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We study the 1+1-dimensional random directed polymer problem, i.e., an elastic string ��x� subject to a
Gaussian random potential V�� ,x� and confined within a plane. We mainly concentrate on the short-scale and
finite-temperature behavior of this problem described by a short but finite-ranged disorder correlator U��� and
introduce two types of approximations amenable to exact solutions. Expanding the disorder potential
V�� ,x��V0�x�+ f�x���x� at short distances, we study the random-force �or Larkin� problem with V0�x�=0 as
well as the shifted random-force problem including the random offset V0�x�; as such, these models remain well
defined at all scales. Alternatively, we analyze the harmonic approximation to the correlator U��� in a consis-
tent manner. Using direct averaging as well as the replica technique, we derive the distribution functions
PL,y�F� and PL�F� of free energies F of a polymer of length L for both fixed ���L�=y� and free boundary
conditions on the displacement field ��x� and determine the mean displacement correlators on the distance L.
The inconsistencies encountered in the analysis of the harmonic approximation to the correlator are traced back
to its nonspectral correlator; we discuss how to implement this approximation in a proper way and present a
general criterion for physically admissible disorder correlators U���.
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I. INTRODUCTION

Directed polymers subject to a quenched random potential
have been the subject of intense investigations during the
past two decades.1 Diverse physical systems such as domain
walls in magnetic films,2 vortices in superconductors,3 wet-
ting fronts on planar systems,4 or Burgers turbulence5 can be
mapped to this model, which exhibits numerous nontrivial
features deriving from the interplay between elasticity and
disorder. The best understanding, so far, has been reached for
the �1+1�-dimensional case, i.e., a string confined to a plane,
and it is this geometry we study in the present paper. Spe-
cifically, we analyze the situation illustrated in Fig. 1, an
elastic string �with elasticity c� of finite length L within an
interval �0,L� directed along the x axis. The disorder poten-
tial V�� ,x� drives a finite displacement field ��x�, which is
counteracted by the elastic energy density c��x��2 /2. The
problem is conveniently defined through its Hamiltonian

H���x�;V� = �
0

L

dx� c

2
��x��x��2 + V���x�,x��; �1�

the disorder potential V�� ,x� is Gaussian distributed with a
zero mean V�� ,x�=0 and a correlator

V��,x�V���,x�� = ��x − x��U�� − ��� �2�

with U��−��� the correlation function. Much previous work
has been concentrating on the large-scale/high-temperature
behavior of this system as described by a �-correlated disor-
der potential. In the present work, we are interested in the
properties developing at small scales and low temperatures,
necessitating the study of short-range correlated disorder po-
tentials. The latter are characterized by their extension � and
the strength U0=U�0�; these parameters then combine in a
curvature �or random-force strength� u=−U��0��U�0� /�2.

Quantities of interest are the scaling behavior

	�2
�L� � 	���L� − ��0��2
 � L2�

of the polymer’s mean-squared displacement � with length L
and the so-called wandering exponent6 �, as well as the dis-
tribution function P�F� of the polymer’s free energy F �here,
	¯ 
 and �¯ � denote thermal �temperature T� and disorder
�random potential V� averages, respectively�. The polymer’s
free energy F is defined via its partition function

Z�L,y ;V� = �
��0�=0

��L�=y

D���x��exp�− �H���x�;V�� , �3�

where �=1 /T denotes the inverse temperature �we set the
Boltzmann constant to unity�, from which the free energy

F�L,y ;V� = − T ln�Z�L,y ;V�� �4�

follows immediately. The free energy F in Eq. �4� is defined
for a specific realization of the random potential V and thus
defines a random variable; given the above �Gaussian� dis-
tributed disorder potential, the task then is to determine the
distribution function PL,y�F�. In Eq. �3�, we have considered
a string starting at �x ,��= �0,0� and ending in a fixed posi-
tion �x ,��= �L ,y� a distance L away but other cases, e.g., a
free boundary condition at x=L, see below, may be studied.

When concentrating on large-scale properties and a
�-correlated potential with U��−���=u���−���, two types
of analytic solutions are known for the �1+1�-dimensional
random polymer: �i� mapping the replicated problem to in-
teracting quantum bosons7 and using the Bethe-Ansatz tech-
nique, one can find the spectrum and eigenfunctions of the
interacting quantum many-body problem, from which the
distribution function PL�F� for the free energy F of a poly-
mer of length L and fixed end point at ��L�=0 can be ob-
tained; we call this the “longitudinal problem.” Restricting
the solution to the ground-state wave function permits the
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determination of the far-left tail.8 First indications that the
full distribution function should be of the Tracy-Widom form
derived from the work of Prähofer and Spohn9 on poly-
nuclear growth, a model in the universality class of the
Kardar-Parisi-Zhang �KPZ� model to which the random di-
rected polymer problem belongs as well. Recently, both tails
of the free-energy distribution function PL�F� have been
found using instanton techniques,10 with results consistent
with those in Ref. 9. The full distribution function �in the
Tracy-Widom form� has been obtained independently by
several groups, by Dotsenko11 and by Calabrese et al.12 using
the replica technique including the full spectrum, by
Sasamoto and Spohn13 deriving the exact KPZ solution from
the corner growth model, and by Amir et al.14 �ii� An alter-
native �exact� result has been obtained using a mapping to
the Burgers equation via the Cole-Hopf transformation;15

making use of an invariant distribution, the distribution func-
tion Py�F�� for the free-energy difference F� between two
configurations with end points separated by 2y has been
found15,16 �the so-called “transverse” problem�. Both ap-
proaches have been helpful in finding the wandering
exponent15 �=2 /3 of transverse fluctuations of the polymer.
Recently, the interrelation between the longitudinal and the
transverse problems has been studied17 in a calculation of the

joint distribution function PL,y�F̄ ,F�� for a polymer of length
L involving two configurations of the string ending in points
separated by 2y.

The aforementioned studies describe the behavior of the
polymer at large scales and high temperatures �the results for
the �-correlated disorder potential exhibit a singular zero-
temperature limit�. In order to learn about the short-scale/
low-temperature behavior of the system, finite-width correla-
tors U��−��� of the random potential have to be studied;
this problem has remained unsolved so far. In order to make
progress, we linearize the problem, either by an expansion of
the original random potential18 V�� ,x� for small values of �,

V��,x� � V0�x� + f�x���x� , �5�

or by an expansion of the correlator U��−���,

U�� − ��� � Up�� − ��� = U0 −
1

2
u�� − ���2. �6�

Both approximations lead to quadratic problems which can
be solved exactly; their study not only provides solid results
for the polymer’s short-scale properties but also gives in-

sights on the methodological aspects of the solution �the rep-
lica approach�. Furthermore, a central question we will ad-
dress below is which expansion is the more appropriate one.

Studying the destruction of long-range order due to the
presence of quenched disorder, i.e., the behavior of the dis-
placement field ��x� at large distances x, the random shift
V0�x� can be dropped and one arrives at the Larkin or
random-force model described by the Hamiltonian �1� with

V��,x� = f�x���x� , �7�

where f�x� denotes a �Gaussian� random-force field with zero
mean f�x�=0 and a correlator

f�x�f�x�� = u��x − x�� . �8�

Its free-energy distribution function Py,L�F� has been calcu-
lated by Gorokhov and Blatter.19 However, using this expan-
sion in the analysis of the short-scale properties of the
random-potential problem, we are not allowed to ignore the
random shift V0�x�. In our study below, we assume the latter
to be Gaussian correlated,

V0�x�V0�x�� = U0��x − x�� , �9�

and uncorrelated with the force, V0�x�f�x��=0; we call this
approximation the shifted random-force model. Both models
not only serve as approximations to the random polymer
problem on short scales but also describe physical problems
where the underlying randomness is properly described by a
�shifted� random-force field on all length scales; below we
will quote results for these models for arbitrary lengths L.

The alternative short-scale approximation Eq. �6� involv-
ing an expansion of the correlator U��−��� has been dis-
cussed in the literature as well.1,20 The harmonic-correlator
approximation relates to the above shifted random-force
model via the identification of the force correlator

��V��,x����V���,x���,��=0 = �− U��0����x − x�� = u��x − x��

and the shift correlator

V��,x�V���,x���,��=0 = U0��x − x�� ,

with the additional advantage to preserve the translation in-
variance of the problem �note, that the shifted random-force
model involves only the constant and mixed �u���� terms in
the correlator, with the quadratic terms ���2+��2� absent�.

