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We study the influence of spin polarization on the degree of coherence of electron transport through inter-
acting quantum dots. To this end, we identify transport regimes in which the degree of coherence can be related
to the visibility of the Aharonov-Bohm oscillations in the current through a quantum-dot Aharonov-Bohm
interferometer with one normal and one ferromagnetic lead. For these regimes, we calculate the visibility and,
thus, the degree of coherence, as a function of the degree of spin polarization of the ferromagnetic lead.
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I. INTRODUCTION

The investigation of electric transport properties of nano-
structured devices defines a field of increasing importance.
The issue of quantum coherence and its limitation by
Coulomb interaction can be conveniently studied in devices
that contain quantum dots �QDs� in multiply-connected ge-
ometries. The interplay between interference and Coulomb
interaction has been extensively studied in these so-called
QD Aharonov-Bohm interferometers �QD-ABIs� both
experimentally1–9 and theoretically.10–29 Observed oscilla-
tions of the current through quantum-dot ABIs as a function
of the magnetic flux enclosed by the interferometer arms1–9

prove that transport through a quantum dot is at least par-
tially coherent. The degree of coherence may be suppressed
by interaction. This can, e.g., be studied in a controlled way
by electrostatically coupling a quantum-point contact �QPC�
to the quantum dot in the ABI. The current through the QPC
serves as a which-path detector that diminishes the amplitude
of the interference signal.9–12

But even in the absence of any coupling to the outside
world the degree of coherence may be limited by Coulomb
interaction among the electrons within the QD-ABI. This is
the issue that we will concentrate on for the rest of the paper.
Similarly, the effect of different interdot and intradot inter-
actions in T-shaped quantum-dot interferometers on the am-
plitude of the Fano resonance has been studied.30 The two
central questions that we will address are: �1� What fraction
c= Icoh / Itotal of the total current through a single-level quan-
tum dot weakly coupled to the electrodes is coherent? �2�
How and under which circumstances can this fraction c be
extracted from a current measurement in an Aharonov-Bohm
setup?

For transport through a single-level quantum dot with
strong Coulomb interaction weakly coupled to normal leads
the answer was given in Refs. 14 and 15. If any coupling of
the quantum dot to some bath is negligibly small then the
only source of decoherence is connected to the spin degree of
freedom in the quantum dot. In general, transport through the
quantum dot can be divided into spin-flip and nonspin-flip
processes. Spin-flip processes due to spin-orbit coupling are
neglected in the following considerations. Furthermore, we
restrict our analysis to temperatures larger than the Kondo

temperature.31 When the dot is initially empty, transferred
electrons keep their spin orientation, and the transport is
fully coherent. In contrast, when the dot is occupied with a
single electron, then the transferred electron may either keep
or flip its spin, i.e., only half of the processes �the nonspin-
flip ones� are coherent. As a result, the fraction of coherent to
total linear conductance in the limit of weak tunnel coupling
is c=1 / �1+ f����, where f��� is the Fermi function and � the
quantum dot level, measured relative to the Fermi energy of
the leads. It was theoretically predicted14,15 and experimen-
tally confirmed1,2 that this fraction c of coherent transport
can be extracted from measuring the Aharonov-Bohm oscil-
lation amplitude as a function of level energy for a quantum
dot embedded in an Aharonov-Bohm ring. The asymmetry of
the oscillation amplitude for ��0 as compared to the one for
��0 was in agreement with the theoretical prediction. The
restriction to a single level is justified as long as the level
spacing on the dot is larger than temperature and bias voltage
such that only one orbital participates in transport. The influ-
ence of many levels on coherence and the crossover from
large to small level spacing is discussed in Ref. 15.

