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A perfect Bose gas can condensate in one dimension in the presence of a random potential due to the
presence of Lifshitz tails in the one-particle density of states. Here, we show that scale-free correlations in the
random potential suppress the disorder induced Bose-Einstein condensation �BEC�. Within a tight-binding
approach, we consider free Bosons moving in a scale-free correlated random potential with spectral density
decaying as 1 /k�. The critical temperature for BEC is shown to vanish in chains with a binary nonstationary
potential ���1�. On the other hand, a weaker suppression of BEC takes place in nonbinarized scale-free
potentials. After a slightly increase in the stationary regime, the BEC transition temperature continuously
decays as the spectral exponent �→�.
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The usual theory of noninteracting bosons predicts that no
BEC is supported in homogeneous systems with spacial di-
mensionality d�2.1 On the other hand, spacial heterogene-
ities can reduce such lower critical dimension. In particular,
BEC was theoretically shown to occur in low-dimensional
networks with complex topology. The general conditions for
the occurrence of BEC in inhomogeneous lattices with
anomalous spectral regions in the density of states has been
demonstrated.2–5 Besides the influence of the network topol-
ogy, disorder also plays a significant role in the physical
behavior of low-dimensional quantum systems. Within the
context of BEC, Luttinger and Sy showed that noninteracting
bosons in d=1 can condensate in the presence of on-site
impurities and that the critical temperature increases with the
degree of disorder.6

The main paradigm of BEC in low-dimensional disor-
dered system involves various topics in condensed matter
physics as, for example, Anderson localization, ultra cold
atomic gases and many-body field theory.7–18 Experimen-
tally, the effect of disorder has been investigated in BEC of
ultracold atoms expanding in laser speckle and incommensu-
rate optical lattices.7–10 These experimental setups allow the
tuning of several relevant physical parameters such as the
lattice depth and dimensionality, strength of interparticle in-
teractions, as well as the disorder strength, correlation length
and spectral properties. Disorder can also be created using
atomic mixtures11 or inhomogeneous magnetic fields.12 In
particular, it was observed that the expansion of BEC is sup-
pressed in the presence of a one-dimensional �1D� speckle
potential leading to an exponentially localized wave func-
tion, a clear signature of Anderson localization.8 The inter-
play between superfluidity and Anderson localization in di-
luted Bose gases is a topic of current interest.17,18 For weakly
interacting particles the ground state is usually composed of
a Lifshitz glass with the particles occupying a finite number
of localized states. In the regime of strong interactions, the
gas forms a delocalized disordered BEC superfluid.17

Within the above scenario, a relevant question concerns to
the role played by the disorder correlation length once it
directly affects the wave-function localization length.13–16

Although any infinitesimal disorder is enough to promote the
exponential localization in 1D systems irrespective to the
disorder correlation length, the actual localization length

plays a significant role in finite-sized systems such as trapped
BEC. It has been shown that the disorder correlation length
induces a shift in the BEC transition temperature14 and in the
critical disorder strength.16 Long-range correlations in
speckle potentials also induce an effective mobility edge in
1D finite systems.13 Further, the interplay between the disor-
der correlation length and the healing length associated to the
effects of interparticle interactions has been a subject of re-
cent interest in which concerns to the Anderson localization
of BEC.9,13,15–17

Special correlations in the disorder distributions are well
known to promote a violation of the exponential localization
predicted by the usual scaling theory of Anderson localiza-
tion in 1D systems. For example, disordered chains with di-
merlike correlations support resonant states which are not
affected by the underlying disorder and remain extended.19

Such theoretical prediction was later corroborated by experi-
mental studies in semiconductor superlattices.20 A different
scenario emerged when Anderson localization was consid-
ered in systems with 1D scale-free correlated disorder. Scale-
free random sequences are known to be generated by several
stochastic processed in nature.21 It has been theoretically22,23

and experimentally24 shown that these systems support mo-
bility edges in 1D delimiting a band of extended states. It has
been suggested that an appropriate algorithm for generating
random correlated sequences with desired mobility edges
could be used in the manufacture of filters for electronic or
optical signals.25 Although several aspects of the Anderson
localization in the presence of scale-free disorder have been
recently addressed,26–29 its impact on BEC is still an open
question.

In this Brief Report, we will show that scale-free correla-
tions in a disordered 1D potential has a strong influence in
the BEC of noninteracting particles. The correlations in the
disordered potential will be characterized by a power-law
spectral density S�k��k−�, where k is the wave number as-
sociated with the potential landscape modulations and � is
the characteristic exponent controlling the roughness of the
potential landscape. The limit of �→0 corresponds to the
usual uncorrelated disorder while the potential dispersion be-
comes nonstationary for ��1. In particular, we will provide
numerical evidences that in binary scale-free potentials, the
BEC transition temperature decreases with increasing values
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of � with no BEC taking place for ��1. For nonbinarized
scale-free potentials, the BEC transition temperature will be
shown to exhibit distinct trends in the stationary and nonsta-
tionary regimes.

