
Theory and molecular dynamics modeling of spall fracture in liquids

A. Yu. Kuksin, G. E. Norman, V. V. Pisarev,* V. V. Stegailov, and A. V. Yanilkin
Joint Institute for High Temperatures of RAS, 13 bldg. 2. Izhorskaya str., 125412 Moscow, Russia

Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudnyy, 141700 Moscow region, Russia
�Received 11 May 2010; published 1 November 2010�

The model of fracture of liquid under tension is developed. It is based on the “nucleation-and-growth”
approach introduced initially by D. R. Curran et al. �Phys. Rep. 147, 253 �1987��. The model derives the
kinetics of fracture at mesoscale from the kinetics of elementary processes of void nucleation and growth in
metastable liquid. The kinetics of nucleation and growth of voids in highly metastable liquid is studied in
molecular dynamics �MD� simulations with the Lennard-Jones interatomic potential. The fracture under dy-
namic loading is considered, when the homogeneous void nucleation is relevant. The model is applied to the
estimation of the spall strength of liquid. The growth of nanometer-size voids is shown to be well described by
the Rayleigh-Plesset equation. The calculations of the void size distribution by the proposed kinetic model are
in agreement with the distributions obtained in the direct large-scale MD simulations. The spall strength
evaluated by the model is in a good agreement with the experimental data �the shock wave tests on hexane� and
the direct MD simulations. The correspondence between our results on nucleation rate and the predictions of
the classical nucleation theory is discussed.
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I. INTRODUCTION

Metastable �stretched� liquids often appear during the op-
eration of technical equipment.1,2 Examples include hydrau-
lic machines, water turbines, propellers, impulse heating of
liquids by high-energy laser pulses,3,4 or particle beams.
Metastable liquid may appear in solids after an intense en-
ergy input. Examples include laser ablation5,6 and shock-
wave loading of solids.7,8 The characteristic lifetimes of
metastable liquids in different processes span from several
picoseconds to several seconds. Complex description of such
processes should include the models of metastable liquid be-
havior and decay. In the case of relatively slow processes
�loading time ��10−3 s�, static strength criterion �cavitation
threshold� is usually used.9,10 At such time scales, fracture is
usually initiated heterogeneously on the bubbles of gases and
impurities in the liquid. In the case of very fast processes
���10−6 s�, static strength criteria are inapplicable. Such
fast tension accompanies, e.g., shock-wave loading of liq-
uids. Another example is melting of solids in the intense
shockwaves. The melt is then exposed to the tension in the
rarefaction wave. The strain rates in shockwave experiments
reach 104–106 s−1.11–13 The strength of liquid depends on
heterogeneous processes and on homogeneous void nucle-
ation and growth as well. The fracture rate is determined by
the initial concentration of impurities due to heterogeneous
processes. At high strain rates, the liquid reaches high degree
of metastability in a short time. That leads to the domination
of homogeneous processes in fracture initialization as the
homogeneous nucleation occur throughout the whole volume
of liquid.

At present, two approaches are mainly used for describing
and numerical modeling of fracture of liquids subjected to
dynamic loading. In the first approach, fracture due to spon-
taneous void nucleation in liquid under negative pressure is
considered. Fracture is supposed to occur when the nucle-
ation rate exceeds some threshold value.14 In the case of

dynamic stretching, the threshold value of nucleation rate
may depend on the strain rate.11–13 This approach can be
referred to as the nucleational approach. It is assumed that
strength of liquid is determined solely by void nucleation
kinetics. Usually the classic nucleation theory1,2 is used in
this approach to find the dependence of nucleation rate on
pressure and temperature.

In the second, energetic approach15 the energy change af-
ter formation of new surfaces in liquid during the dynamic
tension is considered. Energy balance between the energy
input during the deformation and energy consumption for the
surface formation gives the minimal time needed for frag-
mentation and thus the minimal spall strength. In this ap-
proach, only energy balance is considered whereas elemen-
tary processes of void nucleation, growth, and coalescence
are not considered explicitly. A similar approach is based on
the consideration of momentum balance.16 Due to the sim-
plicity of final expressions for the spall time and the spall
strength, this energetic spall criterion is often used for calcu-
lating the spall strength of liquid.17,18

Both approaches have certain drawbacks. As the nucle-
ational approach does not take into account void growth, its
usage for description of fracture in liquids with low viscosity
is questionable. The energetic spall criterion gives only the
minimal value of the spall strength assuming that there are
enough centers of void nucleation present initially in a
liquid.

