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Exotic freezing of response in a quantum many-body system
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We show that when a quantum many-body system is subjected to coherent periodic driving, the response
may exhibit exotic freezing behavior in high driving frequency (w) regime. In a periodically driven classical
thermodynamic system, freezing at high w occurs when 1/w is much smaller than the characteristic relaxation
time of the system and hence the freezing always increases there as w is increased. Here, in the contrary, we
see surprising nonmonotonic freezing behavior of the response with w, showing curious peak-valley structure.
Quite interestingly, the entire system tends to freeze almost absolutely (the freezing peaks) when driven with
a certain combination of driving parameters values (amplitude and w) due to coherent suppression of dynamics
of the quantum many-body modes, which has no classical analog. We demonstrate this new freezing phenom-
enon analytically (supported by large-scale numerics) for a general class of integrable quantum spin systems.
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The field of driven dynamics in quantum many-body sys-
tem has attracted a lot of theoretical attention in last few
years (see, e.g., Refs. 1-9). The major part of this research
concentrated mainly around slow quenching dynamics across
quantum-critical points (lines/surfaces) resulting in quantum
Kibble-Zurek mechanism (KZM) (Refs. 2-4) of generating
scaling laws for defect densities—a direct translation of the
consequences of robust classical KZM (Ref. 10) in the quan-
tum regime. The distinctive role of quantum coherence in
driven many-body dynamics thus somehow remained still
largely unexplored (see, however, Refs. 8 and 11-13). Ex-
perimentally, on the other hand, this coherent regime is be-
coming much more accessible in recent years, thanks to the
breakthrough in realizing highly isolated many-body quan-
tum systems with long coherence time within the setup of
cold atom in optical lattice (see, e.g., Ref. 14).

In this Brief Report we report an early attempt to explore
this regime, studying the Schrodinger dynamics of a class of
integrable quantum spin systems. The study reveals two ge-
neric regimes of the driving frequency w: in the large w
regime (defined later), we observe surprising nonmonotonic
behavior of the response with respect to w, showing peak and
valley structures, which dramatically contrasts the expected
monotonic behavior ubiquitous in the corresponding classi-
cal scenarios of periodic driving (say, where a classical mag-
net is driven externally by a time-periodic magnetic field at
finite 7).!%15-17.19 Here, for certain combinations of driving
parameters, (@ and the driving amplitude h,) the entire
many-body dynamics freezes almost absolutely giving rise to
spectacular peaks. In the low w regime, however, the peaks
smooth out and a (roughly) monotonic behavior emerges as
expected. We illustrate the crucial role of quantum coherence
behind the phenomenon. To clarify the analogy, we may note
that in a driven classical thermodynamic system, “following
the driving field” means following the trail of instantaneous
thermal equilibrium states corresponding to the instanta-
neous values of the time-varying driving field, where as for a
quantum system at 7=0, this means following the instanta-
neous ground state of the time-varying Hamiltonian.

In the classical case, faster driving always tends to leave
the response more frozen in a monotonic manner in the high
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o regime. The rationale is: a faster driving would allow
lesser time for the system to react and hence the response
would be left more frozen. The most universal and successful
theory for non-equilibrium response behavior (e.g., defect
formation) in a driven classical system, namely, the KZM, is
based on this rationale.'® The quantum version of KZM
(Refs. 2—4) is also based on the same classical notion of
freezing—the response of a driven system gets “frozen”
when its instantaneous relaxation rate falls below the driving
rate. The response therefore remains frozen over a finite re-
gion around the critical point, where this condition is met.
The faster the driving rate is, the larger is this region of
freezing and thus more frozen is the response (e.g., for linear
driving across a critical point, the said region of freezing
increases as a power of the driving rate, the power being
given by the static critical exponents*!?).

Though the above classical rationale leads to the correct
trend of the freezing (the scaling law) even for the quantum
systems in the small o regime, here we demonstrate that it
may surprisingly fail in some other cases when w is high
enough. In this regime, additional freezing may occur due to
dynamics-dependent coherent cancellation of transition am-
plitude. We derive closed-form analytical expression for the
entire nonmonotonic profile of the response, which accu-
rately reproduces the (directly integrated) numerical results
for large system size (N=10%). The dependence of the re-
sponse on the amplitude of the driving field is also shown to
exhibit trend completely reverse of that observed with inco-
herent classical fluctuations. We demonstrate this quantum
freezing phenomena for a general class of integrable
d-dimensional quantum system with Hamiltonians of the
form (in momentum space)

h(t) + fi Ag
HH =2 w}( ‘ ‘
k

. Wi (1)
Ap =) —f;) '

where = (c,,cof) are standard fermionic operators in k
space, h,(t)=hq cos(wt) is the driving field (any Hamiltonian
parameter) and f}; (real) and A are system-specific functions.
The above-mentioned class includes many well-known quan-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.82.172402