In order to substantiate the role played by the spin, we
suggest in this paper to replace one of the electrodes by a
lead with a finite degree of spin polarization p. The main
idea behind this proposal is that a large degree of spin polar-
ization should, in general, increase the fraction of coherent
transport since spin-flip processes are less frequent. How-
ever, introducing a spin-polarized lead breaks the spin sym-
metry and, thus, changes the transport characteristics in a
nontrivial way. This includes the possibility of spin accumu-
lation on the dot,32–35 tunnel magnetoresistance36,37 or a
negative differential conductance.33,38–40 Therefore, both
questions �1� and �2� have to be reanalyzed carefully. Since
the physics of spin accumulation may introduce an asymme-
try of the current between the cases ��0 and ��0, that is
not related to decoherence, an asymmetry of the AB oscilla-
tion amplitude does not necessarily indicate decoherence.
The measurable quantity to compare c with is the visibility v.
In case of weak tunneling, where only one Fourier compo-
nent of the flux-dependent current needs to be considered,
the visibility v �with v�0� is defined via
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Itotal��� = Iav�1 + v cos�� + ��� , �1�

where Iav is the flux-averaged current and � the AB phase.
As we will argue below, a clear correspondence between c
and v can be established in the regime of unidirectional co-
tunneling, with an extra condition for the polarity of the ap-
plied bias voltage in the case ��0. In the latter case, it is
possible to extract a polarization-dependent coherence factor
c= �1+ p2� /2 by measuring the visibility v.

This paper is structured as follows. In Sec. II we introduce
the model under consideration. The theoretical method that
we employ is described in Sec. III. Results are presented in
Sec. IV, which is subdivided in four parts: expressions for the
charge current in different orders are given in Sec. IV A; we
discuss the fraction of coherent transport in Sec. IV B ; Sec.
IV C concerns the visibility of the current and Sec. IV D
elucidates the relation between visibility and coherence.
Conclusions are drawn in Sec. V.

II. MODEL

We consider a closed single-dot ABI, i.e., a two-terminal
ABI with a single-level quantum dot embedded in one of the
arms, see Fig. 1. The total Hamiltonian of our system con-
sists of four parts,

H = Hdot + Hleads + Htunn + Href. �2�

The QD is assumed to accommodate a single, spin-
degenerate level. It is described by the Anderson-impurity
model

Hdot = ��
�

n� + Un↑n↓. �3�

Here, n�=d�
†d�, with d�

† being the creation operator for an
electron with spin � on the quantum dot. The dot-level po-
sition is denoted by � and the onsite Coulomb-repulsion en-
ergy by U. In the results, we will concentrate on the two
limits of noninteracting electrons, U=0, and infinite charging
energy, U=�.

We consider a two terminal setup, with the index r=F
labeling the ferromagnet and r=N labeling the normal con-
ductor. Both leads are large, noninteracting reservoirs, whose
Hamiltonian reads

Hleads = �
rk�

�rk�crk�
† crk�, �4�

where crk�
† is the creation operator for an electron in lead r in

a state labeled by the quantum number k and with spin �.
The tunnel coupling between the dot and the two leads is

modeled by the tunneling Hamiltonian

Htunn = �
rk�

trcrk�
† d� + H.c. �5�

We assume the tunnel matrix elements tr and the density of
states of the leads Nr� to be energy independent in the energy
window relevant for transport. In the ferromagnetic lead we
also have to distinguish between the density of states of elec-
trons with majority ��=+� and minority spin ��=−�. For the
normal lead this distinction is not necessary �NN /2�NN+
=NN−�. The spin polarization p= �NF+−NF−� / �NF++NF−�
characterizes the asymmetry of the density of states. Tunnel-
coupling strengths are then defined as 	N=2
�tN�2NN and
	F�=2
�tF�2NF�= �1� p�	F. The intrinsic line width of the
quantum dot’s level is the sum of the tunnel couplings, 	
=	N+	F.