Molecular dynamics �MD� method allows atomistic simu-
lation of physical system behavior. It gives a possibility to
perform a detailed study of fracture initiation during the dy-
namic loading.19–22 Unfortunately, the system size in MD is
now limited by 1 �m3 and the simulation time is limited by
several nanoseconds even for the high-end supercomputers.
At strain rates typical for experiments, the characteristic time
scales are microseconds and spatial scales are several cubic
micrometers. Moreover, it seems to be difficult to extend the
results of a single MD simulation to different loading condi-
tions. We find more promising to incorporate the results of

PHYSICAL REVIEW B 82, 174101 �2010�

1098-0121/2010/82�17�/174101�10� ©2010 The American Physical Society174101-1

http://dx.doi.org/10.1016/0370-1573(87)90049-4
http://dx.doi.org/10.1103/PhysRevB.82.174101


multiple MD simulations into a higher-level fracture model
in order to describe the macroscopic kinetics of fracture at
the strain rates achievable in practice. One way to construct a
multiscale fracture model is to take into account two pro-
cesses: void nucleation in a stretched matter and their conse-
quent growth. Such “nucleation-and-growth” �NAG�
approach23 is developed for modeling the fracture in solids.
At the initial stage of fracture, void concentration is small so
coalescence may not be taken into account.24 Though this
approach is more complicated than the two approaches
above, it gives more detailed information about fracture ki-
netics. Also NAG approach allows to find not only the spall
strength but also some other characteristics, for example, the
size distribution of voids and detailed fracture kinetics for
the arbitrary loading history.

The MD method allows us to study in detail the elemen-
tary processes of fracture: void nucleation and growth.24 Ki-
netic characteristics of those processes obtained from MD
simulations can then be incorporated into a fracture model.

The present work is devoted to the development of a
model of fracture of liquid on the base of MD simulations.
Preliminary results were published in Ref. 25. We consider
the dynamic loading of liquid, when only the homogeneous
processes are relevant to the fracture. Section II describes the
direct MD simulations of the fracture evolution. The limita-
tions of such an approach are discussed. Sections III and IV
are devoted to the MD study of elementary fracture pro-
cesses, void nucleation and void growth. In Sec. III, the tech-
nique of estimation of the nucleation rate from a series of
MD simulations is presented and the correspondence be-
tween the results and the classical nucleation theory is dis-
cussed. In Sec. IV, the study of void growth in the MD sys-
tem is presented. Section V is devoted to the development of
a multiscale fracture model. The model is applied to the es-
timation of the spall strength of liquid hexane at a constant
strain rate. The results of MD simulation and multiscale
modeling are compared with the experimental data.

II. DIRECT MD SIMULATION OF FRACTURE AT HIGH
STRAIN RATE

Direct MD simulations are performed to study and visu-
alize the process of the liquid fracture at high strain rates.
Liquid is represented by a Lennard-Jones �LJ� system with
the potential

U�r� = 4����/r�12 − ��/r�6�, r 	 rcut

with the cutoff radius rcut=4.0�. System with this potential
reproduces well the properties of many simple liquids. Fur-
ther, temperature, pressure, and other thermodynamic prop-
erties are given in reduced units: T�=kT /� , P�

= P�3 /� , 
�=
�3 /m , U�=U /�, where m is particle mass
and k the Boltzmann constant. Time is given in units �
= �m�2 /��1/2.

The initial configuration for the simulation corresponds to
the liquid phase at temperature T�=0.71. The Langevin ther-
mostat is used to maintain constant temperature during the
MD run. Periodic boundary conditions are used to avoid sur-
face effects. During the MD run the simulation box volume

is changing at a constant given rate �̇= V̇ /V0. Simulations are
performed for several strain rates.

According to Ref. 26, the size L of a molecular dynamics
system should be greater �or much greater� than the correla-
tion length. In the case of fracture of liquid under tension, the
apparent length scale is the average distance between voids.
Thus, the system size should be chosen such that fracture is
governed by the nucleation and growth of multiple voids. If
the system size is insufficient, two effects are expected: over-
estimation of the spall strength and vanishing of the depen-
dence of spall strength on strain rate.

The dependence of the sufficient system size on strain rate
is estimated using the fracture model �which will be de-
scribed further�. The estimates show that the average dis-
tance between voids is inversely proportional to the strain
rate. So, we should increase the size of MD system propor-
tionally. The sufficient number of particles in the simulation
is about 1 million for strain rates above 10−4�−1 and about 10
million for strain rates �1–2��10−5�−1. In our simulations,
the system contains 512 000 particles for simulations at
strain rates above 3�10−4�−1 and 64 000 000 particles for
the strain rates below 3�10−4�−1. Direct MD simulations for
the strain rate 5�10−6�−1 would require 1 billion particles in
the MD cell. Therefore, direct simulations for lower strain
rates cannot be performed because of too long simulation
times and too large system needed.