BRIEF REPORTS

1
0.95 [szsieuiiteinuts e it s s S siut s 1
09 F¥
0.85 0.9
. 08
= ors o 08
E o7 07 .
0.65 hy=20; Numerical
06} 0.6 hy=30; Numerical
0.55 hy=40; Numerical
05 05 Analytical
0 500 1000 1500 2000 4 5 6 7 8 9 1011 12 13
t 2hg/o
0.5
(c) ** 1
** hy=20 —+—
*K 7 08 ¥
*K v
0.2 X '; 0.6
Ie] KK ¥ =3
* "y 2 s
* v €
0.1 T = 02
i . ho=20 - 0 e
- hg=10 v
0.05

0.2
0.01 0.02 0.05 0.1 0.2 0.0001  0.001  0.01 0.1 1

(0]

FIG. 1. (Color 0(’)nline) (a) m® vs t (numerical, N=10* and h
=10) for various ws. (b) Q vs 2hy/ w for hy=20, 30, and 40, com-
pared with the analytical formula sz [Eq. (D]
The peaks P, P,, and P; representing maximal freezing, corre-

2hy . 2hy
sponds to three zeros of Jo(7°), occurring at >
=5.520,...,8.653,...,11.971,..., respectively. (c) Q vs h; for w
<1 (numerical). The peaks are smoothed out yielding a roughly
monotonic behavior. (d) The counterclassical trend of stronger
freezing for higher A, is demonstrated with single-sweep results; we
plot Qslefgmz(t)dz, (where T=2m7/ w) for N=100. The figure also
demonstrates monotonic adiabatic to nonadiabatic transition at low
o regime for different h.

tum spin models in one, two and three dimensions, such as
the transverse field Ising model (TFIM), quantum X-Y
model, and extended Kitaev models (see Refs. 5 and 18 and
references therein). We focus on TFIM for concrete illustra-
tion of the phenomenon because of its intuitive appeal but
keep the calculation general so that the main result is easily
visible for all the above-mentioned models. For TFIM with
Hamiltonian
N N

1
H() == | J2 ol + hz(t)E1 o |, (2)

=1

[h.(t)=hy cos(wr) is the driving field and o’idz are x/z com-
ponent of the Pauli spin], the form in Eq. (1) with f;
=Jcosk and Ap=Jsink is obtained via Jordan-Wigner
transformation followed by Fourier transform. If one starts
with the ground state of the Hamiltonian at r=0, the time-
dependent wave function |¢(t)) for the system may be ex-
pressed as a direct product of two-dimensional time-
dependent wave functions: [¢(t))=® ol (1)) with |¢(2))
=ui()|0,0_)+vi(t)|+k,~k), where [0,,0_;) and |+k,—k)
represent, respectively, the unoccupied and the doubly occu-
pied states of the *k fermions. We start at =0 from the
ground state of the Hamiltonian H(z=0) in Eq. (2) with h,
> 1 (highly polarized in +z direction) and as the field oscil-
lates we measure the corresponding response function, the
transverse magnetization

o

m¥(1) = (Y1)

W=+ 3 loP-1 ()

k>0

The resulting time evolution of m®, obtained by numerical
integration of the time-dependent Schrodinger equation

PHYSICAL REVIEW B 82, 172402 (2010)

(TDSE) for many sweeps, is shown in Fig. 1(a), for different
w’s. In each case, m® is found to remain confined within a
narrow range in the positive sector (starting with m*=~1) for
all time, though the field /. oscillates symmetrically about
zero. The dynamical symmetry breaking (due to freezing
near the initial state) is quantified by the so-called dynamical
order parameter (0, which is the long-time average of the
response function.!> For TFIM

T,
0={m%= lim L[ m(f)dt. (4)
1—=TpJo

Dynamical symmetry breaking (Q # 0) is shown for different
values of w and h in Figs. 1(a) and 1(b).