The �shifted� random-force models and the harmonic-
correlator approximation produce similar results for various
quantities defined at short scales, such as the mean-free en-
ergy and the displacement correlator. While all displacement
correlators are identical for the two models and the approxi-
mation, the random-force model supplies us with the distri-
bution function for the relaxational free energy �i.e., the free
energy of the distorted string reduced by the energy of the
straight string� whereas the shifted random-force model and
the harmonic-correlator approximation provide us with the
distribution function for the total free energy. Comparing the
latter two, we find that the results for the harmonic-correlator
approximation give a more consistent description of the
original problem Eq. �2� at short distances, as the correlator
remains translation invariant, while some terms in the expan-

x

y

0 L

φ

FIG. 1. Thermally averaged trajectory 	��x�
th of a random di-
rected polymer in a fixed disorder potential V�� ,x� starting in
�x ,��= �0,0� and ending in �L ,y�. The free energy associated with
such a configuration is denoted by F. The random choice of the
underlying disorder potential V�� ,x� defines a random process; the
free energy then turns into a random variable, whose distribution
function PL,y�F� we seek to calculate.
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sion of the random potential are dropped for the shifted
random-force problem. On the other hand, the applicability
of the harmonic-correlator approximation is limited to short
scales, as the free-energy distribution function PL�F� suffers
from a negative second moment whenever large displace-
ments show up, e.g., at large distances L or at high tempera-
tures T; this is to be expected as the harmonic correlator
deviates strongly from the original correlator U��� �and
eventually turns negative� at large arguments.

As a technical �but still important� side remark, we point
out that expanding the correlator U��� of the random poten-
tial or choosing arbitrary forms for the correlator �such as ad
hoc power-law expressions1� is a problematic step, as this
action may generate a nonspectral correlator introducing an
ill-defined Gaussian measure and thus may lead to an un-
physical model at the very start, cf. Sec. IV below for a
detailed discussion. This problem manifests itself in the map-
ping to quantum bosons when using the replica approach. On
the other hand, expanding the interaction −�2U��� between
bosons is a perfectly admissible step producing identical re-
sults; in this case, however, we know that the �perfectly well
defined� quantum boson problem does not describe the ran-
dom polymer problem on scales where the approximate qua-
dratic correlator deviates strongly from the original cor-
relator. In the present work, we will discuss the harmonic-
correlator approximation of the original random polymer
problem with the understanding, that the harmonic approxi-
mation is done after the mapping to bosons. Furthermore, in
Sec. IV, we will present a criterion assuring the consistent
definition of a correlator: such correlators have to be spectral.
Also, we emphasize the difference in terminology introduced
above: while the random force and shifted random-force ap-
proximations to the random potential V�� ,x� define proper
models of disordered elastic systems, this is not the case
when expanding the potential correlator U���; this is why we
refrain from considering a model with a harmonically corre-
lated random potential but prefer to talk about a harmonic
approximation to the correlator.

For a system with quenched disorder, it is usually ex-
tremely difficult to find averaged physical quantities, e.g., the
mean-free energy F=−T ln Z. Replica theory, requiring cal-
culation of the disorder-averaged nth power of the partition
function Zn then comes in as a helpful technique. Usually, it
is the limit limn→0��Zn−1� /n�=ln Z, that is to be calculated
after analytic continuation of n. It turns out �see below� that
the same quantity Zn and its analytic continuation is relevant
in the calculation of the free-energy distribution function
P�F�, since the latter is nothing but the inverse Laplace
transform of the former,8 hence replica theory seems the
technique of choice for the solution of the present problem as
well. However, the shifted random-force model defines a
quadratic problem that can be analyzed in a straightforward
manner, i.e., the partition function Z�f�x�� �involving an in-
tegration over the field ��x�� can be found for any configu-
ration f�x� of the random force and the disorder average of
its nth power can be done in the end. This is opposite to the
replica approach where the integrations are interchanged,
with the first integration over the disorder of the replicated
system generating an interacting imaginary-time quantum
boson problem, which then is solved in a second step �cor-

responding to the integration over the field�. Below, we will
discuss both procedures for the Larkin model and find that
they provide similar challenges and identical results.

The disorder �u and U0� and elastic �c� parameters of the
above random polymer problems define convenient and
physically relevant length and energy scales: The ratio of U0
and u defines the transverse length scale � where the shifted
random-force model approximates well the random polymer
problem,

� = �U0

u
�1/2

. �10�

Comparing the elastic energy Ec=c�2 /L=cU0 /uL with the
disorder energy Ef =�U0L accumulated over a distance L,
one obtains the corresponding longitudinal scale Lc,

Lc = � c2U0

u2 �1/3
= � c2�2

u
�1/3

. �11�

Finally, the energy scale associated with these length scales
is

Uc = � cU0
2

u
�1/3

=
c�2

Lc
. �12�

Note that the longitudinal �Lc� and transverse ��� scales de-
fine the limits of validity where our expansions describe the
original random polymer problem. The parameters are not
fully appropriate to describe the results of the Larkin model,
as the latter is characterized by one disorder parameter �u�
only—to allow for proper comparison, below, we will nev-
ertheless express all physical results through �, Lc, and Uc.
For the Larkin model, these parameters will combine to ex-
pressions containing only u and c.

Besides providing various results and insights for the
�shifted� random-force models and the harmonic-correlator
approximation, as well as a discussion of their use as an
approximation to the random-potential problem at short
scales, the present study also has its merits from a method-
ological point of view since this is the only case where the
entire analysis �direct and via replica� can be carried through
in a complete and consistent manner. Below, we introduce
the formalism �Sec. II� and then apply it to the �shifted�
random-force models �Sec. III�. We then analyze the
harmonic-correlator approximation �Sec. IV�, analyze its
failure due to its nonspectral property, and state the spectral
condition to be satisfied by a properly defined random-
potential correlator U���; furthermore, we briefly present the
results for the displacement correlators which are identical in
all three cases. Conclusions are presented in Sec. V.

II. METHODOLOGY

Evaluating the partition function Eq. �3� and the expres-
sion �4� for the free-energy F for a given random potential
V�� ,x� defines a sample-dependent random quantity. Its
free-energy distribution function PL,y�F� can be derived from
the nth powers of the partition function
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Zn�L,y� = Z�L,y ;V�n = exp�− n�F�L,y ;V�� . �13�

These are equal to the �bilateral� Laplace transform of the
free-energy distribution function PL,y�F� at integer multiples
of �,8

Zn�L,y� = �
−�

+�

dFPL,y�F�exp�− n�F� . �14�

Hence, the inversion of this expression through the �inverse�
Laplace transformation provides us with the free-energy dis-
tribution function PL,y�F�. This requires us to analytically
continue the expression Zn�L ,y� for the moments from inte-
ger values of n to the complex 	 plane, Zn�L ,y�
→Z�	 ;L ,y� with �n→	. The free-energy distribution func-
tion PL,y�F� then is given by the inverse Laplace transforma-
tion

PL,y�F� =
1

2
i
�

−i�

+i�

d	Z�	;L,y�exp�	F� , �15�

where the integration goes over the imaginary 	 axis with
Re�	� chosen in such a way as to place all singularities in
Z�	 ;L ,y� to its right. Furthermore, taking the k-fold deriva-
tives of Z�	 ;L ,y� with respect to 	 provides us with all the
moments

	Fk
�L,y� = �− 1�k� �kZ�	;L,y�
�	k �

	=0
. �16�

The calculation of the moments Zn�L ,y� involves integra-
tions over the displacement field ��x� and over the distribu-
tion function P�V�� ,x�� of the disorder potential,

Zn�L,y� =� D�V��,x��P�V��,x���
a=1

n � D��a�x��

�exp�− ��
a=1

n

H��a�x��� . �17�

For the random force or Larkin model, these integrations can
be done straightforwardly in the sequence above using the
distribution function for the random force

P�f�x�� � exp�−� dxf2�x�/2u� . �18�

This program will be carried through in Sec. III A below.
Fixed and free boundary conditions are conveniently im-
posed by the requirements ��0�=0, ��L�=y and ��0�=0,
��x���L�=0.