The degree of metastability increases with time under ten-
sion and voids appear in the cell �as the result of thermal
fluctuations�. If their size is larger than the critical size for
the reached pressure, they continue growing. Figure 1 shows
consequent snapshots of the simulation cell during the
stretching. At some moment the rate at which empty volume
increases due to void nucleation and growth becomes equal
to the strain rate. The stress at this moment reaches its maxi-
mal value. This moment is considered as the spall moment,
tsp, and the value of stress is considered as the spall strength.

The dependence of spall strength on strain rate we ob-
tained is shown in Fig. 2. To show the order of magnitude,
reduced pressure units are converted in real pressure units
using the Lennard-Jones potential parameters for liquid
hexane:27 � /kB=413 K, �=5.909 Å. For the comparison,
the spall strength of liquid hexane under shockwave
loading11 is shown. At the strain rates higher than 3
�108 s−1 the spall strength is nearly constant. Seemingly, at
high strain rates system reaches the kinetic stability limit.
The estimate of the thermodynamic stability limit of liquid
phase, spinodal, is also shown. The spinodal lines poses the
lower limit on the pressure at which thermodynamically and
mechanically stable liquid can exist. In our simulations, ki-
netic stability limit lies close to the thermodynamic spinodal.

Figure 1 shows that the total empty volume at the moment
when the stress reaches its maximal value is much less than
the cell volume so there is no coalescence of voids yet. Thus,
void nucleation in the volume and their growth can be con-
sidered as independent processes. This point is essential for
the NAG model.

The system size needed for simulation scales as �̇−3 and
the time of fracture progress scales as �̇−1. For that reason,
the lower limit of the strain rate at which direct simulations
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can be performed, is about 10−4�−1. In our simulations, we
used 64 million particles for strain rate 10−4�−1 and the simu-
lation time was about 100� or 105 steps. Thus, for direct
simulations at strain rate 10−6�−1 �close to ones attained in
shockwave experiments� about 10 trillion particles are
needed and the simulation time would be 104� or 107 steps.
To find the spall strength at low strain rates, we used a two-
level approach. The MD method was used to study void
nucleation in a range of pressures and to determine the nucle-
ation rate dependence on pressure and temperature. The
growth kinetics of single voids was also studied in the MD
simulations. The results were then incorporated into the ki-
netic fracture model, which was used to calculate the spall
strength.

III. HOMOGENEOUS NUCLEATION

A. Simulation technique

Nucleation is an initial stage of a first-order phase transi-
tion. Homogeneous nucleation implies appearance of new
phase nuclei in bulk volume of a single-phase system. The
rate of a spontaneous phase transition is characterized by the
nucleation rate, i.e., the average number of critical nuclei
formed in unit volume per unit time.1 It is calculated as J
=1 / ��t�V�, where �t� is the average lifetime of a homoge-
neous system and V the volume of the system. The technique
we used to calculate the average lifetime was proposed in
Refs. 28 and 29.

The initial states corresponding to the stretched liquid
were obtained as follows. Initially particles in the simulation
were arranged in the sites of simple cubic lattice and had
randomly assigned velocities. Simple cubic lattice is unstable
for the Lennard-Jones potential, so the system relaxes very
quickly to the liquid state.

Then the liquid is equilibrated at a given temperature. The
initial density of the liquid is chosen to give a negative pres-
sure in the system. The main MD run starts from this state
and a void nucleates at a random time during the run. The
lifetime of the metastable phase is determined in a single run
by the onset of the pressure increase which accompanies the
void nucleation and growth process. The average lifetime of
homogeneous phase is calculated by averaging lifetimes over
an ensemble of MD runs corresponding to one

macrostate.28,30 In our case, macrostate is specified by a
given temperature T� and the pressure P� in the system. As
the systems of equations of motion for many particles are
unstable, MD runs starting from a single initial state with
slightly different integration steps diverge exponentially in
time.31 So, to create an ensemble of independent MD trajec-
tories corresponding to one macrostate we carried out simu-
lations with different steps from a single initial
configuration.28 The integration steps varied from 1.7
�10−3� to 2.3�10−3�.