The second �“reference”� interferometer arm is modeled
by a direct tunnel coupling between the leads. The Hamil-
tonian of the reference arm reads

Href = �
k�N,q�F,�

�t̃cNk�
† cFq� + H.c.� �6�

with transmission amplitude t�
ref=2
t̃�NF�NN. The magnetic

flux � threading the interferometer is included in the phases
of the tunneling amplitudes. We choose the gauge in which
tF , tN�R+ and arg t̃=�=2
� /�0, where � is the magnetic
flux and �0 the flux quantum. In analogy to the tunnel cou-
pling to the dot, we define the total transmission probability
�tref�2= �t+

ref�2+ �t−
ref�2.

III. METHOD

The dynamics of the quantum dot’s degree of freedom,
i.e., the probabilities P
 to find the dot in state 

=0, ↑ , ↓ ,d, is governed by a generalized master equation. In
the stationary limit, it reads 0=�
�W

�P
�, where W

� are
the transition rates from state 
� to 
. Having solved the
master equation for the probabilities, the stationary current
can be computed from I=e�
�W

�

I P
�, where the current
transition rates W

�

I are obtained from the transition rates
W

� by multiplying with the net number of electrons that are
transferred from source to drain in the transition described by
W

�.

Our method is applicable for arbitrary values of the Cou-
lomb repulsion U. However, for simplicity we only consider
the two limits U=0 and U=� from now on. In the latter
case, double occupancy of the dot is prohibited. We aim at a
systematic perturbation expansion for weak coupling �	
�kBT and �tref��1� of the current I=�m,nI�m,n�, where m in-
dicates the power in the tunnel coupling 	 between dot and
leads and n the power in the direct tunnel coupling �tref� be-
tween the two leads. A direct coupling between the leads can
be made small in experiments with the help of a tunable
barrier in the reference arm. We perform a corresponding

normal

iφe

QD

Φ
lead

ferro−
magnet

FIG. 1. Setup of single-dot Aharonov-Bohm interferometer with
one spin-polarized lead.
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expansion for the probabilities and the transition rates. We
restrict ourselves to the lowest-order contributions. This
means, we include the current through the reference arm in
the absence of the quantum dot, I�0,2�, the interference term
I�1,1����, which is the lowest-order contribution that depends
on the Aharonov-Bohm phase �, and the current through the
quantum dot in the absence of the reference arm.

For the last contribution, it is important to distinguish two
different transport regimes. If the dot level � lies inside the
energy window for which occupied states in the source elec-
trode and simultaneously empty states in the drain are avail-
able, i.e., ����max	kBT , �eV /2�
, then transport is dominated
by transition rates W�1,0� �and WI�1,0�� that are first order in 	.
It is clear that in this case only first-order rates are required
to evaluate the zeroth-order probability distribution P


�0,0�.
We refer to this procedure as calculation scheme 1.

The situation is different in the cotunneling regime, ���
�max	kBT , �eV /2�
, for which some of the rates W�1,0� are
exponentially suppressed and the lowest-order contribution
is W�2,0�. Then, as discussed, e.g., in Ref. 41, some second-
order rates are required to evaluate the zeroth-order probabil-
ity distribution P


�0,0�. This we call calculation scheme 2.
For scheme 1, we use a real-time diagrammatic technique

to perform the perturbation expansion in the tunnel-coupling
strengths.42 The advantage of this technique is that it is sys-
tematic in the sense that all contributions of given order are
properly taken into account. The downside is that including
higher-order contributions becomes increasingly cumber-
some. In the cotunneling regime, where scheme 2 needs to
be used, the expressions for the rates obtained from the dia-
grammatic technique drastically simplify. In that case it is
easier to directly identify all the cotunneling processes and
evaluate the corresponding rates by second-order perturba-
tion theory rather than employing the real-time diagrammat-
ics.