On the other hand, for the general situation with a random
potential V�� ,x�, the integration in Eq. �17� over the dis-
placement fields �a�x� cannot be done. Interchanging the in-
tegrations over V�� ,x� and �a�x� takes us directly to the
replica technique: performing first the integration over the
disorder potential V�� ,x�, the remaining integrations over
the fields �a�x� have to be done with the replica Hamiltonian
Hn���a��,

���ya�;L� = ��
a=1

n �
�a�0�=0

�a�L�=ya

D��a�x���
�exp�− �Hn���a�x���� , �19�

Hn���a�x��� = �
0

L

dx� c

2�
a=1

n

��x�a�x��2 −
�

2 �
a,b=1

n

U��a�x�

− �b�x��� . �20�

Here, we have allowed the individual replicas of the elastic
string to end in different locations ya. The expression Eq.
�19� is identical with the imaginary time �x� propagator
���ya� ;x� of a many-body problem in a path integral setting.
Collapsing the end points ya=y, this propagator coincides
with the nth moment �Eq. �17�� of the partition function,

���ya = y�;x = L� = Zr�n;L,y� = Zn�L,y� , �21�

where the last equation holds, provided that the integration
over the disorder potential V can be exchanged with the in-
tegration over the field �a. Note that it is this mapping from
the polymer statistical mechanics problem to the quantum
boson problem which fails when the correlator is nonspec-
tral, e.g., for the �naive version of the� harmonic-correlator
approximation.

The equivalence to a quantum many-body problem be-
comes more obvious when going from the path-integral Eq.
�19� to an operator formalism; the evaluation of the path-
integral Eq. �19� then is equivalent to the solution of the
imaginary-time Schrödinger equation

− �x���ya�;x� = Ĥ���ya�;x� �22�

with the Hamiltonian

Ĥ = −
1

2�c
�
a=1

n

�ya

2 −
�2

2 �
a,b=1

n

U�ya − yb� . �23�

The Hamiltonian �23� describes n particles of mass �c inter-
acting via the attractive two-body potential −�2U�y�; the
propagation in Eq. �22� starts in the origin at time x=0,

���ya�;0� = a=1
n ��ya� , �24�

and ends at different coordinates �ya� after propagation dur-
ing the time x. To keep up the formal distinction between the
two quantities, we denote the direct physical definition of the
moments by Zn�L ,y� �first integration over the field �, rais-
ing the result to the power n, and averaging over disorder V�
and denote the replica expression �n-fold replication fol-
lowed by averaging over disorder V and integration over the
fields �a done in the end� by Zr�n ;L ,y�.

Finally, we note that in the replica technique, free bound-
ary conditions at the end point are more conveniently imple-
mented through an integration over y; the partition function
for the polymer with free boundary conditions assumes the
form
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Z�L;V� = N�
−�

+�

dyZ�L,y ;V� �25�

with N a suitable normalization constant. Taking the nth
power and averaging over the disorder potential V provides
us with the moments Zn�L�. Following the replica procedure,
after replication and integration over V, one arrives at the
free-boundary replicated partition function through integra-
tion over the set �ya� of n different end points,

Zr�n;L� = ��
a=1

n

N�
−�

+�

dya����ya�;x = L� . �26�

In the next sections, we are going to apply the above general
schemes for the calculation of the free-energy distribution
functions PL,y�F� and PL�F� for fixed and free boundary con-
ditions, respectively, of the �shifted� random-force model
Eqs. �7�–�9� and of the random directed polymer model Eq.
�1� with the parabolic approximation for the correlation func-
tion, Eq. �6�, done after averaging over the disorder. Before
doing so, we briefly discuss the results for the free string
which determines our normalization N.

Free string

The path integrals Eqs. �3�, �17�, and �19� over trajectories
��x� involve an arbitrary measure of integration. Here, we
choose a particular normalization such that the partition
function Z0�L ,y� �or wave function �0�y ,x=L�� of the free
polymer problem with fixed boundary conditions ��0�=0
and ��L�=y assumes the form

Z0�L,y� = �0�y ;L�

= �
0

y

D���x��exp�−
�c

2
�

0

L

dx��x��x��2�
� exp�−

�c

2L
y2� , �27�

the corresponding free energy then is given by

F0�L,y� =
c

2L
y2. �28�

For the partition function of the free polymer with free
boundary conditions we choose the normalization N
= �2
L /�c�1/2 and obtain

Z0�L� =�2
L

�c
�

−�

+�

dyZ0�L,y� = 1 �29�

and the free energy F0�L�=0. These results will be helpful in
the interpretation of the free-energy distribution functions for
the random-force model calculated below. With this normal-
ization, all our free energies F are measured with respect to
the free thermal energy F0

fs=T ln�2
LT /c of the free string
due to its entropy.

III. RANDOM-FORCE MODEL

We select the simplest case, the Larkin model, for the
discussion of the two methodological approaches involving

either direct integration over the field � and subsequent dis-
order average over V or the route following the replica ap-
proach. While the first route is preferably done in Fourier
space, the replica calculation will be formulated in real
space. Also, note that the analysis for the Larkin or random-
force model provides the distribution function for the relax-
ational free-energy F−E0 rather then the �total� free energy
F of the polymer,

Z�L,y ;V� = exp−�F�L,y;V�

� �
��0�=0

��L�=y

D���x��exp�− �H��;V0 + f���

= e−�E0�
��0�=0

��L�=y

D���x��exp�− �H��; f���

�30�

with E0=�dxV0�x� the disorder energy of a straight string.
This latter remark is relevant in the comparison of the ran-
dom force and the harmonic models.

A further specialty of the Larkin model is the separation
between the thermal and the quenched disorder.21 Indeed,
splitting the displacement field ��x� into the Hamilonian’s
minimizer �q�x�,

c�x
2�q�x� = f�x� , �31�

and fluctuations ���x� around it, ��x�=�q�x�+���x�, we can
decompose the Hamilonian into the free part H0����x�� and
the energy of the minimizer H��q�x��,

H0����x�� = �
0

L

dx
c

2
��x���x��2,

H��q�x�� = �
0

L

dx� c

2
��x�q�x��2 + f�x��q�x�� . �32�

In addition, we can account for the boundary condition
��L�=y through a simple shift ��x�→xy /L+��x�, which
adds the terms

Hy =
cy2

2L
+

y

L
�

0

L

dxxf�x� �33�

to the Hamiltonian. The partition sum then naturally sepa-
rates into thermal and quenched-disorder averaged factors,21

Z�L,y ; f� = Z0�L,y�exp�− ��H��q�x�� + Hy�� , �34�

where the factor Z0�L ,y� is the partition function Eq. �27� of
the free propagation.

A. Direct integration

The direct integration of the partition function Eq. �3� for
the random-force problem V�� ,x�= f�x���x� is conveniently
done within a Fourier representation. For technical conve-
nience we extend the problem to the interval �−L ,L� and
define the antisymmetric force and displacement fields
f�−x��−f�x�0� and ��−x��−��x�0�. The relevant quan-
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tities in Fourier space are the sine transforms

gm = �
−L

L

dxg�x�sin�kmx� �35�

with km=m
 /L; the backtransformation reads

g�x� =
1

L
�
m=1

�

gm�x�sin�kmx� . �36�

The Hamiltonian �on the interval �0,L�� assumes the form
�we make use of the solution �qm=−fm /ckm

2 of Eq. �31� in
Fourier representation�

H��q� + Hy = − �
m=1

�
fm

2

4cLkm
2 −

y

L
�
m=1

�
�− 1�m

km
fm �37�

and the partition function reads

Z�L,y ; f� = exp�−
�cy2

2L
�

� �
m=1

�

exp� �fm
2

4cLkm
2 +

�y

Lkm
�− 1�mfm� . �38�

The disorder average in the partition function Eq. �34� or
�38� has to be taken over the distribution function for the
random force f , cf. Eq. �18�, or in Fourier space,

P�fm� =
1

�4
uL
exp�− fm

2 /4uL� . �39�

Taking the result �38� to the nth power and integrating over
the force distribution Eq. �39�, we obtain the intermediate
result

Zn�L,y� = exp�−
�ncy2

2L
�

� �
m=1

� �1 −
s


2m2�−1/2
exp��

m=1

�
�ncy22s

2L�
2m2 − s��
�40�

with

s =
�nuL2

c
. �41�

Using the product and partial fraction expansion of circular
functions22

sin�s
�s

= �
m=1

� �1 −
s


2m2� , �42�

�s

tan�s
= 1 + �

m=1

�
2s

s − m2
2 , �43�

we obtain the final result

Zn�L,y� � Z�s;�� = � �s

sin�s
�1/2

exp�− �
s�s

tan�s
� �44�

with the dimensionless displacement parameter

� =
c2

2u

y2

L3 . �45�

With our normalization, the partition sum does not depend
on temperature any more �note that in the calculation of the
free-energy distribution function, the variable s will be inte-
grated over, cf. Eq. �60��. The result in Eq. �44� is well de-
fined provided that 0�s�
2; the singularity at s=
2 will
determine the shape of the left tail in the free-energy distri-
bution function, see Eq. �67� below.