If nucleation occurs randomly in the system and the aver-
age lifetime of the homogeneous phase does not depend on
the moment we start the observation, then the lifetime distri-
bution of trajectories corresponds to the law of exponential
decay nremain�t�=n0 exp�−t / �t��.29,30,32 Figure 3 shows the
correspondence between the results of MD simulations and
the given stochastic model of nucleation. To analyze theo-
retically the dependence of the nucleation rate on pressure,
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FIG. 2. Spall strength dependence on strain rate for the MD
model of the Lennard-Jones liquid considered �stars�, compared
with the experimental data on liquid hexane by Utkin et al. �Ref.
11� �diamonds�. Dashed line—the spinodal. Each MD point corre-
sponds to one MD trajectory. The dashed and dotted line is a guide
for an eye.

FIG. 1. Simulation cell snapshots. Only particles with excess potential energy U�−3.0 are shown. The snapshot at t�=120 corresponds
to the moment when highest stress is reached.
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we have to know the surface of tension of liquid.

B. Surface tension

We use two models to obtain the dependence of surface
tension on temperature and curvature of surface. The first
one presents the flat layer of liquid which is in equilibrium
with its vapor.33–35 The value of surface tension can be cal-
culated from the forces acted on the boundaries of the simu-
lation box. The results of surface tension of the flat surface
are presented in Fig. 4�a�. The increase in temperature leads
to the decrease in the surface tension and it vanishes in the
critical point. The results are in a good agreement with other
calculations.33,36 This approach, though, is usable only for
flat surface or infinite curvature.

To obtain the dependence on curvature of surface we use
the second model.37,38 The liquid is relaxed at certain tem-

perature and negative pressure. Then the void of the radius r
is cut in the liquid and the stress relaxation is considered. If
the radius of void is smaller than a critical size, the void
collapses, if larger—it grows. There is a critical size of void
corresponding to the unstable equilibrium. This size requil is
connected with the surface tension and pressure by the
Laplace equation: �= �Pvapor− Pliquid� ·requil /2

Figure 4�b� shows the dependences on the curvature of
the surface for several temperatures. The values for the flat
surface 1 /r=0 are given for the comparison. For large radius
up to 2� the surface tension decreases slowly and we must
consider the dependence of surface tension on radius.39,40

This dependence can be approximated by Tolman’s
formula:41 � /��=1 / �1+2� /r� with parameter �: T
=0.5,0.6,0.7−��0.25�0.01, T=0.8−��0.1. We consider
the equilibrium radius to obtain the value of surface tension.
But the different radii corresponds to the different values of
pressure. Pressure decreases with the decreasing of the radius
and can influence on the surface tension. So we have two
dependences of the surface tension. In this paper we are in-
terested in the void nucleation process and we need this com-
bined dependence to get the critical sizes of voids.

C. Dependence of nucleation rate on pressure and temperature

The dependence of nucleation rate on pressure is calcu-
lated for the isotherms T�=0.52, T�=0.71, T�=0.75, and T�

=0.8 and shown in Fig. 5. The number of particles in a
simulation cell varied from 8000 �high-J values� to 216 000
�low-J values�. The classical homogeneous nucleation
theory1,2 predicts the dependence of the nucleation rate on
pressure at a constant temperature in the form

J = J0 exp�−
W

kBT
	 , �1�

where W= 16��3

3�P−P��2 is the work of void formation, � is the
surface tension at the void-liquid interface, P is the pressure
inside liquid, P� is the vapor pressure inside the void. The
kinetic coefficient J0 in Eq. �1� is defined by the kinetics of
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FIG. 3. Distribution of MD trajectories over lifetimes at T�

=0.71. nremain�t� is the number of trajectories in which nucleation
has not occurred by the moment t; n0 is the total number of per-
formed MD runs for a given density. Dots show the simulation
results: 1—
�=0.727, �t�=57; 2—
�=0.730, �t�=110; and 3—
�

=0.740, �t�=550. Lines show the best fits by the exponential decay
law.

FIG. 4. �a� The dependence of surface tension � of a flat surface on temperature T: solid circles—this work, open squares—Ref. 33, open
triangles—Ref. 36. �b� The dependence of surface tension on curvature of surface for several temperatures T�: squares—0.5, circles—0.6,
triangles—0.7, and diamonds—0.8. The solid lines correspond to the approximation by the Tolman’s formula with ��=0.24 for T�=0.5 and
T�=0.6, ��=0.26 for T�=0.7, ��=0.1 for T�=0.8.
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growth of near-critical voids. In the case of stretched liquid,
classical theory gives the following expression:14,42

J0�T� = 
l
2
l�

2��P� − P�

kBT� , �2�

where 
l is the density of liquid and � is the dynamic vis-
cosity coefficient.