To discuss the results obtained by scheme 1, we will only
provide the final expressions for the current. As we will dis-
cuss below, for connecting the degree of coherence with the
visibility of the Aharonov-Bohm oscillations, the cotunneling
regime is more important. In this case, we use scheme 2 with

the cotunneling rates W

�
�2,0�=�r,r��rr�



��2,0�, where �rr�


� is the

rate of a transition where an electron is transferred from
reservoir r� to reservoir r, accompanied by a change of the
dot state from 
� to 
. An example for the calculation of
such a cotunneling rate, as introduced in Refs. 43 and 44 for
metallic islands and applied for single-level quantum dots,
e.g., in Ref. 45, is given in the Appendix. For ���
�max	kBT , �eV /2�
 and U=0, the cotunneling rates simplify
to

�rr�
00�2,0� = �rr�

���2,0� = �rr�
dd�2,0� = �

��

	r
��	r�

��

2
�2 F��r − �r�� , �7�

�rr�
�̄��2,0� = 0 �8�

with F�x�=x / �exp�x /kBT�−1�. For U=�, we obtain

�rr�
00�2,0� = �

�

	r
�	r�

�

2
�2 F��r − �r�� , �9�

�rr�
���2,0� =

	r
�	r�

�

2
�2 F��r − �r�� , �10�

�rr�
�̄��2,0� =

	r
�	r�

�̄

2
�2 F��r − �r�� . �11�

The rates in Eqs. �9� and �10� are associated with nonspin-
flip processes while Eq. �11� describes spin-flip processes.

Finally, we also need the rates to first order in 	 and first
order in �tref�. Only those contributions with r�r� exist. We
obtain

�rr�
00�1,1� = �r,r̄��

�

�t�
ref��	r

�	r�
�


�
F��r − �r��cos � , �12�

�rr�
����1,1� = 2��,���r,r̄�

�t�
ref��	r

�	r�
�


�
F��r − �r��cos � , �13�

�rr�
dd�1,1� = − �rr�

00�1,1� �14�

for U=0 and

�rr�
00�1,1� = �r,r̄��

�

�t�
ref��	r

�	r�
�


�
F��r − �r��cos � , �15�

�rr�
����1,1� = �r,r̄�

�t�
ref��	r

�	r�
�


�
F��r − �r��cos � �16�

for U=�. Here, r̄� indicates the lead other than r�.

IV. RESULTS

A. Charge current

The quantity that is directly measured in experiment is the
charge current. As indicated above, the total current can be
split into three contributions: the current through the refer-
ence arm in the absence of the quantum dot, I�0,2�, the current
through the quantum dot in the absence of the reference arm,
I�1,0� or I�2,0� �for scheme 1 and 2, depending on the level
position �, respectively�, and the interference term, I�1,1����.
Only the last one depends on the Aharonov-Bohm phase �.

Direct tunneling through the reference arm can be calcu-
lated with Fermi’s golden rule and contributes to the current
with

I�0,2� =
e2



V�tref�2, �17�

where V is the bias voltage applied between the ferromagnet
and the normal conductor.
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We now consider the transport through the quantum dot in
the absence of the direct interferometer arm. If the dot level
lies in between the transport voltage defined by the Fermi
energies of the electrodes then transport through the dot will
be dominated by first-order tunneling, I�1,0�, and we use
scheme 1. We find

I�1,0� = − 2e
	F	N�	 − p2	F�

	2 − p2	F
2 �fF��� − fN���� , �18�

for noninteracting electrons, U=0, where fF/N is the Fermi
function of the normal/ferromagnetic lead. For an infinite
interaction, U=�, we obtain

I�1,0� = − 2eA−1	F	N�fF��� − fN����

� 		F�1 − p2��1 − fF���� + 	N�1 − fN����
 �19�

with

A = 	2 − p2	F
2 − �	FfF��� + 	NfN����2 + p2	F

2 fF
2��� .