Within a tight-binding approach, the Hamiltonian for a
free particle restricted to move along an open 1D chain with
N sites can be written as

H = �
n=1

N

�n�n��n� + t�
n=1

N−1

��n��n + 1� + �n + 1��n�� . �1�

Here �n� represents a state in which the particle is localized at
site n, �n is the on-site energy at site n, and t is the hopping
integral between neighboring sites. The random sequence of
on-site energies �n will be tailored to have a scale-free spec-
tral density. Following an approach based in the use of dis-
crete Fourier transforms, we first generate the auxiliary se-
quence

xn = �
k=1

N/2� 1

k�/2cos�2�nk

N
+ �k	
 . �2�

In the above equation, k is the wave vector of the modula-
tions on the random variable landscape and �k are N /2 ran-
dom phases uniformly distributed in the interval �0,2��.
Such random sequence has a spectral density S�k��k−� by
construction. For �	1 the sequence is stationary. In the re-
gime of ��1 the sequence becomes nonstationary and dis-
persion increases with the size of the interval used to perform
the local average. In most of what follows, we will consider
the sequence of on-site energies to be obtained following a
binarization procedure with �n=0.5 for xn� x̄ and �n=−0.5
for xn	 x̄. In Fig. 1 we illustrate the resulting sequences of
binary scale-free random potentials �left panels� for distinct
values of the spectral density exponent �. Notice that the
roughness of the potential landscape is smoothed as the spec-
tral exponent � is increased. However, the resulting graining
of the potential has no characteristic size scale. In the right
panels, we show the corresponding spectral densities. These

develop random fluctuations around the power-law decay
due to the binarization procedure. At �=1, which delimits
the transition between stationary and nonstationary se-
quences, the size of the largest cluster scales as N1/2, repre-
senting a vanishing fraction of the whole potential in the
thermodynamic limit. In the nonstationary regime, the bina-
rized potential landscape develops regions of constant poten-
tial which are macroscopically large. Once these regions
shall control the low-energy excitations, a suppression of the
disorder-induced BEC is expected in the nonstationary re-
gime, as we will explore below.

The allowed one-particle eigenenergies can be numeri-
cally obtained following a direct diagonalization of the
Hamiltonian in finite chains. Figure 2 shows the integrated
density of states �IDOS� as a function of energy E / t for
distinct spectral exponents �. Only the region close to the
band bottom is reported. Here, we used binary scale-free
correlated random chains with N=4
104 sites for each
value of �. These were generated from the same sequence of
random phases in Eq. �2�. Notice that the exponential decay
typical of a Lifshitz tail is well defined in the limit of �
→0 �uncorrelated sequence�. The derivative at the band bot-
tom diverges in the regime of ��1. It signals a diverging
DOS, as usually depicted by homogeneous one-dimensional
tight-binding Hamiltonians. While the presence of a Lifshitz
tail allows for BEC in 1D, no condensation is expected when
the DOS diverges as the ground state is approached. Actu-
ally, it has been analytically demonstrated that the vanishing
of the DOS at the band bottom is a necessary condition for
the occurrence of BEC.30

The high sensitivity of the DOS at the band bottom on the
spectral exponent of the random potential indicates that the
thermodynamics of noninteracting bosons will be strongly
affected by scale-free disorder. Considering the grand ca-
nonical ensemble, the average number of bosons occupying
the ith energy state is given by
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FIG. 1. Binary scale-free correlated random potentials �left pan-
els� for distinct values of the spectral density exponent �. In the
right panels, we show the corresponding spectral densities that de-
velop random fluctuations around the power-law decay due to the
binarization procedure. The potential roughness is smoothed when
the exponent � is increased.
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FIG. 2. The tail of the IDOS as a function of energy E / t for
distinct spectral exponents �. Scale-free binary correlated potentials
on chains with N=4
104 sites were generated for each value of �
using the same sequence of random phases in Eq. �2�. Notice the
diverging derivative at the band bottom for ��1 which is also
depicted by homogeneous one-dimensional tight-binding
Hamiltonians.
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�ni� =
1

z−1exp���i� − 1
. �3�

Here z=exp��� is the fugacity, where  is the chemical
potential which can be extracted from Nb=�i=1

N �ni�, where Nb
is the conserved number of bosons. We will restrict our fol-
lowing analysis to the particular case of Nb=N /2. However,
the qualitative behavior associated with the influence of
scale-free correlations is unaffected by the actual particle
density. It mainly determines the scale of the BEC transition
temperature in the limit of uncorrelated disorder. In Fig. 3�a�
we plot the fugacity z as a function of the scaled temperature
kBT / t for distinct spectral exponents �. In all cases the
ground state energy was shifted to E=0 which implies in
z�T=0�=1. We considered the same potentials used to gen-
erate the IDOS shown in Fig. 2. Notice that the low-
temperature region with z=1 is suppressed when � is in-
creased. This region corresponds to the phase with a
macroscopic fraction of the particles occupying the ground
state. The suppression of the condensed phase is a conse-
quence of the enhanced graining of the random potential.