When MD simulation results are compared with Eq. �1�,
pressure and temperature of liquid are considered to be equal
to their mean values at the equilibrium section of MD trajec-
tory. The pressure P� inside void is considered to be negli-
gibly small compared to pressure P inside liquid. Indeed, the
critical temperature for the Lennard-Jones system is Tcr

�

�1.3.43,44 The temperatures under consideration are substan-
tially lower than Tcr therefore the pressure of saturated vapor
is low and small voids are virtually empty.

The comparison between our simulation results and the
predictions of the classical nucleation theory is shown in Fig.
5�b�. The classical nucleation theory underestimates nucle-
ation rates by many orders of magnitude. There are two rea-
sons for that. First, in classical nucleation theory, the value of
surface tension � is usually assumed to be constant and equal
to its value for the flat surface, �0. As shown in Sec. III A,
the surface tension depends on bubble radius and it is lower
for small bubbles. Thus, the classical nucleation theory over-
estimates the work of the critical bubble formation. In fact,
in Eq. �1� we should assume �=��Rcr�P��. Second, Eq. �2�
gives the value J0�1 in the range 0.5	T�	0.8. The results
of MD simulations in all temperature and pressure range can
be fitted in form �1� assuming the surface tension dependent
on pressure and with the preexponential factor J0=3�105.
Seemingly, the approach used for J0 calculation in the clas-
sical nucleation theory is not applicable for highly meta-
stable liquids.

IV. VOID GROWTH

A. Simulations

The void growth kinetics is studied in MD experiments
for isolated voids. To study the void growth in liquid, the

following scheme is used. First, the system is equilibrated at
a given temperature. Then, a spherical cavity is cut out the
simulation box and the further MD simulation is performed.
As the result we have the system with only one void with a
known position. Such technique simplifies the diagnostics of
void size. In order to calculate the cavity volume, the simu-
lation box is covered by a grid of cells. Each cell contains
two particles on average and the particles are represented as
cubes with a size less than cell size. Empty cells are consid-
ered as “voids.” The cavity volume equals to the total vol-
ume of the empty cells. The radius of the spherical cavity is
given by the formula,

r�t� =
3 3

4�
Vc�t� ,

where Vc�t� is the net volume of empty cells at the moment t.
Only the initial stage of the growth is studied while dis-

turbance from the growing bubble has not crossed the bound-
aries of the simulation box. In this case, the growth of the
bubble is the same as the expansion inside an infinite me-
dium. Then the pressure increases and the conditions of the
simulation do not correspond to the expansion inside infinite
medium because of usage of periodic boundary conditions.
To study void growth at long times, large simulation cells are
used: V=200�200�200a3, where a is the average distance
between particles. Sound speed is cs= ��P /�
�1/2�2� /� in
the pressure range under interest. With particle separation a
�� the cell size we use allows to study void growth up to
times 50�. In order to compare the void growth kinetics with
the theoretical model, we should know the viscosity as a
function of pressure and temperature.

B. Viscosity

The values of viscosity are obtained by the model, pro-
posed in Ref. 45. The main idea of the model is the artificial
momentum flux. The flux is created by the momentum ex-
change between atoms in the opposite sides of calculation
cell. It results in the opposite physical momentum flux and
velocity gradient. We can calculate the value of the viscosity
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FIG. 5. The nucleation rate dependence on pressure and temperature on �a� large and �b� small scales. Circles—T�=0.50; squares—T�

=0.71; diamonds—T�=0.75; and triangles—T�=0.80. Solid lines—calculations by Eq. �1� with J0=3�105 and pressure-dependent surface
tension. Dashed lines—calculations by Eq. �1� with J0 in form �2� and pressure-independent surface tension.
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from Newton’s law: j�px�z=−��vx /�z. The calculated values
of viscosity are shown in Fig. 6. There are two types of
approximation in literature: Frenkel-Andrade �Arrhenius
type� and Batchinski. The Frenkel-Andrade equation is based
on the activation nature of momentum transfer and corre-
sponds to the temperature dependence of viscosity,

� = �0 exp� E

RT
	 , �3�

where E is the activation energy and �0 is a constant. The
dependence on temperature at P=0 is presented in Fig. 6�a�.
The data are approximated by formula �3� with �0=0.145
and E=2.12.

The second approximation was found empirically by
Batchinski,

� =
c

vm − w
, �4�

where vm=
l
−1 is the specific volume, c , w are constants.