If the dot level lies outside the energy window defined by
the Fermi energies of the leads �����max	kBT , �eV /2�
� then
I�1,0� is exponentially suppressed and transport through the
dot is dominated by cotunneling, I�2,0�. In this case, we em-
ploy scheme 2, see Sec. III. In this regime the current for
noninteracting electrons �U=0� reads,

I�2,0� = e2	F	N


�2 V . �20�

In the case of an infinite Coulomb interaction on the dot
�U=�� we have to distinguish different cases. For a dot-level
position well above the Fermi energy of the leads, ��0, the
current through the quantum dot is the same as for noninter-
acting electrons. In the opposite case, ��0, we get

I�2,0� = e2	F	N


�2 V�1 +
pm

1 − exp�− eV/kBT�� , �21�

where m is the spin accumulation on the dot, which depends
on the transport direction. In the regime of unidirectional
cotunneling, ���� �eV /2��kBT, it simplifies to m= p for
transport from the ferromagnetic into the normal lead �V
�0� and m=−p for the opposite transport direction �V�0�.

The flux-dependent part is given by I�1,1����= Ieven
�1,1� cos �

+ Iodd
�1,1� sin �. For noninteracting electrons, the coefficients are

Iodd
�1,1� = 0 �22�

and

Ieven
�1,1� = 2e�tref��	N	F���� �23�

with

���� =
1



Re�
 d�

fF��� − fN���
� − � + i0+ �

independent of the polarization p.
For an infinitely strong charging energy, both the contri-

butions even and odd in the flux are present. They read in the
sequential tunneling regime �scheme 1�

Iodd
�1,1� = 2eA−2�tref��	N	F�3/2�fF��� − fN����2			F�1 − p2��1 − fF���� + 	N�1 − fN����
2 − 	N

2 	p2�1 − fN
2 ����

 �24�

and

Ieven
�1,1� = 2eA−1�tref��	N	F����		F

2�1 − fF�����1 − p2� + 	N
2 �1 − fN���� + 	F	N�2 − fF����1 − p2� − fN����1 + p2��
 , �25�

respectively.
In the cotunneling regime �scheme 2� the odd contribution

drops out, Iodd
�1,1�=0 while the even part is given by

Ieven
�1,1� = −

e2V


�
�	F	N�tref��1 + pm� . �26�

The odd and even parts of the first flux-dependent correc-
tion differ in many respects. The odd part Iodd

�1,1� describes
transport processes where an electron cotunnels through a
lead.28 It only occurs for a nonvanishing Coulomb interac-
tion. Figure 2 shows both transport directions of Iodd

�1,1� as a
function of the dot-level position � for an infinite Coulomb
interaction. The current has its maximum value where the dot
level lies between the chemical potential of the two leads.
Beside this range the current decreases exponentially.

Figure 3 shows Ieven
�1,1� as function of dot-level position for

vanishing and infinite Coulomb interaction. For an infinite
Coulomb interaction two different lines are shown. The red,
dashed line is calculated by means of scheme 1 while the

-10 0 10
ε / Γ

0

0.005

0.01

0.015

I(1
,1

)
od

d
/e

Γ

eV = 15Γ
eV = -15Γ

FIG. 2. �Color online� Odd part of the first flux-dependent order
of the current Iodd

�1,1� for polarization p=0.7 and Coulomb interaction
U=� as a function of �. In the total current a negative bias voltage
corresponds to a transport from the ferromagnet into the normal
conductor. The value of the parameters used in the calculations are:
�=
 /2, �tref�=0.1, kBT=	, and 	F=	N=	 /2.
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blue, dashed-dotted line is obtained by means of scheme 2,
see Sec. III. Figure 3�a� shows the current of electrons from
the ferromagnetic into the normal lead. For noninteracting
electrons the current I�1,1� is an odd function of the dot level
position �. The sign change around �=0 relies on a phase
shift of the transmission amplitude of the quantum dot. An
infinite Coulomb interaction excludes the double occupation
of the dot. Hence it has a higher influence for negative than
for positive values of �. The transport from the normal con-
ductor into the ferromagnet is for ��0 strongly suppressed,
see Fig. 3�b�. Transport through the quantum dot is blocked
by an accumulation of the minority spin on the dot.