The intuitive reason for nonzero Q might simply be the
lack of adiabaticity in the dynamics. Nonadiabaticity occurs
when the characteristic response time of a quantum system,
given by the inverse of the relevant energy gap, is large
compared to the driving period. Thus freezing due to the
competition of these two time scales (the basis of quantum
KZM estimate®*) is similar in spirit (though very different in
mechanism) with the classical dynamical hysteresis (freezing
of the magnetization dynamics in a classical magnet when
driven too fast by a periodic magnetic field). The similarity is
only in the sense, that both freezing represent the failure of
the system’s reflex to adjust to the rapidly changing field, and
hence in both cases stronger freezing is expected as the driv-
ing is made faster. In the classical case, the freezing is in fact
always monotonic with respect to w. For example, in case of
a periodically driven classical Ising model,’> the frozen
(asymmetric; Q #0) phase shrinks monotonically in the
symmetric-asymmetric phase diagram as o is reduced and
finally vanishes as w— 0. This monotonicity is also observed
even here, when w is small enough, as shown in Fig. 1(d).
Surprisingly, contrary to this picture, we find Q to be a non-
monotonic function of w, exhibiting peaks appearing at high
w’s as shown in Fig. 1(b). The peaks represent maximal
freezing of the system with Q very close to unity, indicating
additional freezing for certain combinations of w and k. In
the low-frequency regime, however, the peaks are found to
be smoothed out (roughly) and Q is observed to decrease
more or less monotonically with w as shown in Fig. 1(c). In
analogy with the classical case, we call this nonmonotonic
quantum freezing phenomenon (and its related dynamical
symmetry breaking) dynamical quantum hysteresis (DQH).

We explain the above scenario solving the dynamics of

the £ modes as follows. Employing the 2 X2 unitary trans-

formation [A]k=exp[—é(2tf,;+%sin ot)o*] on | (t)) and

H,(t) and performing a subsequent expansion in terms of
Bessel’s functions: exp[iz sin 6]=27 _J,(z)e™? (J,(z) being
the Bessel’s function of the first kind with integer order n),?°
we get the transformed wave function | (7))
=up(1)|0,4,0_)+v(1)|+k,—k) that follows the TDSE with

the transformed Hamiltonian:
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0 i > R,
» ; (5)
-i> R0

n=—0

Hi(1) =— Ay

where Rn=J,,(2—:l)0

=|vi(t)]>. Now we resort to the resonance ap-
proximation (RA), under which the equation are soluble (see,
e.g., Ref. 21). The RA amounts to ignoring all the (faster
oscillating) terms in the off-diagonal sum in H,(r) except for
the resonant term n=n,, for which the effective frequency
QO =|nw+2ff is the smallest. In the high frequency limit
(w>2|f]), we have n,=0. Physically, this means,  is far
off-resonant with the relevant characteristic frequencies of
the system given by 2J cos k (J=1 here). For the general

)e—i(nw+2f;;)t_

The general solution of the TDSE with Hamiltonian (5) un-
der RA gives

Lfkt[% Il(d’kf):luk(o) + elfkl[COS(ff’kt)
— iZysin(it) Jog(0),

where ¢p=1J3(2hy/ w)A%+f§. With the initial condition

mentioned above (Jvi(0)[*=1), one gets

vi(t) =—

J3(2hy ) A

I it SRR
J%(Zho/a))A]%_Ffi_sm (i) (6)

From Eq. (6) we see that for the near-critical modes (k
~0,m, A;~0), oscillates with a vanishing ampli-
tude proportional to AE, and thus contribute maximally to the
freezing. On the other hand, the off-critical modes (k
~r/2) undergo full oscillation without any appreciable
freezing. The intermediate modes, (1>]Az>0) oscillating
with an amplitude that depend both on k and the ratio 4/ w
[Eq. (6)] contribute nontrivially to the freezing. Nonmono-
tonic freezing is encoded here in the nonmonotonicity of
Jo(x). Any local observable is obtained by summing up the
contributions from all these nonlocal many-body modes. To
get an explicit formula for Q for TFIM, we set A;g=sin k,
fi=cos k, and take the continuum limit of Eq. (3). Integrating
over k, taking the limit 7,—o of Eq. (4) gives a simple
formula

1

T 1+ o2y w)]. @)

The expression matches remarkably well with the peaked-
structured profile of Q obtained by numerical integration, as
shown in Fig. 1(b). The peaks occur for certain combinations

of w and hy, for which JO(Z—:T])=O. Under this condition, all
the modes freeze, resulting in an absolute localization
(within the RA approximation made) of the system at its
initial state for all time (known as coherent destruction of
tunneling in the context of driven two-level system??). The
exact form of Q depends on the model dimension and other
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system-specific details but the key feature—nonmonotonicity
is already reflected in the general equation, Eq. (6).