The results for different temperatures are shown in Fig. 6�b�.
They can be approximated by one curve in terms of the Eq.
�4�: 1 /�=2.2 /
−2.1. There is no explicit dependence on
temperature in this approximation. Temperature dependence
is included in the dependence of 
 on the temperature along
isobar P=0.

In our calculations we use the density dependence of vis-
cosity 1 /�=2.2 /
−2.1, that is a good approximation of the
MD results for different temperatures.

C. Theoretical analysis

In the hydrodynamics, motion of void surface is described
by the Rayleigh-Plesset equation9

RR̈ +
3

2
Ṙ2 +

4�




Ṙ

R
+

2�


R
= −

P



, �5�

where � is the viscosity of liquid, � the surface tension, and

 the density.

With known viscosity, surface tension, and initial condi-
tions, Eq. �5� can be solved. The initial conditions that cor-
respond to the conditions in MD simulations are

R�0� = Rcr, Ṙ�0� = 0.

For void growth in metals, a simplified form of Eq. �5� is
often used.46 When the dominant terms are the viscosity and
the pressure terms, we obtain the following relation:

4�Ṙ/�
R� = − P/
 . �5��

This equation has an apparent solution

R�t� = R0 exp�− P/�4�� · t� . �6�

This relation is known as the law of viscous growth.
The comparison of the void growth kinetics in MD simu-

lations and the corresponding solutions of Eq. �5� is shown in
Fig. 7. The hydrodynamic approach describes the initial
stage of void growth fairly well. Exact solution of Eq. �5�
reveals asymptotically linear growth R�
−2P /3
 · t at t
→�. Estimates show that void growth should be almost lin-
ear at t�50�. MD simulations also show nearly linear
growth at t�50�. Figure 7�b� shows that Eq. �6� is inappli-

η
*

2

4

6

8

10

12

T*
0.5 0.6 0.7 0.8

(a) 12

1/T

FIG. 6. The dependence of
viscosity �a� on temperature at P
=0 and �b� on density for four
temperatures. �a� Squares—MD,
dashed line—the approximation
�=0.145e2.12/T. �b� T�: 1—0.5,
2—0.6, 3—0.7, 4—0.8, and the
dashed line �5�—the general ap-
proximation 1 /�=2.2 /
−2.1.

FIG. 7. Comparison of the MD
simulations with �a� the Rayleigh-
Plesset equation and �b� the law of
viscous growth. �a� Solid
lines—MD simulations, dashed
lines—calculations by Eq. �5�. �b�
1—viscous growth, Eq. �6�;
2—MD simulation; and
3—calculations by Eq. �5�.
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cable in the case of the Lennard-Jones liquid. Relation �6�
gives the wrong asymptotics of the solutions. The viscous
growth reveals a permanent acceleration of the void surface
instead of the asymptotically linear growth. So, the fracture
model should exploit the void growth kinetics derived from
the Rayleigh-Plesset equation, in order to have the correct
accounting of the void growth.

V. KINETIC FRACTURE MODEL

A. Model formulation

The proposed model for describing fracture in liquid is
the development of the model presented in Ref. 24.

We assume the strain rate to be constant: V̇ /V0= �̇
=const. The total volume of voids at a time t can be found as

Vcav�t� = �
0

t

vcav�t − ��ṅ���d� ,

where vcav�t−�� is the volume of one cavity appeared at
moment � and ṅ��� is the void nucleation rate in the volume
V.

The volume of a single cavity and the nucleation rate can
be expressed in terms of kinetics �homogeneous nucleation
and growth rates� obtained from molecular dynamics simu-
lations,

vcav�t − �� =
4

3
��R�t − ���3, ṅ��� = J�P����V ,

where R�t−�� is void radius given by solution of Eq. �5�.
We take the spall time tsp as the time when the rate of the

increase in the volume of voids is equal to the strain rate:
1

V0

dVcav

dt �tsp�= �̇. Using the given dependence P�t�, we obtain
the achievable pressure at the spall time, i.e., the spall
strength. This spall criterion is consistent with the spall cri-
terion for direct MD simulations �maximal stress�.

To find the pressure dependence on time, the expression
P�t�= P�
0 / �1+ �̇t� ,T� is used. Here P�
 ,T� is the equation
of state of the liquid. Temperature is supposed to be constant
and pressure P�
� along isotherms is calculated by MD
method.

B. Modeling results

Figure 8�a� shows spall strength calculated by the pro-
posed model, along with the spall strength of hexane in di-
rect MD simulations and experimental data.11 A good agree-
ment of the NAG model results with the experimental data
and the direct MD simulation results proves the applicability
of the proposed model to the fracture description at experi-
mentally attainable strain rates.

