use the approximation in Eq. �17� to write C�C0+CF. Car-
rying out the traces, one finds that the additional term tr�CF�2

has a logarithmic contribution while tr CF�1−2C0� evaluates
to a constant. The fluctuations then read

��N̂2� =
�eff

�2 ln L + k� �23�

with the prefactor given by �eff= �1+cos2 
F� /2.
The result is tested by comparing with the fitted values of

�eff as shown in Fig. 6. The agreement is very good with the
only sizeable deviations appearing in the region �
F��� /2
where the Fano resonance is close to the Fermi level and the
approximation Eq. �17� breaks down for the numerically at-
tainable block sizes. Note however that, in general, the small
distance deviations from the asymptotic form lead only to a
different numerical value of k� as compared with the one
obtained by evaluating the subleading terms in the traces.
Finally, one has to point out that, apart from the similar loga-
rithmic scaling, the prefactor �eff of the fluctuations is given
by a much simpler function of the scattering amplitude than
that governing the entropy.
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FIG. 5. �Color online� Subleading term k of the entropy as a
function of �d for different fillings and g=0.5. The homogeneous
value k0 has been subtracted for better comparison.
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IV. SEMI-INFINITE GEOMETRY

We now turn to the investigation of the semi-infinite
model. Our motivation behind studying a system with an
open boundary is twofold. On one hand, we would like to
cross-check our argument used for explaining Eq. �19� and
show that the contributions in ceff are additive. In other
words, we want to test our expectation c̃eff=ceff−1 /2 for the
semi-infinite effective central charge c̃eff of a subsystem with
an open end. On the other hand, boundaries were shown to
induce interesting subleading behavior of the entropy for
pure chains,37 therefore it is interesting to extend these in-
vestigations to the present impurity problem.

A. Correlation functions

The main difference from the infinite case is that the cou-
plings tq are now dependent on the wave number. In prin-
ciple, the calculations are very similar, leading to slightly
more lengthy expressions that are therefore summarized in
Appendix B. However, there is an additional feature which
leads to the emergence of bound states in the continuum
�BIC� which were studied before.38,39 We will show how
these BIC naturally enter the problem at the correlation func-
tion level.

Our main interest is to determine the entropy of a block
with L=n0−1 sites located on the left-hand side of the im-
purity. Apart from the usual bound-state contribution, the
correlations from the conduction band now include

C̃mn = 2

0

qF dq

�
R�q�sin qm sin qn �24�

with m ,n�n0 and we have defined the function

R�q� =
��q − �d�2

��q − �d − �q�2 + �q
2 , �25�

where �q and �q are the real and imaginary parts of the
self-energy Eq. �B5�, respectively, and are related to the pa-
rameter 	q=Im 	��q+ i
� of the infinite system as

�q = 	q sin 2n0q, �q = 	q2 sin2 n0q . �26�

Note that the term Cmn
0 does not now appear in the correla-

tions.
It is instructive to analyze the main features of the integral

in Eq. �24�. Taking ��d�→� one has R�q��1 and the inte-
gral reproduces the correlations of a pure semi-infinite chain.
For very strong coupling g→� one has 	q→� and therefore
both of the parameters in Eq. �26� take very large values
apart from a discrete set defined by the condition q̃n
=n� /n0, n=1, . . . ,n0, where �q=�q=0. Therefore, the func-
tion R�q� will become sharply peaked around these q̃n val-
ues and formally one can substitute


 dq

�
R�q� →

1

n0
�
q̃n

�27�

where the factor 1 /n0 is needed for proper normalization.
Setting n0=L+1, the q̃n correspond exactly to the allowed
wave numbers in a finite chain of length L. Therefore the

block is effectively decoupled by the impurity and C̃mn re-
produces the correlations in a finite segment.

The above argument breaks down for special q̃n values
fulfilling �q̃n

=�d, where R�q� becomes zero and the corre-
sponding peak is missing. However, this is exactly the con-
dition for the existence of the BIC. It has been shown that
these states have nonvanishing amplitude only at the impu-
rity site and inside the segment where they reproduce,
up to normalization, the eigenstates of a chain of length L
=n0−1.38 For g→� even the normalization becomes exact
and the contribution of the missing peak is therefore rein-
cluded this way.