As a simple application, we can use the partition function
Eq. �38� to find the free energy 	F
=−T ln Z�L ,0 ; fm� of the
string starting and ending in �=0. Taking the disorder aver-
age over the term �m�fm

2 /4cLkm
2 in the logarithm of the par-

tition function Eq. �38�, we obtain the result

	F
 = −
uL2

2c
2 �
m=1

�
1

m2 = −
Uc

12
� L

Lc
�2

, �46�

where we have used the Riemann zeta function ��2�=
2 /6
and the definitions Eqs. �11� and �12�. Alternatively, we can
use the Eqs. �16� and �44� and calculate 	F
�L ,0�=
−�uL2 /c��sZ�s ;0� s=0. With Z�s ;0��1+s /12 we then easily
recover the above result. Note that the result Eq. �46� mea-
sures the free energy F with respect to the entropic contribu-
tion F0

fs=T ln�2
LT /c of the free string.
The result for the free boundary condition �x� x=L=0 is

obtained by using an alternative expansion: first, we sym-
metrically extend the system from the interval �0,L� to the
interval �0,2L� with the definitions ��L+x����L−x�,
f�L+x�� f�L−x�. Second, we expand the analysis to the in-
terval �−2L ,2L� using the same antisymmetric extension as
above. As a result, we can expand the displacement and force
fields into modes sin�qmL� with qm= �2m−1�
 /2L, m
=1, . . . ,� and hence zero slope at x=L. Following the same
steps as above, we arrive at Eq. �40� with y=0 and the prod-
uct corresponding to the expansion of the cosine,22

cos �s = �
m=1

� �1 −
4s


2�2m − 1�2� . �47�

The final result for the partition function with free boundary
conditions then reads

Z�s� =
1

�cos �s
, �48�

where the regime of applicability is restricted to the domain
0�s�
2 /4; again, the singularity at s=
2 /4 determines the
shape of the left tail in the free-energy distribution function,
cf. Eq. �71�. The alternative procedure of realizing the free
boundary condition via integration over the end-point coor-
dinate y, cf. Eq. �25�, provides the identical result, although
via a much more tedious calculation of determinants.
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B. Replica approach

The replica Hamiltonian Eq. �20� for the random-force
problem Eq. �7� reads

Hn���a�� =
1

2
�

0

L

dx�c�
a=1

n

��x�a�x��2 − �u �
a,b=1

n

�a�x��b�x��
�49�

=−
1

2
�

0

L

dx �
a,b=1

n

�a�x�Uab�b�x� �50�

with the matrix

Uab = c�ab�x
2 + �u . �51�

Accounting for the random shift V0�x�, cf. Eq. �9�, adds an
additional term −n2�U0L /2 to the Hamiltonian �49�.

The matrix Uab can be easily diagonalized and we find
one �n−1�-fold degenerate eigenvalue �1=c�x

2 pertinent to
the free string with the �n−1� orthonormal eigenvectors �i

a

obeying the constraint �a=1
n �i

a=0, i=1, . . . ,n−1. The nth ei-
genvalue �2=c�x

2+�nu is nondegenerate and appertains to an
inverted harmonic potential problem; the associated eigen-
vector is �n

a=1 /�n, a=1, . . . ,n. The coefficients �i
a of the

�n�n� transformation matrix �i
a satisfy the conditions

�a=1
n �i

a� j
a=�ij �completeness� and �i=1

n �i
a�i

b=�ab �orthonor-
mality�. In terms of the new fields �i�x� and boundary con-
ditions qi=�i�L�,

�i�x� = �
a=1

n

�i
a�a�x�, qi = �

a=1

n

�i
aya, �52�

the wave function �or propagator� Eq. �19� takes the form

���qi�;L� = �
i=1

n−1 ��
0

qi

D��i�x����
0

qn

D��n�x��

� exp�−
�c

2
�

0

L

dx�
i=1

n−1

��x�i�x��2�
� exp�−

�c

2
�

0

L

dx���x�n�x��2 − �n
2�x�/�2�� ,

�53�

where we have introduced the length parameter �, cf. Eq.
�41�,

�2 =
c

�nu
=

L2

s
. �54�

The �n−1� free propagators are given by �0�qi ;L�, i
=1, . . . ,n−1, cf. Eq. �27�. The propagator �ih�qn ;L� for the
inverted harmonic potential problem is obtained by solving
the imaginary-time Schrödinger equation

�x�ih�q;x� =
1

2
� 1

�c
�q

2 +
�c

�2 q2��ih�q;x� �55�

with the initial condition �ih�q ;x=0�=��q�. With the Gauss-
ian Ansatz �ih�q ;x�=��x�exp�−a�x�q2 /2� and proper ac-

counting of the initial condition, we find the solution �cf.
Ref. 23�

�ih�qn;L� = � �s

sin�s
�1/2

exp�−
�c

2L

�s

tan �s
qn

2� . �56�

Inserting the free �Eq. �27�� and harmonic �Eq. �56�� factors
into the full propagator Eq. �53� and transforming back to
original variables, �i=1

n−1qi
2=�i=1

n qi
2−qn

2=�a=1
n ya

2

− �1 /n���a=1
n ya�2, we obtain the result

���ya�;L� = ��
a=1

n

�0�ya;L���ih��b
yb/�n;L�

�0��b
yb/�n;L�

. �57�

Choosing the appropriate boundary conditions ya=y, a
=1, . . . ,n, we obtain the replica partition function Eqs. �19�
and �21� identical to the previous result Eq. �44�, Zr�s ;��
=Z�s ;��, 0�s�
2.

The result for the �replica� partition function has been
derived for positive integer n. Since Z�s ;�� depends on n
only via the parameter s, the expression �44� can be analyti-
cally continued to the complex half plane restricted by the
condition Re�s��
2.

For the free boundary condition, we obtain the replica
partition function via integration of Eq. �57� over all end
points �ya�, cf. Eq. �26�; the integration is conveniently done
in the variables qa and we make use of the normalization Eq.
�29� to obtain the result identical to Eq. �48�, Zr�s�
=1 /�cos �s, 0�s�
2 /4. Furthermore, the analytic continu-
ation to real negative values of the parameter n provides the
expression

Z�s� =
1

�cosh �s
�s � 0� , �58�

alternatively, this result is obtained via the solution of the
Schrödinger equation Eq. �55� for negative n involving a
summation over the discrete spectrum of the parabolic
potential, see Appendix A.