What can we conclude from this for the fraction c of
coherent transport through a quantum dot? Not much, as
long as the dot’s level is inside the energy window of lowest-
order transport. And even for the cotunneling regime, an in-
terpretation is difficult for �eV /2��kBT, i.e., when transport
processes from source to drain are partially compensated by
processes from drain to source. For the further discussion,
we will, therefore, turn to the regime of unidirectional cotun-
neling, ���� �eV /2��kBT. We emphasize that our method is
applicable to arbitrary values of U. For U=0, no spin-flip

processes occur since contributions with intermediate empty
and double occupation of the dot cancel out each other. As
long as U�min	�eV� ,kBT
 this also holds for a finite U. In
the opposite limit, U=�, double occupancy is fully sup-
pressed, and this cancellation does not occur anymore. This
will remain true as long as U�max	�eV� ,kBT
. Between
these two limits there will be a smooth crossover. Therefore,
we focus on the limits U=0 and U=� only. In particular, we
will distinguish the four different cases summarized in
Table I.

For reference, we always compare to the noninteracting
limit �case 1�. For strong Coulomb interaction, the dot level
may either lie well above the Fermi level of the leads �case
2a�, or it may lie well below. In the latter case, the results
will strongly depend on the polarity of the applied transport
voltage. Case 2b refers to the limit when electrons are trans-
ported from the ferromagnet to the normal lead, and case 2c
describes the opposite transport direction.

B. Fraction of coherent transport

How can the fraction of coherent transport be measured in
an experiment? Coherence can be tested by interferometry.
We consider here an Aharonov-Bohm interferometer in
which a single-level quantum dot is embedded in one of the
arms. Electrons entering from the source electrode can either
travel through the quantum dot or through the direct arm to
the drain. If no spin flip occurs, there will be an interference
of both paths, which gives rise to a flux-dependent current.
The amplitude of the Aharonov-Bohm oscillations relative to
the flux-averaged current contains information about the de-
gree of coherence.

There is, however, a major problem in quantitatively con-
necting the degree of coherence c and the visibility v. A
quantum-dot Aharonov-Bohm interferometer probes many
different transport channels, distinguished by the energy of
the incoming electron, simultaneously. If for the participating
electrons the transmission through the quantum dot is
strongly energy dependent, then the expected visibilities for
the individual channels will be very different from each
other. This is the case, when the dot’s level position lies
inside the energy window defined by the Fermi energies of
the leads. For establishing a connection between visibility
and fraction of coherent transport, we need to identify a situ-
ation in which for all participating electrons the transmission
through the dot is the same. This is possible in the cotunnel-
ing regime, i.e., when the energy level of the quantum dot is
outside this energy window, ����max	�eV /2� ,kBT
. Further-
more, for the case when the fraction of coherent transport
depends on the transport direction, we need �eV��kBT, i.e.,
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FIG. 3. �Color online� Even part of the first flux-dependent order
of the current Ieven

�1,1� for polarization p=0.7 as a function of � for
vanishing �solid line� and infinite Coulomb interaction for two dif-
ferent calculation schemes �see text�. Scheme 1 �dashed line� is
more accurate for ��−max	kBT , �eV /2�
 while scheme 2 �dashed-
dotted line� is more accurate for ��−max	kBT , �eV /2�
. �a� Elec-
trons are transported from ferromagnet into normal lead �eV=
−15	�. �b� Electrons are transported from normal lead into ferro-
magnet �eV=15	�. The value of the parameters used in the calcu-
lations are: �=0, �tref�=0.1, kBT=	, and 	F=	N=	 /2.

TABLE I. The considered cases.

case 1 U=0

case 2a U=�, �� �eV /2��kBT

case 2b U=�, −�� �eV /2��kBT, F→N

case 2c U=�, −�� �eV /2��kBT, N→F
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unidirectional cotunneling, as an extra condition to separate
the two directions.