In Fig. 3�b� we plot the fraction of bosons occupying the
ground state N0 /Nb as a function of the scaled temperature
kBT / t for distinct spectral exponents �. The fraction of par-
ticles in the ground state is the usual order parameter of the
BEC phase. One can clearly observe that, in order to achieve
a given condensed fraction, lower temperatures are required
in correlated potentials with large spectral exponent. Due to a
finite-size effect, the transition from the condensed low-
temperature phase to the normal high-temperature phase is
rounded. Notice that the condensed phase is strongly sup-
pressed as �→1.

In Fig. 4 we report the Bose-Einstein condensation tem-
perature kBTc / t as a function of the spectral exponent �. Data
in the main frame of Fig. 4�a� were obtained from finite
binary chains with N=4
104 sites. The transition tempera-
tures were estimated to be at the point of maximum curva-
ture of the order parameter curves. For �	1 there are very

small finite-size corrections in the estimated critical tempera-
ture. Our scaling analysis indicates that, in this regime of the
spectral exponent, Tc remains finite in the thermodynamic
limit. Finite-size corrections become large near the spectral
exponent �=1. At this point, 50 random potentials were con-
sidered to average over distinct disorder configurations. The
dashed line is a guide to the eye for the transition line in the
thermodynamic limit with kBTc / t� �1−�� as �→1. The in-
set shows the finite-size scaling behavior of the estimated
critical temperature at �=1. It vanishes roughly as 1 /N1/4

when the chain size is increased even though there is no
macroscopic segment free of disorder. Above �=1, the van-
ishing of the estimated transition temperature becomes faster
as N→�. Therefore, in the regime of ��1, no Bose-
Einstein condensation takes place in the thermodynamic
limit. This behavior contrasts with the one expected for po-
tentials with a characteristic correlation length. Although the
transition temperature is shifted when the correlation length
increases,14 it always remains finite in the thermodynamic
limit for any finite correlation length. Here, we demonstrated
that for scale-free correlated binary random potentials, a true
transition between BEC and non-BEC low-temperature
phases takes place in the thermodynamic limit as a function
of the power-law exponent of the potential spectral density.

Before finishing, we show the corresponding BEC transi-
tion temperature as a function of the spectral exponent � for
a nonbinarized scale-free potential �see Fig. 4�b��. In this
case, the potential remains rough in all length scales even in
the nonstationary regime.22 In the stationary regime, kBTc / t
slightly grows with � reaching a maximum at �=1. Such
increase is directly related to the small widening of the DOS
and the resulting increase of the gap between the ground and
first excited states, as seen in the inset of Fig. 4�b�. In the
nonstationary regime, the BEC transition temperature re-
mains finite but slowly decreases with increasing values of
the spectral exponent. It only vanishes in the limit of �
→� on which the disorder is fully suppressed.
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FIG. 3. �a� The fugacity z as a function of the scaled temperature
kBT / t for distinct spectral exponents �. The ground state energy
was shifted to E=0 which implies in z�T=0�=1. We considered the
same potentials used to generate the IDOS shown in Fig. 2 and a
total number of Nb=N /2 bosons distributed in the chain and �b� the
fraction of bosons N0 /Nb occupying the ground state as a function
kBT / t for distinct spectral exponents �. A finite fraction of the par-
ticles occupies the ground state in the low-temperature phase. The
condensed phase is strongly suppressed as �→1.
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FIG. 4. �a� The BEC transition temperature kBTc / t in a binarized
potential as a function of the spectral exponent �. Data in the main
frame were obtained from finite chains with N=4
104 sites. At
�=1 and 50 random potentials were considered to average over
distinct disorder configurations. The dashed line is a guide to the
eye for the transition line in the thermodynamic limit with kBTc / t
� �1−�� as �→1. The inset shows the finite-size scaling of the
estimated critical temperature at �=1. �b� kBTc / t
� for a nonbi-
narized potential. In this case, the BEC is fully suppressed only in
the limit of �→�. The inset shows the gap between the ground and
first excited states.
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In summary, we considered free Bosons moving in a ran-
dom potential derived from a correlated sequence with a
scale-free spectral density decaying as 1 /k�. Employing an
exact diagonalization of the complete single particle Hamil-
tonian, we showed that scale-free correlations in a random
potential suppresses the BEC in 1D, particularly in the
strongly correlated nonstationary regime of ��1. In bina-
rized potentials, such suppression of BEC in nonstationary
potentials is complete, resulting from the disappearance of
the Lifshitz tails of the energy density of states as the poten-
tial landscape roughness is smoothed with the subsequent
development of a DOS singularity. These features are con-
nected to the emergence of macroscopically large regions
free of disorder which control the low-lying energy excita-

tions. In nonbinarized scale-free potentials, the disorder re-
mains in all scales and the BEC transition temperature re-
mains finite but slowly decays as �→�. It is important to
stress that the suppression of the BEC takes place prior to the
emergence of mobility edges and truly extended states,
which only takes place for ��2.22 Considering that tech-
niques devised to investigate BEC in random potentials are
able to control the strength and spectral properties of the
disorder, the here predicted suppression of BEC by scale-free
disorder can, in principle, be experimentally probed using
gaseous BEC trapped in random optical lattices.
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