C. Distribution function: Fixed boundary condition

We now turn to the calculation of the free-energy distri-
bution function PL,y�F� from the partition function Zn�L ,y�.
Following the procedure described in Sec. II, specifically
Eqs. �14� and �15�, the Laplace transform and its inverse
assume the form

Z�s;�� = �
−�

+�

dfp��f�exp�− sf� , �59�

p��f� =
1

2
i
�

−i�

+i�

dsZ�s;��exp�sf� , �60�

where

f�F,L� =
F

Ff�L�
, Ff�L� =

u

c
L2 = Uc� L

Lc
�2

, �61�
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��y,L� =
c2

2u

y2

L3 �62�

are the rescaled free energy of the system and the rescaled
displacement parameter; the original free-energy distribution
function PL,y�F� then derives from the rescaled expression
p��f� through the relation

PL,y�F� =
1

Ff�L�
p��y,L��f�F,L�� . �63�

Note, that the parameter � drops out in the combination
Uc /Lc

2, as has to be the case for the random-force model
where the disorder is characterized by only one parameter, its
strength u. Or in other words, using the results below for a
random-force �rather then a random potential� problem, these
are valid for all length scales. For the relaxational free-
energy distribution function of the system with fixed bound-
ary condition, we obtain the expression

p��f� =
1

2
i
�

−i�

+i�

ds� �s

sin �s
�1/2

� exp�− �
s�s

tan �s
+ fs� ,

�64�

which simplifies drastically for the special case of fixed
boundary conditions with ��0�=��L�=0,

p0�f� =
1

2
i
�

−i�

+i�

ds� �s

sin�s
�1/2

exp�fs� . �65�

The above result already expresses an important property of
the distribution function p0�f�: for f �0 the expression under
the integral is analytic and quickly goes to zero at s→−�,
hence the contour of integration in the complex plane can be
safely shifted to −�. This implies that the function p0�f�
must be equal to zero for f �0 and the relaxational free
energy of the directed polymer with zero boundary condi-
tions is bounded from above, F�0. This constraint then is
easily understood, as the presence of a random force can
only reduce the relaxational free energy of the directed
polymer.

The evaluation of the inverse Laplace transform Eq. �64�
is discussed in Appendix B and provides the free-energy dis-
tribution function p��f� as illustrated in Fig. 2 �note that all
temperature dependence has vanished since we measure our
free energy with respect to the entropic contribution f0

fs

=F0
fs /Ff = �cT /uL2�ln�2
LT /c of the free string�. The vari-

ous asymptotic forms of the distribution function p��f� in the
limits f → �� and f →−0 are derived via a saddle-point
integration and read,

p��f → − �� � exp�− 
2f � , �66�

p��f → + �� � exp�−
4

27�2 �f�3� , �67�

p�=0�f → − 0� � exp�−
1

32f � . �68�

Note that the shape of the left tail is determined by the sin-
gularity of Z�s ;�� at s=
2, cf. Eq. �44�. The above results
agree with those obtained before in Ref. 19.

D. Distribution function: Free boundary conditions

The result �48� provides us with all the moments of the
relaxational free-energy distribution function, of which the
first one, the average free energy, is given by

	F
 = − Uc�L/Lc�2��sZ�s��s=0 = −
Uc

4
� L

Lc
�2

. �69�

In order to obtain the full distribution function, we perform
the inverse Laplace transform �PL�F�= p�f =F /Ff�L�� /Ff�L��

p�f� =
1

2
i
�

−i�

+i�

ds
1

�cos�s
exp�fs� . �70�

Given the scaling form in f =F /Ff�L�, the result is valid at all
scales. Again, for f �0 the integrand is analytic and rapidly
approaches zero as s→−� and hence the function p�f� must
vanish identically for f �0. The functional form for f �0 is
found as before, see Appendix B. The relaxational free-
energy distribution function P�f� assumes a universal form
with no parameters; it vanishes identically for f �0 and its
overall form is shown in Fig. 3.

Note that the free energy of the “trivial” configuration
��x��0 is equal to zero and any deviation due to the action
of the random force can only reduce the energy, providing a
simple explanation for the cutoff at positive energies. The
asymptotic behavior in the limits f →−� and f →−0 can be
easily estimated by a saddle-point calculation,

p�f → − �� � exp�−

2

4
f � , �71�

p�f → − 0� � exp�−
1

32f � . �72�

12

6

f 0.2−0.5 0

ε = 0

0.01

0.005

0.001

pε

FIG. 2. Relaxational free-energy distribution function p��f� for
the randomly forced directed polymer for several values of the di-
mensionless displacement parameter �= �y /��2�Lc /L�3 /2: �
=0,0.001,0.005,0.01.
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E. Shifted random-force model

In order to find the distribution function for the total free
energy �rather than its relaxational part�, we have to account
for the random shift V0�x�, cf. Eq. �9�. Here, we concentrate
on the situation with free boundary conditions. The multipli-
cation of Eq. �48� with the Gaussian exp��2n2U0L /2�
=exp�s2�Lc /L�3 /2� and subsequent Laplace transform of

Zr�s� =
1

�cos�s
e�s2/2��Lc

3/L3� �73�

generates the �rescaled� free-energy distribution function
pt�f� shown in Fig. 4.

The �total� free-energy distribution function Pt derives
from a convolution of the distribution function P f�F� of the
relaxational free energy, cf. Eq. �70� and Fig. 3, and the
factor PV originating from the random shift V0�x�,

Pt�F� = �
−�

�

dF�P f�F��PV�F − F�� . �74�

The contribution PV from the random shift assumes the
simple Gaussian form

PV�F� =
1

�2
FV�L�
exp�− �F/FV�L��2/2� �75�

with the scaling parameter

FV�L� = Uc
�L/Lc. �76�

For L�Lc, the result coincides with that for the relaxational
energy, cf. Eq. �70� and Fig. 3, and scales as F /Ff�L�. In the
limit of short lengths L�Lc, where the model can be used as
an approximation of the random-potential problem, the dis-
tribution function is dominated by the Gaussian due to the
random shift V0�x�. More specifically, we find the width of
the distribution’s body through the calculation of the second
cumulant: expanding Zr�s� for small values of s and using
Eq. �16�, we obtain

Zr�s� � 1 +
s

4
+

s2

2
� 7

48
+ �Lc

L
�3� , �77�

	F
 = −
Uc

4
� L

Lc
�2

, �78�

F2 − F̄2 = Uc
2 L

Lc
�1 +

1

12
� L

Lc
�3� . �79�

The leading term �Uc /Lc
2=u /c in first moment Eq. �78� de-

rives from the random-force part of the disorder. This is dif-
ferent from the second cumulant in Eq. �79�, where the first
term �Uc

2 /Lc=U0 derives from the random shift V0�x� and
dominates over the contribution from the random force �sec-
ond term ��u /c�2� at short lengths L�Lc, hence the width of
Pt is given by FV �see below for a discussion of the correc-
tions ��L /Lc�3�.

Besides the first two moments/cumulants, we can easily
determine the scaling of higher moments. Starting from the
convolution Eq. �74�, we note the different scaling of the
arguments in the two distribution functions, �F /L2 for the
relaxational part P f and �F /�L for the random shift part
PV�F�. Hence, for small distances L, the function P f�F��
peaks narrowly near zero, while PV�F−F�� retains a broader
shape; expanding PV�F−F�� around F and integrating over
F�, we obtain the following expansion for the total distribu-
tion function,

Pt�F� � PV�F� − PV��F�F̄f +
1

2
PV��F�F2f + ¯ , �80�

where PV��F� is the derivative of PV with respect to the
argument F and �¯ � f denotes averaging over the random-

force part P f. Using the scaling F̄f �uL2 and F2f �u2L4 for
the moments of the relaxational free energy, we can calculate
the dependence of the moments Fk on the length L. Thereby,
we exploit the fact that the leading term PV�F� in the expan-
sion �80� is symmetric in F, cf. Eq. �75�, and hence deter-
mines the even moments, while the next term is antisymmet-
ric and generates the odd moments; finally, the third term
provides the corrections to the even moments. The combina-
tion of the scaling of PV�F� �deriving from the random shift
V0�x�� and of the first two moments Ff and F2f �deriving

5

1

0−1 0.2f

p

FIG. 3. Relaxational free-energy distribution function p�f� of
the randomly forced directed polymer with free boundary
conditions.

2
4

5

1

0 1 2−2 −1 f

t

c

8

c

1.25L = L
3.3L = L c

L / L

p

FIG. 4. Free-energy distribution function pt�f� of the randomly
forced directed polymer with free boundary conditions including
the random shift V0�x�. For L�Lc, the relaxational part of the free
energy dominates the distribution; in the regime L�Lc, where the
shifted random-force model provides an approximation to the ran-
dom polymer problem, the free-energy distribution function is
dominated by the Gaussian part originating from the shift V0�x�.
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from the random force f�x�� then generates the following
nontrivial scaling of the moments with different powers in L
for the even and odd moments,

F2k � Lk + O�Lk+3� , �81�

F2k+1 � Lk+2, �82�

where O�Lk+3� denotes a correction term �Lk+3. In particular,

F̄�uL2, F2�U0L+O�u2L4�, F3�uU0L3, F4�U0
2L2

+O�u2U0L5�, F5�uU0
2L4.