To clarify the fundamental difference between the nature
of this additional freezing and the freezing due to KZM, we
note that after the first sweep the nonadiabatic excitation
probability p,=|v,(wt=m)|*> for each mode [related both to
the total defect density?* and m*, Eq. (3)], is actually a non-
monotonic function of w [Eq. (6)]. In contrast, KZM would
predict in such cases, a monotonic increase in the size of the
impluse region (2€) with w, resulting in a monotonically
increasing p; (see, e.g., Ref. 4). This monotonicity is a gen-
eral charactersistic of KZM as long as |€| is either constant or
increases monotonically as the critical point is approached.'”

H,(t) cannot be approximated by a single-frequency term.
Presence of many close multiples of w satisfying resonance
condition Q,=|nw+2f;~0, smooths out the peaks and a
gross monotonic behavior emerges, as shown in Fig. 1(c).
The dynamics remain nonadiabatic due to quantum-critical
points at h,=*1 for any nonzero w in the thermodynamic
limit. A more detailed study of the low-frequency behavior
will be reported elsewhere.?

Phase coherence plays a crucial role in determining Q, as
can be seen from the following example. In the limit A

might be decomposed into adiabatic and impulse regimes, >’

such that apart from some neighborhood *A# of the critical
points at h.=* 1, the dynamics is adiabatic, while within
these neighborhoods the dynamics is impulsive, and can be
approximated by Landau-Zener transitions upon linearizing
the sinusoidal field for low enough w. Now, if the phase
coherence between the fermionic state |0,,,0_;) and v ,';(t)|
+k,—k) is neglected (see, for example, Ref. 24), say, due to
some decoherence mechanism, then the fermionic excitati(l)ns
__[1
+(26,—1)"], where 9k=exp[—m] This implies, m* ap-

w\h3—cos? k

proaches 0 rapidly, giving Q= OVw contrasting the coherent
case results [Fig. 1(b)].

The behavior of Q with hy also contrasts the classical
picture in a drastic way. In the classical case of a periodically
driven magnet in presence of thermal fluctuations, dynamical
localization always occurs below a certain value of the am-
plitude A (for a given w and temperature), above which the
symmetric phase appears.'>!” High-enough driving fields in
a classical Ising magnet (even in quantum magnets with
some coherence) kills any hysteresis/freezing, forcing the
system more strongly to follow the field as demonstrated
experimentally by Aeppli’s group.”> But in DQH, just the
reverse trend is observed, as shown in Fig. 1(d) (low w re-
gime). In the hlgh w limit also, one has Jy(x) = VE cos(x
—1r/4) for x> and the expression (7) reduces to

— ( 2h0 7T>
Vw COS -

w 4
\ who + \rw cos —
w 4

Qzl_

with limh(ﬁoc Q=1, giving absolute freezing of the dynamics
in this limit. A general qualitative explanation of this reverse
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trend goes as follows. In dynamics driven by classical fluc-
tuations, a stronger field would induce stronger asymmetry
between the rate of the aligning (spins orienting parallel to
the field) and the antialigning dynamics, favoring the former
one energetically over the latter. Hence for a higher A, the
spins would realign faster along the field following a field
reversal and thus the hysteresis/freezing would be reduced.
But in the case of coherent quantum fluctuations, a stronger
field would instead, more strongly suppress all the dynamics
that would change the response, even if it helps lowering the
field-induced potential enery, since the response (by defini-
tion) commutes with the field part of the Hamiltonian.
Experimental observation of the DQH phenomenon may
be realizable in several ways. First, realization of this phe-
nomenon would be possible in tunable transverse Ising
model using trapped ions.?® A similar realization would be
possible within lattice-spin models with polar molecules on
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optical lattices.”” In these systems, the exchange interaction J
have experimental upper limits (~22.1 kHz and between
10-100 kHz for the respective cases mentioned above) but
can be made arbitrarily small. Hence the range of high w
referred here (in the units of J) may be brought down to a
comfortable range, say to the order of few kHz in both the
realizations. The phenomenon of DQH in Kitaev models'®
can be achieved via experimental setups as proposed in Ref.
28. Its implication in the context of quantum annealing,?
might be quite interesting, as it may contrast the intuitive
scenario of monotonic improvement with slower annealing
in certain cases.
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