While for these special values of �d the BIC are exactly
located at q̃n, the resonances of R�q� gradually shift toward
the wave numbers of the decoupled block as the coupling to
the impurity becomes larger. Hence, their contribution to the
entropy is expected to diminish.

B. Entanglement entropy

The numerical study of the entropy is now carried out

using the exact form of the correlations C̃mn+ C̃mn
b . The scal-

ing of the entropy at half filling is shown in Fig. 7 for various
�d values. In agreement with our expectations, the slope of
the curves coincides well with c̃eff=ceff−1 /2 as illustrated by
the dashed lines. Additionally, one observes large amplitude
oscillations in the data which seem to persist for large values
of L. Although such oscillations were already pointed out in
case of quantum chains with a boundary, they were found to
decay according to a power law and therefore vanish in the
limit L→�.37

A qualitative argument for this alternation can be given by
considering the main parameters in Eq. �26� entering the in-
tegrals. They contain oscillatory functions of q that, for large
n0, are expected to average out upon integration, yielding

�̄q=0 and �̄q=	q. These are just the values for the infinite
case, explaining the average behavior of the entropy. How-
ever, as seen before the Fermi level plays an important role
in the asymptotics and at q=qF the parameters assume values
which differ from the average. For half filling one has ��/2
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FIG. 7. �Color online� Entropy scaling for a segment with an
open boundary for different values of �d at half filling and g=0.5.
The dashed lines have corresponding slopes c̃eff=ceff−1 /2 and are
shown for comparison.
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=0 while ��/2=0 for n0 even and ��/2=2	�/2 for n0 odd, and
thus oscillates around the average 	�/2. This effect could
result in subleading corrections to the entropy that survive
the n0→� limit.

To extract this term, we have fitted our data according to
S�L+1�−S�L�=�S+a /L. This form, in general, gives a good
description of the alternating part. The results on �S are
plotted in Fig. 8 against the variable 
F. This choice is jus-
tified through our previous argument, where the only nonva-
nishing parameter is given by 2	�/2 and thus the scattering
phase of the infinite case is still expected to be a relevant
scaling variable. The data show indeed a nice collapse to an
interpolated scaling function which is shown by the dotted
line. It has a zero at 
F=0 corresponding to the pure semi-
infinite chain where the alternating term is known to vanish
asymptotically.37 Note that the symmetry under the exchange

F→−
F is valid also for S�L� itself.

The behavior of the entropy becomes more complicated
when we choose another value of the filling. This is illus-
trated in Fig. 9 where we have compared qF=� /3, corre-
sponding to one-third filling, with qF=1 which gives an in-
commensurate value for the filling. In the former case the
entropy curve splits into three parts, shifted from each other

in a similar way as was observed for half filling in Fig. 7.
This corresponds to the three possible values ��/3 and ��/3
can take. However, in the incommensurate case the number
of distinct values is infinite, resulting in a highly irregular
entropy behavior. Since � /3�1.05, the effective central
charges for the two cases are almost equal which explains
why the averaged slope of the curves is very similar. Never-
theless, for the small block sizes numerically achievable, the
amplitude of the oscillations has the same magnitude as the
average entropy. Therefore, a quantitative understanding of
the subleading term would be clearly desirable and requires
further investigation.

V. CONCLUSIONS

We have studied the entanglement in the ground state of a
single-impurity problem described by the Fano-Anderson
model, focusing on the analysis of the effective central
charge that appears in the entropy scaling. We provided
strong numerical evidence for the validity of a formula
which gives the functional form of ceff for arbitrary param-
eter values of the model. In particular, this formula depends
only on a single parameter, given by Eq. �20�, that has a
simple physical interpretation, namely, it is the transmission
coefficient of the impurity. This, in turn, establishes a con-
nection between the entanglement entropy and the low-
temperature conductance of the quantum chain that can be
measured in experiments with quantum-dot nanostructures.22

Therefore, it would be interesting to generalize the study of
the block entropy for Anderson-type impurities, including
on-site Coulomb interaction between electrons of different
spin, that give a more realistic model of the quantum dots in
experiments and yet are still tractable with DMRG tech-
niques.