Finally, we can estimate the tails of Pt from the convolu-
tion Eq. �74� using the asymptotic behavior of P f and PV and
find a left tail Pt�F�−Ftail��exp�F /Ff� and a Gaussian tail
on the right, Pt�F�Ftail��exp�−�F /FV�2 /2�, where Ftail
=FV�1+ �Lc /L�3/2�. On short scales L�Lc, we have Ftail
�FV�Lc /L�3/2�FV and the random-force behavior appears
only quite beyond the body.

F. Joint distribution function

We add a note on the joint free-energy distribution func-

tion PL,y�F̄ ,F��, where F̄= �F++F−� /2 and F�= �F+−F−� /2
denote the mean-free energy and the free-energy difference
for two polymer trajectories starting at the origin �=0 at x
=0 and ending in the symmetric points �= �y at x=L, F�

�F�L , �y ;V�. Opposite to the �-correlated potential, cf.
Ref. 17, the present case of the random-force model is less
revealing and we keep the discussion short.

Starting with the original �random� Hamiltonian
H���x� ;V� with the random-force potential Eq. �7�, we ac-
count for the boundary condition ��L�=y through the shift
��x�→ �y /L�x+��x� �the T=0 solution for the string ending
in ��L�=y derives from the solution ending in ��L�=0 by
adding the shift �y /L�x� and obtain the Hamiltonian de-
scribed by Eqs. �33� and �37�. The relaxational free energy of
the system with the boundary condition ��L�=y separates
into the terms

F�L,y ; f� =
cy2

2L
+

y

L
�

0

L

dxxf�x� + F�L,0; f� . �83�

The first term is the trivial part of the elastic energy, the
second is a random constant, and finally, the third is the
�random� relaxational free energy of the polymer with zero
boundary conditions; its randomness is correlated with the

randomness in the second term. Then, for the free energies F̄
and F� introduced above, we find that

F��L,y ; f� =
y

L
�

0

L

dxxf�x� , �84�

F̄�L,y ; f� =
cy2

2L
+ F�L,0; f� , �85�

and hence F� and F̄ carry the information on the second and
third terms in Eq. �83�, respectively. Although the joint dis-

tribution function for the random and correlated quantities F̄
and F� must be nontrivial, we can conclude that the separate

statistics of F̄ and F� must be simple: according to Eq. �84�,
the distribution for F� is Gaussian with zero mean and width

�F��2=y2uL /3 while the distribution for F̄ must coincide
with that for the free energy with zero boundary conditions
PL,y=0�F�, cf. Eq. �65�, shifted by the trivial elastic term
cy2 /2L. Also note, that a change in the final coordinate y
modifies the polymer’s trajectory over the entire length L and
hence the joint distribution function is not expected to fac-
torize, in contrast to the results found for the short-range
correlated random polymer problem.17 The detailed replica
calculation, which represents a straightforward extension of
the above analysis, produces results in full agreement with
these simple arguments.

IV. HARMONIC-CORRELATOR APPROXIMATION

We consider the random directed polymer described by
the Hamiltonian Eq. �1� and approximate the interaction
−�2U in the replica Hamiltonian Eq. �20� by the harmonic
expression �6� to arrive at,

Hn���a�� = �
0

L

dx� c

2�
a=1

n

��x�a�x��2 +
�u

4 �
a,b=1

n

��a�x�

− �b�x��2� −
n2

2
�U0L

= −
1

2
�

0

L

dx �
a,b=1

n

�a�x�Ũab�b�x� −
n2

2
�U0L

�86�

with the matrix Ũab= �c�x
2−�nu��ab+�u �note that the para-

bolic approximation of the correlator should be implemented
after the integration over the disorder potential�. Diagonal-
ization produces the �n−1�-fold degenerate eigenvalue �1
=c�x

2−�nu of the harmonic oscillator problem with the �n
−1� orthonormal eigenvectors �i

a constrained by the condi-
tion �a=1

n �i
a=0, i=1, . . . ,n−1, and one nondegenerate eigen-

value �2=c�x
2 of the free problem with the eigenvector �n

a

=1 /�n, a=1, . . . ,n. The propagator for the harmonic-
correlator approximation then assumes the form �cf. Eq.
�57��

���ya�;L� = ��
a=1

n

�h�ya;L���0��b
yb/�n;L�

�h��b
yb/�n;L�

, �87�

where �h derives from �ih by the substitution �→ i�. For
simplicity, we only consider the model with free boundary
conditions and find the shifted random-force result Eq. �73�
replaced by the expression �s=L2 /�2=n�Uc /T�2�L /Lc�2; see
also Appendix A�

Z̃r�s� = � 1

�cosh �s
��n−1�

exp�s2�Lc/L�3/2�

= �cosh �s�1/2�cosh �s�−�s/2��T/Uc��Lc
2/L2�e−�s2/2��Lc

3/L3�.

�88�

Although the inverse Laplace transform can be performed,
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the resulting �total� free-energy probability distribution p̃�f�
develops a negative right tail at zero and low temperatures,
see Fig. 5; at large temperatures T�Uc the right tail exhibits
pronounced oscillations. These unphysical results are due to
the departure of the approximate harmonic interaction Up���
from the true interaction U���, becoming relevant at large
scales L�Lc, ���, F�Uc, and the large fluctuations of the
string at high temperatures T�Uc. Note that the inverse
Laplace transform cannot be performed at all in case the
random shift V0�x� is ignored.

The breakdown of the harmonic-correlator approximation
is conveniently observed in the second moment: expanding

Z̃r�s� for small values of s we find to second order

Z̃r�s� � 1 +
s

4
+

s2

2
��Lc

L
�3�1 −

T

2Uc

L

Lc
� −

1

48
� �89�

and using Eq. �16�, we find the average free energy

F̄=−Uc�L /Lc�2 /4 �cf. Eq. �78�� and the second cumulant
reads

F2 − F̄2 = Uc
2 L

Lc
�1 −

T

2Uc

L

Lc
−

1

12
� L

Lc
�3� . �90�

Comparing with the result Eq. �79� for the shifted random
force, we note the additional dependence on temperature and
the sign change in the correction term ��L /Lc�3. This de-
crease in width is in accord with the behavior of the free-
energy fluctuations in the random directed polymer problem
�2�, which scales as �F�L2�−1 at large distances; with a wan-
dering exponent6 �=2 /3, we have �F�L1/3. The negative
correction ��L /Lc�3 to the linear growth in �F2 observed in
Eq. �90� then is consistent with the sublinear growth �F2

�L2/3 of the exact solution.
As before, we can analyze the higher moments of the

distribution function and compare the results for the
harmonic-correlator approximation at T=0 with those ob-
tained for the shifted random-force model. Making use of the

product form of Z̃r and expanding each factor in s, we find
identical leading terms for all even and odd moments �corre-

sponding to equal expressions for the first two terms in Eq.
�80��, while the corrections to the even moments �described
by the third term in Eq. �80�� are different. Furthermore, we
note that the even moments F2k�Uc

2k�L /Lc�k�1−O�L3 /Lc
3��

�U0
kLk are large with a small negative correction, while the

odd moments F2k+1�−Uc
2k+1�L /Lc�k+2�1+O�L3 /Lc

3��
�uU0

kLk+2 are small, their ratios being

�F2k+1�2/F2�2k+1� � �L/Lc�3.

To leading order, the free-energy distribution function for the
random-potential model at small scales then is a trivial
Gaussian generated by V0�x�, with a small negative shift and
a small reduction in width due to the random-force term in
the potential.

At T=0, the second cumulant turns negative for L
�2�3 /2Lc and the result in Eq. �90� makes no longer any
sense, hence the harmonic approximation to a random-
potential problem cannot be used on scales larger then �
�along the transverse direction� or Lc �along the longitudinal
direction�; at finite temperatures the regime of validity is
further reduced.