Our model predicts that at the strain rate �̇�3�108 s−1

the spall strength reaches the spinodal strength of the LJ
liquid. It means that at higher strain rates the spall strength
should show no dependence on strain rate. In the direct MD
simulations spall strength is independent on strain rate for
�̇3�108 s−1.

The comparison of the calculated void size distribution
with the one obtained in the direct MD simulations is the
direct verification of the NAG model predictions. The void
size distributions at the spall moment for strain rate �̇=6
�107 s−1 are shown in Fig. 8�b�. The calculations show very
good agreement with the direct simulations. There are sev-
eral large voids along with many small ones. One should
note that the volume of large voids is larger than the sum-
mary volume of small voids. Thus, the growth of voids ap-
peared at the initial stages gives essential contribution to
fracture kinetics, comparable with the void nucleation just
before the spall moment.

The spall strength calculated without accounting of void
growth �i.e., under assumption R�t�=Rcr� is shown in Fig.
8�a� with the dashed and dotted line. Such a simplification of
the NAG model gives an overestimate of spall strength of
�20%. As shown above, large voids with size much more
than critical radius account for the maximal fraction of the
empty volume. Fracture occurs not only due to nucleation of
new voids but due to void growth too. Modeling results show
that taking into account the void growth diminishes the spall
strength significantly.

The spall strength calculated using the energetic spall
criterion15 is shown in Fig. 8�a� with the dashed line. In this
case, spall strength is given by the formula,

Psp = �6
2cs
3��̇�1/3, �7�

where 
 is the liquid density, cs is the sound speed, and � is
the surface tension. The values of the spall strength calcu-

FIG. 8. �a� Spall strength de-
pendence on strain rate for hex-
ane. 1—NAG model calculations,
2—nucleational model calcula-
tions, 3—energetical spall crite-
rion, 4—experimental data �Ref.
11�, 5—direct MD simulations,
and 6—spinodal. �b� Size distribu-
tion of voids in liquid hexane at
the spall moment t= tsp for the
strain rate �̇=3�108 s−1.
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lated using the energetic spall criterion are several times
lower than experimentally observed values. When expression
�7� is derived, the limiting case is implied: all the energy that
has been put in the liquid by stretching is spent on the new
surface formation. This assumption may be correct when
there is a sufficient number of void nucleation centers �gas
microbubbles, solid includings, etc.� present in the liquid ini-
tially. In our case the homogeneous void nucleation in liquid
seems to be the limiting stage of spallation. All the energy is
not spent on the new surface formation and this leads to the
increase in the spall strength compared to Eq. �7�.

C. Spall strength dependence on the strain rate

The dependence of the spall strength on the strain rate for
the NAG model and the nucleational model is well approxi-
mated by the formula PspA/
ln�B / �̇�. In the case of the
nucleational model this dependence may be derived from the
classical theory of homogeneous nucleation under the as-
sumption that the average volume of the nucleus depends
weakly on pressure.11

This relation is also valid for NAG model. Below we
present a simplified analytical model which accounts for
such a form of dependence. The rate of volume increase for
a void of radius R is

v̇cav��� = 4�R2���Ṙ .

For N identical voids we have

V̇cav = 4�R2Ṙ · N .

The number dN= ṅ�t�dt of voids appear in the time interval
�t ; t+dt�. The rate of their volume increase at the spall time
moment �i.e., the time of growth is tsp− t� is

dV̇cav�t� = v̇cav�tsp − t� · dN�t� = 4��R�tsp − t��2Ṙ�t�ṅ�t�dt ,

where ṅ�t� is the void nucleation rate at the time t, R�tsp− t� is

the void radius at the time tsp, and Ṙ�t� is the void growth
rate.

The void nucleation rate increases sharply as the stress
increases. Thus a large difference in the rates of increase in
empty volume �that “compensates” the effect of the strain
rate� can be attained by small change in stress. It means that
the spall strength should depend on the strain rate only
weakly: Psp�const. Then we assume for simplicity the lin-
ear dependence of pressure on time,

P�t� = − KT
0�̇t ,

where KT is bulk modulus of liquid. Then relation Psp
�const means that �̇tsp�const. At t� tsp the void growth

rate Ṙ Ṙ�tsp�=�0 and the void radius R�tsp− t���0�tsp− t�.
Thus we have

dV̇cav�t� � 4���0�tsp − t��2�0ṅ�t�dt .

The void nucleation rate in volume V is

ṅ�t� � J�P�t�� � exp�−
b2

P2�t�� � exp�−
a2

t2 	 .