On the other hand, an exact analytical treatment of the
present problem is still lacking. One could follow the lines of
Ref. 9 and try to relate the reduced density matrix to the
transfer matrix of an appropriate 2D classical system. An-
other possible approach would be the direct calculation of
the entropy from the correlation matrix, which, in the pure
case, requires knowledge of the eigenvalues of a Toeplitz
matrix.32 With an impurity one has a sum of Toeplitz and
Hankel matrices, which poses a much more difficult prob-
lem. However, the analysis of the correlations has led to a
simple asymptotic form, enabling us to calculate the particle-
number fluctuation that involves, instead of diagonalization,
only the traces of the correlation matrix.

The investigation of the semi-infinite geometry has, on
one hand, supported our general belief that the leading con-
tributions from both of the interfaces bordering the segment
simply add up in the entropy. On the other hand, we found a
subleading term which shows an interesting oscillatory be-
havior. The amplitude of the oscillations remains finite even
asymptotically, an effect that has not been observed for pure
chains. Although some arguments were given to describe its
main features, a proper understanding could only be
achieved through, analogous to the infinite case, a careful
investigation of the asymptotic correlations.

Finally, it would be worth extending this study to the case
where the impurity is located further apart from the boundary

0
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FIG. 8. �Color online� Alternating term �S in the entanglement
entropy at half filling, as obtained from data fits. The symbols cor-
respond to different values of �d and g and show a nice collapse
when plotted against the scaling variable 
F of the infinite
geometry.
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FIG. 9. �Color online� Oscillating behavior of the entropy for a
commensurate qF=� /3 and an incommensurate qF=1 value of the
filling. The parameters are g=0.5 and �d=−0.8.
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of the subsystem. If this distance grows large, the effective
central charge must return to the value of a pure system and
an interesting crossover behavior might emerge.
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APPENDIX A: ASYMPTOTIC FORM OF THE
CORRELATIONS

The expression for the correlation functions involves the
integrals in Eq. �14� containing an oscillatory integrand. In
the limit l�1 one could approximate it by considering the
scattering phase to be a constant. However, this method only
works for slowly varying 
�q� functions which is not fulfilled
by Eq. �15� for q�0 and �q��d. It will be shown that with
a suitable transformation of the integral one can extract the
resonant contributions which exactly reproduce the term
Cb�l� associated with the bound state. To show this, we first
rewrite Eq. �14� in the form

C1�l� = 

−qF

qF dq

2�

	q
2 cos ql + 	q��q − �d�sin ql

��q − �d�2 + 	q
2 , �A1�

where we defined

	q = −
g2

sin q
= �Im 	��q + i
� if q � 0

Im 	��q − i
� if q � 0.
� �A2�

Note, that the denominator is just the product �+��q��−��q�
which is strictly positive along the integration path in Eq.
�A1� but, in general, has four roots on the complex plane.26

Introducing the variable z=eiq the integration is now taken
along an arc of the complex unit circle which can be written
as the sum of the two contours shown in Fig. 10. After

changing variables and using the symmetry under z→z−1 it
takes the following form:

C1�l� = 

C1+C2

dz

2�i

4g2z

��z�
zl �A3�

with the fourth-order polynomial

��z� = z4 + 2z�z2 − 1���d − �0� + 4g2z2 − 1. �A4�

It is easy to show that the polynomial has two real solu-
tions z�= �e−1/�� which lie inside the unit disk and z+ �z−�
is related to the lower �upper� bound-state solutions as ��

=−�z�+z�
−1� /2= �cosh � �

−1. The remaining solutions form a
complex-conjugate pair z3=z4

� and lie outside the unit disk.
The closed contour C1 therefore only encircles the pole at z+
and the residue is evaluated as

Res
z=z+

4g2z

��z�
zl = Cb�l� , �A5�

where Cb�l� is defined under Eq. �12�. The remaining integral
is taken along the contour C2 which is parametrized as z
=e�iqFe−q� and using the analytic continuation of the scatter-
ing phase it reads