Although the results for the shifted random force remain
valid at any length L, we emphasize that the harmonic cor-
relator provides a better approximation for the behavior of
the short-range correlated random polymer: Both results

agree in lowest order, providing the same first moment F̄ due
to the random force f�x� and the same leading term in the

second cumulant F2− F̄2 generated by the random shift
V0�x�. The correction ��L /Lc�3 in the second cumulant is due
to the random force f�x� and contributes with the opposite
sign in the shifted random-force model as compared to the
harmonic-correlator approximation. While the shifted
random-force result in Eq. �79� is correct �at all scales� when
dealing with a true random-force model, the correction
��L /Lc�3 carries the wrong sign when used as an approxima-
tion to the random-potential model and it is the result of the
harmonic-correlator approximation Eq. �90� which should be
trusted. Indeed, the harmonic correlator preserves the trans-
lation invariance of the problem whereas some quadratic
terms are dropped from the shifted random-force model. Ex-
panding the potential to second order,

V��,x� = V0�x� + f�x���x� −
1

2
g�x��2�x� , �91�

we identify the terms in V�� ,x�V��� ,x�� with the harmonic
expansion, Eq. �6�, to obtain the correlators Eqs. �8� and �9�,
V0�x�g�x��=u��x−x��, and vanishing mixed terms
V0�x�f�x��= f�x�g�x��=0. A scaling estimate of the second
moment F2 using Eq. �91� then provides a leading term �L
from V0 and subleading terms �L4 from f and from g. The
contribution from the random force provides the positive
contribution Uc�L /Lc�4 /12 in the cumulant Eq. �79� while
the mixed terms V0�x�g�x�� contribute with a negative
weight, generating the negative correction �L4 in Eq. �90�.
Note that higher order terms do not change this result but
contribute to the next order term �L7.

Given that the harmonic correlator provides the better ap-
proximation to the random polymer problem at short scales,

f−1−5 50

1

L = L

0.6L = L

2L = L

c

2T = Uc

c

c

1

p~

FIG. 5. Free-energy distribution function p̃�f� for the directed
polymer with free boundary conditions using the harmonic-
correlator approximation. Solid curves refer to T=0 while the
dashed curve attains to T=2Uc.
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one may wonder why we end up with unphysical results
�negative distribution function, negative second moment� at
larger scales. Also, different types of correlators, e.g., power-
law type, have been studied in the past, cf. Refs. 1 and 20,
and one would like to know, what properties of a disorder
correlator guarantee consistent results; this question is ad-
dressed in the following section.

A. Correlators with nonpositive spectrum

It is important to identify problematic correlators right
from the beginning; indeed, the proper definition of the dis-
order potential is subject to important constraints24 regarding
its shape U��� and failure to respect these constraints may
lead to unphysical results. Consider a random potential V���
and its Fourier representation V�q�=�d�V���exp�−iq��;
then the Gaussian distribution function of the random func-
tion V�q� has the form

P�V�q�� = P0 exp�−� dq

2


V�q�2

2G�q�
� . �92�

The width G�q� has to be positive and relates to the correla-
tion function U��� via

U��� =� dq

2

G�q�exp�iq�� . �93�

Expanding both sides in powers of �,

U�0� + �
k=1

�
U�2k��0�

�2k�!
�2k

=� dq

2

G�q� + �

k=1

�
�− 1�k

�2k�! �� dq

2

G�q�q2k��2k, �94�

and comparing coefficients, we find that the 2kth derivative
of U��� in the origin relates to the integral �dqG�q�q2k,
which is a positive quantity. Hence, we have to be careful in
our choice of the correlator U���. For example, truncating
the expansion of U��� beyond some k�, such that U�2k��0�
=0 for k�k�, we impose the condition

� dqG�q�q2k = 0 for k � k�, �95�

which cannot be satisfied for a positively defined G�q�.
Obviously then, choosing a parabolic correlator Up��� as

in Eq. �6� is in severe conflict with the constraint Eq. �95�.
The averaging over the disorder potential V�� ,x� is unde-
fined for those modes �in Fourier space� where G�q� is nega-
tive. Hence, going over from the disordered directed polymer
�a statistical mechanics problem� to the quantum boson prob-
lem is an ill-defined step and the results cannot be trusted
any longer. On the other hand, performing the integration
over the random potential V�� ,x� with a well defined, i.e.,
spectral, correlator U��� and expanding the resulting inter-
action −�2U��� between bosons is perfectly admissible and
leads to an identical result; in this case, however, we know
that the quantum boson problem does not describe the ran-
dom polymer problem on scales where the approximate qua-

dratic correlator deviates strongly from the original cor-
relator. Nevertheless, in the end we have to appreciate, that
the harmonic-correlator approximation �6�, although break-
ing down at lengths beyond Lc, does produce more accurate
approximate results for the short-range correlated random-
potential problem �2� than the shifted random-force model
�5�, although the latter remains formally valid at all length
scales L. The �shifted� random-force model then should be
used whenever the disorder landscape is given by a force
field as defined by Eqs. �5�, �8�, and �9� but not as an ap-
proximation to a random-potential problem.

B. Displacement correlator

Another quantity of interest in the random polymer prob-
lem is the displacement correlator 	�2
�L�
�	���L�−��0��2
, with 	¯ 
 and �¯ � denoting thermal and
disorder averages, respectively. Choosing free boundary con-
ditions with ��0�=0 and an arbitrary position ��L�=y for
the end point, the averages 	y2
 and 	y
2 are easily calculated
within replica theory.20 Defining

	yayb
 = ��
c=1

n � dyc�yayb���yc�;L� , �96�

we obtain the two types of averages

	y2
 = lim
n→0

	yayb
a=b,

	y
2 = lim
n→0

	yayb
a�b. �97�

The Hamiltonians for the shifted random-force model and
the harmonic-correlator approximation differ only by the
term ��un /2��a=1

n �a
2, which vanishes in the limit n→0,

hence both schemes produce identical results for the dis-
placement correlators in Eq. �97�. We then concentrate on the
random-force case and calculate the expression

	yayb
 = C��
c=1

n � dyc�yayb exp�−
1

2�
c,d

Kcdycyd� �98�

with Kcd=A�cd+B and

A =
�c

L
, B =

�c

nL
� �s

tan�s
− 1� ,

C = � �c

2
L
�n/2� �s

sin�s
�1/2

.

In the calculation of 	yayb
 a�b, we combine all diagonal
terms into a sum �D /2��cyc

2 with D=A+B, leaving the non-
diagonal in the form �B /2��c�dycyd; the nondiagonal aver-
age then follows from the derivative

	yayb
a�b = −
2

n�n − 1�
�

�B��
c=1

n � dyc����yc�;L�D

while the diagonal average is given by the derivative
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	ya
2
 =

2

n

�

�A��
c=1

n � dyc����yc�;L�B. �99�

The final results assume the form

	y2
 = lim
n→0

� 1

A
−

B

A2� = �2 T

Uc

L

Lc
+

�2

3
� L

Lc
�3

,

	y
2 = − lim
n→0

B

�D − B�2 = − lim
n→0

B

A2 =
�2

3
� L

Lc
�3

. �100�

The relation 	y2
− 	y
2= 	y2
 V=0=TL /c �here, 	y2
 V=0 de-
notes the thermal average in the absence of any disorder, V
=0�, is a constraint holding true for any disorder potential
uncorrelated in x, cf. Refs. 25 and 26.

V. SUMMARY AND CONCLUSIONS

The �shifted� randomly forced polymer model and the
random disordered polymer described through a harmonic-
correlator approximation define quadratic problems and
hence admit exact solutions. For the random-force models,
different approaches can be taken, either a direct integration
of the path integrals within a Fourier representation or using
the �real-space� replica technique; in retrospect, the preferred
method is a matter of taste. We have determined the free-
energy distribution functions PL,y�F� and PL�F� for fixed and
free boundary conditions. This calculation necessitates the
determination of all powers Zr�n ;L ,y�=Zn�L ,y ;V� �rather
than the usual n→0 limit� and subsequent inverse Laplace
transformation of the analytically continued replica partition
function Zr�n�C ;L ,y�. The displacement correlators 	y2

and 	y
2 have been found as well. The simplicity of the qua-
dratic models allows to carry through the entire program and
thus serves to study not only the physical properties of the
problem but its methodological aspects as well.