What do we expect for the fraction c of coherent transport
in this regime of unidirectional cotunneling from lead r to
lead r̄? We assume that flipping the spin in the quantum dot
provides the only source of decoherence. The coherence
fraction c is the ratio

c =

�



�r̄r


�2,0�P


�0,0�

�

,
�

�r̄r


��2,0�P
�

�0,0�
�27�

with P

�0,0� being the probability to find the dot in state 
 and

�r̄r


��2,0� the transition rate from initial dot state 
� to final dot

state 
 where an electron is transferred from lead r to lead r̄.
In the numerator, only rates are taken into account that do
not change the dot state. In particular, no spin-flip processes
are included. This contrasts with the expression in the de-
nominator, in which spin-flip processes, i.e., 
=� and 
�
= �̄ are taken into account.

In the limit of vanishing Coulomb interaction, U=0 �case
1�, no spin-flip processes occur, which yields c=1. Now we
consider the limit of strong Coulomb interaction, U=�. If
the dot’s level lies well above the Fermi energies of the
leads, �� �eV /2� �case 2a�, then the dot will be predomi-
nately empty. Electrons passing through the quantum dot
cannot flip their spin, and therefore c=1. The situation be-
comes different for −�� �eV /2�. Then the dot is mostly sin-
gly occupied with either spin with probabilities p↑ and p↓
�such that p↑

�0,0�+ p↓
�0,0�=1�. If the electrons travel from the

ferromagnet to the normal lead �case 2b� we get c= �1
+ p2� /2. In the opposite case �case 2c�, transport from the
normal lead to the ferromagnet, we get always c=1 /2 since
an electron enters the dot from the normal lead and hence
carries in one half of the cases the same spin as the electron
initially occupying the dot.

These results are given in the last column of Table II. The
remaining question now is whether and how they are re-
flected in the visibility of the Aharonov-Bohm oscillations.

C. Visibility

In the regime of unidirectional cotunneling, the leading
order of transport through the quantum dot is I�2,0�. In this
limit the transmission through the QD is for all energies in
good approximation the same. Furthermore, the sin � part of
the current which describes cotunneling through the lead but

not through the quantum dot28 vanishes. The total current
then is

Itotal = I�2,0� + I�0,2� + I�1,1� = Iav�1 + v cos �� , �28�

where v is the visibility and Iav the flux averaged current.
For the average current, measured in units of I0=e2V /


we find

Iav

I0
= ��tref�2 +

	F	N

�2 for cases 1,2a,2b

�tref�2 + �1 − p2�
	F	N

�2 for case 2c. �
�29�

We express the visibility in terms of

v0 =

2
�	F	N

���
�tref�

�tref�2 +
	F	N

�2

. �30�

We obtain

v
v0

=�
1 for cases 1,2a

1 + p2

2
for case 2b

1

2
−

p2�tref�2

2�tref�2 + 2�1 − p2�
	F	N

�2

for case 2c. �
�31�

In the cases 1, 2a, and 2b, the visibility can be maximized

by tuning �tref� to
�	F	N

��� . Then, v0=1 and v=vmax, independent
of the degree of spin polarization p. However, for the case
2c, the maximal visibility vmax can only be obtained by tun-

ing �tref� in a p-dependent way to
�	F	N

���
�1− p2. In this case

vmax turns out to be vmax=
�1−p2

2 .
The visibility of the total current is a quantity that can be

measured in an experiment. To what extent the visibility pro-
vides information about coherence of transport is discussed
in the next section.

TABLE II. Summary of results.

v /v0 vmax c

U=0 �case 1� 1 1 1

U=�, �� �eV /2��kBT �case 2a� 1 1 1

U=�, −�� �eV /2��kBT, F→N �case 2b� �1+ p2� /2 �1+ p2� /2 �1+ p2� /2

U=�, −�� �eV /2��kBT, N→F �case 2c� 1
2 − p2�tref�2

2�tref�2+2�1−p2�
	F	N

�2

�1− p2 /2 1/2
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D. Visibility versus coherence