Now we make a simplification. We assume that the voids
which account for fracture appear in a narrow time interval
�tm ; tm+�t� and then their growth occurs. Really, there is a
distribution of void sizes. Because of the sharp dependence
of the nucleation rate on pressure too few voids nucleate at
early times to affect significantly on the empty volume. On
the other side, voids which appear at moments close to the
spall moment are very small at this moment. Thus, they do
not give significant contribution to the rate of increase in
empty volume either. So, the voids which give a significant
contribution to the rate of increase in empty volume nucleate
around some moment tm	 tsp. Assume that for all strain rates
tm / tsp=��const and �t / tsp=��const. Then the total num-
ber of voids is

N = ṅ�tm��t = J�tm�V0�t � exp�−
b2

P2�tm�� · � · tsp

and the fracture rate at the spall moment

V̇cav�tsp�
V0

= N · 4���0�1 − ��tsp�2�0 � tsp
3 exp�−

b2

P2�tm�� .

Having the spall criterion 1
V0

dVcav

dt �tsp�= �̇ and the requirement
�̇tsp�const we conclude that

exp�−
b2

P2�tm�� = � �̇

B
	4

.

That gives an expression for the spall strength Psp

= tsp / tm · P�tm� tsp / tm ·b /2
ln�B / �̇� �where B is a constant�,
that is, the spall strength dependence on strain rate has the
same form as in the nucleational model. In this simplified
model b216��3 /3kBT. For T=292 K MD simulations
give 
16��3 /3kBT=96 MPa. The calculations by the pro-
posed equation coincide with the curve 1 in Fig. 8 if we take
b=115 MPa and B=2.1�1011 s−1 so the simple estimate of
the value of b is reasonable. We can also conclude that the
voids which give the main contribution to the spall form
about at tm�0.8tsp.

Such a weak dependence of the spall strength on the strain
rate results from a very strong dependence of nucleation rate
on pressure. A several percent increase in stress leads to a
several orders of magnitude increase in the nucleation rate.
Thus an order of magnitude change in strain rate changes
spall strength just by several percent.

VI. CONCLUSIONS

A mechanism of fracture in liquid under dynamic loading
comprising homogeneous void nucleation and growth is con-
sidered. Fracture of the Lennard-Jones liquid is studied in the
large-scale MD simulations �64 million atoms� and MD
simulations of elementary processes of void nucleation and
growth. On the basis of the MD simulation results, a model
of fracture is proposed which allows to extend the spatial and
temporal scales of the modeling in comparison with direct
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MD simulations. Using this model, the spall strength of liq-
uid under high strain rates is calculated. For the comparison
of the results with the available experimental data, param-
eters of the Lennard-Jones potential for the liquid hexane are
used. �1� The large-scale MD simulations of fracture process
in the Lennard-Jones liquid are performed for the strain rates
10−4−2�10−3�−1 and the spall strength is calculated. The
spall strength is nearly constant at strain rates higher than
10−3�−1. It is shown that maximal stress in liquid is reached
while voids appeared still do not coalesce. The void size
analysis shows that fracture occurs not only through nucle-
ation of new voids just before the spall moment but also
through the growth of voids that have appeared earlier.

�2� The kinetics of void nucleation is studied in the MD
simulations. The results are compared with the classical
nucleation theory. The dependence of the nucleation rate on
pressure calculated from the MD simulations shows that the
work of the critical void formation can be expressed through
the surface tension in the same way as in the classical theory.
But the surface tension value itself depends on the radius of
the critical void.

�3� The void growth is simulated. The kinetics of void
growth obtained is well described by the Rayleigh-Plesset
equation.

�4� The data obtained for the nucleation rates and void
growth are incorporated in a model of fracture based on the
NAG approach. The spall strength of the liquid hexane at a
constant strain rate is calculated using the proposed model.
The NAG model reproduces the direct MD simulation results

on spall strength at strain rates 107–109 s−1. The void vol-
ume distribution at the spall moment calculated in the NAG
model is in a good agreement with the one obtained in the
direct MD simulations. At strain rates 104–105 s−1 the NAG
model gives the results well consistent with the experimental
data.

�5� For the comparison, the nucleational fracture model
and the energetic spall criterion are applied to calculate the
spall strength. They are shown to give incorrect results on
spall strength of liquids. In nucleational model void growth
is not taken into account but this factor is crucial for the
fracture description. The energetic spall criterion does not
consider homogeneous void nucleation as the limiting stage
of spallation and gives a large underestimate of the spall
strength.
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