Regarding the shape of the distribution functions for the
random-force model, a number of interesting features has
been obtained: for the free boundary, the probability to find a
positive free energy F vanishes exactly, with an essential
singularity appearing in PL�F��exp�−uL2 /32cF� as F ap-
proaches zero from the left, cf. Eq. �72�. For fixed boundary
conditions, a similar result has been found for PL,y=0�F�, see
also Ref. 19. Furthermore, the left and right tails provide a
consistent scaling F�L2 and y�L3/2, PL,y�F→−���exp
�−
2cF /uL2� and PL,y�F→���exp�−�16 /27�F3 /ucy4�,
cf. Eqs. �66� and �67�.

When interested in the short-distance behavior of the ran-
dom directed polymer Eq. �2�, two types of approximations
offer a drastic simplification of the problem: these are the
expansion of the random potential V�� ,x� according to Eq.
�5� �generating the shifted random-force problem� or the ex-
pansion of the correlator Eq. �6� �leading to the harmonic-
correlator approximation�. While both approximations gener-
ate the same results for the even and odd moments to leading
order, the next to leading-order terms turn out different. In
this situation, the results of the harmonic-correlator approxi-
mation have to be trusted, as it consistently accounts for the
relevant terms preserving the translation invariance of the

problem. Collecting all results, we find that the free-energy
distribution function for the random-potential model at �T
=0 and� small scales is a trivial Gaussian of width Uc

�L /Lc
generated by V0�x�, with a small negative shift −Uc�L /2Lc�2

and a small reduction −�Uc /24��L /Lc�7/2 in width due to the
random-force term in the potential.

Finally, we mention a few useful insights regarding the
replica technique which derive from our analysis above. The
replica technique provides a link between two seemingly un-
related problems, the classical statistical theory of disordered
polymers and the quantum many-body theory of attractive
bosons. Several stumbling blocks can be eliminated by prop-
erly appreciating the subtleties in this mapping. As is well
known, after the mapping from polymers to bosons the dis-
order correlator assumes the role of the interaction potential.
While many shapes for the interaction potential may produce
meaningful results for the quantum boson problem, only a
restricted set of them �those describing a correlator with
positive spectrum� relate to a meaningful random polymer
problem. Hence, the original choice of physical correlators
and any modification thereof during the calculation should
be done with great care; in particular, a simple power-law
form1 might not work. For example, there is nothing wrong
in studying quantum bosons with a simple harmonic interac-
tion U���=−U0+u�2 /2 and the results obtained for the
quantum propagator are perfectly acceptable for any constant
shift U0. However, interpreting the result for the propagator
in terms of a replica partition function and transforming back
�via the inverse Laplace transformation� to random poly-
mers, the resulting distribution function becomes unphysical
when setting U0=0; dropping a shift U0 in the potential for
the bosons is a trivial shift in energy while ignoring the same
shift in the correlator produces unphysical results for the
polymer problem after Laplace transformation.
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APPENDIX A: NEGATIVE REPLICA NUMBER

We determine the replica partition function Zr�s�, Eq.
�58�, for the polymer with free boundary conditions via di-
rect solution of the Schrödinger equation, Eq. �55�, for nega-
tive n. We confirm, that the result analytically continued
from positive n agrees with the one obtained for negative n.
The wave function ��q ,x� satisfies the Schrödinger equation
�cf. Eq. �55��

�x��q;x� =
1

2
� 1

�c
�q

2 −
�c

�2 q2���q;x� �A1�

with �2=c /�nu. We are seeking the solution
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��q;x� = �
k=0

�

Ak exp�− Ekx��k�q� , �A2�

satisfying the initial condition ��q ;x=0�=��q�; the energies
and corresponding orthonormal eigenfunctions Ek and �k�q�
satisfy the stationary equation,

Ek�k�q� = −
1

2
� 1

�c
�q

2 +
�c

�2 q2��k�q� . �A3�

The coefficients Ak in Eq. �A2� derive from the initial con-
dition

Ak = �
−�

+�

dq�k
��q���q;x = 0� = �k

��0� .

The spectrum of the harmonic problem is given by Ek
= �k+1 /2� /� and the corresponding eigenfunctions are �see,
e.g., Ref. 27�

�k�q� = � �c/�
�
2kk!

�1/2

exp�− ��c/2��q2�Hk���c/�q� ,

where Hk�x� are the Hermite polynomials Hk�x�
= �−1�kexp�x2��x

k�exp�−x2��. Substituting Ak and �k into Eq.
�A2� and taking into account that H2l+1�0�=0, we obtain the
wave function

��q;x� =��c


�
�
l=0

�
1

22l�2l�!
exp�− E2lx�

� exp�− ��c/��q2�H2l���c/�q�H2l�0� . �A4�

With the spectrum Ek��� and the normalization H2l�0�
= �−1�l�2l� ! /2ll!, we obtain the replica partition function for
free boundary conditions �cf. Eq. �48��

Zr�n;L� � Z�s�

= �
−�

+�

dq��q;x = L�

=
exp�− �s/2�

�

�
l=0

�
�− 1�l

22ll!
exp�− 2�sl�C2l, �A5�

where s=L2 /�2 and

Ck = �
−�

+�

dx exp�− x2/2�Hk�x� . �A6�

Using the recurrence relation Hk+1�x�=2xHk�x�−2kHk−1�x�,
we find that Ck+2=2�k+1�Ck and with C0=�2
, we obtain
the coefficients Ck=�2
�2l� ! / l!. Substitution into Eq. �A5�
provides the replica partition function in the form

Z�s� = �2 exp�− �s/2�R�	�s�� �A7�

with the function R�	� defined by the series

R�	� = �
l=0

�
�2l�!
�l!�2 	l �A8�

and we have introduced the shorthand 	�s�=−exp�−2�s� /4.

In order to find the explicit form of the function R�	�, we
implement the shift l→ l+1 in the sum �A8� and obtain,

R�	� = 1 + �
l=1

�
�2l�!
�l!�2 	l

= 1 + �
l=0

�
�2l + 2�!

�l!�2 	l+1

= 1 + 4	�
l=0

�
�2l�!
�l!�2 	l − 2�

l=0

�
�2l�!

�l + 1��l!�2	l+1

= 1 + 4	R�	� − 2S�	� , �A9�

S�	� = �
l=0

�
�2l�!

�l + 1��l!�2	l+1. �A10�

With R the derivative of S, R�	�=�	S�	�, we obtain the dif-
ferential equation �	S�	�=1+4	�	S�	�−2S�	� and the ini-
tial condition S�0�=0 determines the solution S�	�
= �1−�1–4	� /2, from which R�	�=1 /�1–4	 follows via
integration. Substitution into Eq. �A7� produces the final re-
sult Z�s�=1 /�cosh �s, in agreement with Eq. �58�.

APPENDIX B: INVERSE LAPLACE TRANSFORMATIONS

The inverse Laplace transforms Eqs. �64� and �70� are
reduced to the following expressions: Using the transforma-
tion s=� exp��i
 /2� in Eq. �64�, we analytically continue
the expression for the distribution function p��f� to the
imaginary axis,

p��f� =
1



Re�

0

�

d�� �� exp�i
/4�
sin��1 + i���/2�

�1/2

� exp��
�1 − i����/2

tan��1 + i���/2�
+ if�� . �B1�

A change in the integration variable �=2t2 provides, after
some algebra, the final expression

p��f� =
25/2



�

0

�

dtt3/2 exp�− ��−�t��

�
cos���t�/2 + 2t2f + 
/8 − ��+�t��

���t�
. �B2�

The functions ��t�, ���t�, and ��t� are defined as,

��t� = ��sin�t�cosh�t��2 + �cos�t�sinh�t��2,

���t� = t3�sinh�2t� � sin�2t��/�2�t� ,

sin���t�� = − cos�t�sinh�t�/��t� ,

cos���t�� = sin�t�cosh�t�/��t� .

Similarly, substituting s=2t2 exp��i
 /2� in Eq. �70�, one
obtains
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p�f� =
4



�

0

�

dtt
cos���t�/2 + 2ft2�

���t�
�B3�

with the functions ��t� and ��t� defined by

��t� = ��cos�t�cosh�t��2 + �sin�t�sinh�t��2,

sin���t�� = sin�t�sinh�t�/��t� ,

cos���t�� = cos�t�cosh�t�/��t� .

The remaining integrals in Eqs. �B2� and �B3� have to be
done numerically.
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