− Re

0

� dq�

�
sin 
�qF + iq��ei�qF+iq��lei
�qF+iq��. �A6�

Note, that 
�qF+ iq�� varies smoothly and vanishes for q�
→�. For l�1 the integrand is rapidly decaying, thus one
can approximate the phase around q�=0 as 
�qF+ iq���
F

+ iq�
d
�q�

dq �qF
. If the derivative is small, that is we are far away

from the Fano resonance, one can set 
�qF+ iq��=
F and the
integral Eq. �A6� can be trivially carried out to yield the
result in Eq. �17�. The derivative term is then used to define
a length scale

l0 �d
�q�
dq

�
qF

=
g2�sin2 qF − �d cos qF�

�d
2 sin2 qF + g4 �A7�

which marks the regime l� l0 where the approximation is
valid. Note that l0 can only grow large if the conditions �d

2

�g2�1 are satisfied.
The contour integral can also be used to prove an exact

symmetry property of the correlations. We define the

particle-hole transformed functions C̄b�l� and C̄1�l� by per-
forming the changes �d→−�d and qF→�−qF. Now, one can

show that the sum C1�l�+ �−1�lC̄1�l� can be written as the
integral Eq. �A3� over the complete unit circle which is ex-
actly evaluated as the sum of the residues at z+ and z−. Using
the symmetry property �+=−�̄−, the latter pole contributes

�−1�lC̄b�l� which, after reordering, yields the relation

C̄b�l� − C̄1�l� = �− 1�l�Cb�l� − C1�l�	 . �A8�

APPENDIX B: SEMI-INFINITE FORMULAS

We present here some of the formulas which are neces-
sary for the calculations in the semi-infinite geometry. First,

FIG. 10. �Color online� Integration contours and poles of the
integrand appearing in Eq. �A3�. The dashed line shows the bound-
ary of the complex unit disk.
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the self-energy function outside the band reads

	̃���� = �
g2

���
2 − 1

�1 − ����� − ���
2 − 1�2n0	 �B1�

and the bound-state energies �+�1 and �−�−1 are obtained
numerically as the roots of

�� − �d − 	̃���� = 0. �B2�

Note that �+ ��−� exists only for parameter values fulfilling
�d�1−2g2n0 ��d�−1+2g2n0�. On the other hand, using the
definition of the inverse correlation length ��= �cosh � �

−1

the second term in the parentheses in Eq. �B1� can be written
as e−2n0/��. Therefore, if the impurity lies deep in the bulk of

the chain with n0→� one has 	̃����=	���� and conse-
quently the same solutions for �� as in the infinite case.

The contribution C̃mn
b from the lower bound state can be

evaluated as

g2Ñ−

�−
2 − 1�4 sinh2n0

�−
e−�m+n�/�− if m,n � n0

4 sinh
m

�−
sinh

n

�−
e−2n0/�− if m,n � n0

� �B3�

with the normalization factor

Ñ− =
�−

2 − 1

2�−
2 − �−�d − 1 − 2n0g2e−2n0/�−

. �B4�

The limit n0→� gives Ñ−=N− and the right-hand side of
Eq. �B3� becomes e−�m�+n��/�− with the shifted indices m�

= �m−n0� and n�= �n−n0�, thus recovering again the result in
Eq. �12� for the infinite case.

Finally, one needs the expression for the retarded self-
energy inside the band

	̃��q + i
� = − 2g2sin n0q

sin q
ein0q �B5�

which is an oscillatory function of the position n0. This even-
tually leads to the emergence of bound states in the con-
tinuum, as described in the text. The scattering phases are
defined as

tan 
̃�q� =
�q

�q − �d − �q
�B6�

with �q=Re 	̃��q+ i
� and �q=Im 	̃��q+ i
�.
The band contributions also have to be treated separately

on either sides of the impurity. On the right-hand side, analo-
gously to the infinite case, it can be expressed in the form

C̃0�m−n�− C̃1�m+n� with

C̃1�l� = 

0

qF dq

�
cos�ql + 2
̃�q�	 �B7�

while the translationally invariant term C̃0�m−n�=C0�m−n�
is unmodified. The correlations on the left-hand side cannot
be given in that simple form and are analyzed in the text.
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