In order to investigate the measurability of coherence we
compare the fraction c with the maximal visibility vmax. Be-
cause coherence is a necessary requirement for flux depen-
dence in general c�vmax. In the case of a vanishing Cou-
lomb interaction �case 1� or a very high dot’s level position
�case 2a� vmax=1 and, hence, c=1, see Fig. 4�a�. If the dot
level is very low and electrons are transferred from the fer-
romagnet into the normal conductor �case 2b� the coherent
fraction c is equal to the maximal visibility vmax, see Fig.
4�b�. For a vanishing polarization 1/2 of the electrons leaving
the source carry the same spin as the electron initially occu-
pying the dot. Hence, in one half of the cases the spin on the
dot is not flipped and transport is coherent. The higher the
polarization the more electrons with majority spin take part
in transport and, thus, less spin-flip processes take place.

For reversed transport voltages �case 2c� independent of
the polarization one half of the processes are coherent. The
source is a normal lead and, hence, one half of the electrons
which tunnel onto the dot carry the same spin as the electron
which initially occupied the dot. On the other hand the vis-
ibility is low for a high polarization, see Fig. 4�c�, due to spin
blockade on the dot. While transport through the reference
arm is spin-independent transport through the quantum dot is
not. This prevents the possibility to tune the transmission
through the reference arm and the transmission through the
quantum dot to the same value.

In all cases the maximal visibility is obtained by tuning
�tref� to a certain value. While in the cases 1, 2a, and 2b this
value is independent of the polarization p, in case 2c �tref� has
to be tuned in a p-dependent way, see Sec. IV C.

V. CONCLUSIONS

We have investigated the current through an AB-
interferometer coupled to one normal and one ferromagnetic
lead with a quantum dot embedded in one of the arms. In
particular, we elucidated the influence of polarization on the
visibility of transport and studied the relation between vis-
ibility and coherence. We found that in the lowest flux-
dependent order transport of noninteracting electrons is fully
coherent and the maximal visibility is 1. In the case of an
infinite intradot Coulomb repulsion the coherence as well as
the visibility of the current are strongly influenced by the
polarization and the transport direction. As long as no spin
blockade on the dot occurs the maximal visibility is equal to
the coherent fraction of the current and can be obtained by
tuning the transmission through the reference arm �tref� in a
p-independent way.
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APPENDIX: CALCULATION OF A COTUNNELING RATE

In this appendix we give an example of how to calculate
the cotunneling rates. For this, we choose the rate �rr�

�̄��2,0�,
where an electron is transferred from lead r� to lead r ac-
companied by a change of the dot state from � to �̄. We start
with

�rr�
�̄��2,0� =

1

2




−�

�

d�f�� − �r���1 − f�� − �r��

� Re� �	r�
�̄

	r
�

� − � + i0+ +
�	r�

�̄
	r

�

� + U − � + i0+�2

.

�A1�

The regularization +i0+ in the resolvents is added here by
hand; however, it appears naturally when employing the real-
time diagrams. In the present case, there are two possible
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FIG. 4. �Color online� Maximal visibility and coherent fraction
of the total current for the two different transport directions.
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intermediate states, the dot being empty or doubly occupied.
The corresponding energy differences to the final state ap-
pear in the denominator of the resolvents that have to be
added coherently before performing the square. The Fermi
functions guarantee that the lead state from the electron en-
ters the dot is occupied and that the lead state to which the
dot electron leaves is unoccupied. The integral sums over all
possible energies of the incoming electron. For an infinite
Coulomb repulsion U=� and ����max	kBT ,�r
 the rate
simplifies to

�rr�
�̄��2,0� =

1

2
�2	r�
�̄

	r
�


−�

�

d�f�� − �r���1 − f�� − �r��

=
1

2
�2	r�
�̄

	r
�

�r − �r�

e���r−�r�� − 1
. �A2�

The calculation of the current rate is similar. The only dif-
ference is that one has to multiply the rates with the charge
that is being transferred through the dot during the cotunnel-
ing process.
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