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Conductance of quantum impurity models from quantum Monte Carlo
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The conductance of two Anderson impurity models, one with twofold and another with fourfold degeneracy,
representing two types of quantum dots, is calculated using a world-line quantum Monte Carlo (QMC) method.

Extrapolation of the imaginary time QMC data to zero frequency yields the linear conductance, which is then
compared to numerical renormalization-group results in order to assess its accuracy. We find that the method
gives excellent results at low temperature (7< Tx) throughout the mixed-valence and Kondo regimes but it is

unreliable for higher temperature.
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Quantum dots provide a highly controlled and tunable
way to study a range of quantum many-body physics: vari-
ous quantum impurity models and their associated Kondo
effects,'® tunneling with dissipation,” and Luttinger liquid
effects,®® to name a few. The crucial experimental observ-
able in these situations is the conductance; thus, calculating
the conductance is a key task for both analytic and numerical
approaches. Numerical methods have indeed been
developed,'®!3 with remarkable agreement for small systems
between theory and experiment.'* But these methods scale
poorly for the larger, more complex multidot systems'>'6
that are currently of great interest. Here we implement and
test a way to calculate the conductance from a path-integral
quantum Monte Carlo (QMC) calculation. While it yields
less information than numerical renormalization group
(NRQG) in simple systems (e.g., a single quantum dot), the
method should scale readily to more complicated systems.
Results for two Anderson-type impurity models show that
the method works very well at low temperature.

For calculations of the conductance in simple quantum
dot systems, the most accurate results are obtained using the
NRG method.'*!3 NRG becomes slow and even impractical,
however, if there are many leads, a many-fold degeneracy, or
more than a few interacting sites. In such situations, the
world-line QMC method could be a valuable alternative
since it scales nicely as the problem size increases. However,
QMC is formulated in imaginary time rather than real time:
to extract dynamic properties one must transform from
imaginary back to real time. The statistical error in the QMC
data makes this an ill-posed problem, for which various ex-
trapolation and continuation methods have been developed.!”
To obtain the conductance of interest here, we extrapolate to
zero frequency the appropriate correlation function evaluated
using QMC at the imaginary Matsubara frequencies.!82
This has been used, for instance, to study a one-dimensional
(ID) Hubbard chain coupled to noninteracting leads in the
absence of the Kondo effect.??

The aim of this paper is to test the validity of the extrapo-
lation method for Anderson impurity models in both the
mixed-valence and Kondo regimes. We study the linear con-
ductance using QMC in two models: a single impurity
Anderson model with either twofold or fourfold degeneracy.
The standard twofold degenerate model is a simplified rep-
resentation of a single GaAs quantum dot connected to
leads.! The fourfold degenerate model represents a quantum
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dot in a carbon nanotube in which there is an additional
orbital degeneracy from the helicity of the states.'* This
orbital degeneracy is present in both the discrete states in the
dot and the extended states in the carbon nanotube leads.

Consider a model, then, in which a single level with Cou-
lomb repulsion U represents the quantum dot (which we also
refer to as the impurity site) and is coupled to two noninter-
acting bands, left (L) and right (R). The degeneracy of both
the discrete level and the free electrons is M; we will con-
sider the two cases M=2 (standard single-level Anderson
model) and M=4 (both spin and orbital degeneracy). The
Hamiltonian is

M
U -
H= X X €ChioChio + E(N_Ng)z

ki={L.R} o=1
M
+ > > V(chd,+He), (1)
ki={L.R} o=1

where the electron number operator for the impurity site is

N =2i‘;’=1df,d‘,. The energy in the bands is such that -D=¢,
=D where D is the half bandwidth, and we assume a flat
density of states, p=1/2D. The hybridization of the impurity
to each lead is given by V, which yields a level width
Iy=T s+, with I'; =Tk ;= wVf,p. In terms of the gate
voltage N, (i.e., the equilibrium occupancy of the dot),
the energy level of the dot is explicitly given by g,
=U(1-2N,)/2. Finally, in the absence of any orbital degen-
eracy, the degeneracy of the d level is simply given by spin,
o=T or |.

Method. A new basis for the two noninteracting bands can
be independently constructed by starting from the localized
impurity state. In this way the model is mapped to a 1D
infinite tight-binding chain,'? as shown in Fig. 1. We use a
large chain (~10° sites) in order that its finite size is irrel-
evant for the physics of interest. Then, in order to make the
computation time manageable, logarithmic blocking of the

FIG. 1. (Color online) The 1D infinite tight-binding chain,
where the zeroth site is the impurity site (quantum dot).
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energy levels is used to reduce the number of effective sites
(in other words, we map the problem to a “Wilson chain”'?).
In this work, the logarithmic blocking factor is A=2.5 (the
number of effective sites is ~61). We use a form of
blocking®® which avoids A-dependent corrections®* to the
low-energy scales [i.e., Tg(A)]. We solve the resulting prob-
lem using the world-line quantum Monte Carlo method with
a directed-loop cluster algorithm.?>® The Trotter number N
is chosen such that e=8/N=0.1/D.

To find the conductance, we proceed following the
method of Syljuasen in Ref. 22 which is itself closely related
to several other approaches.'?! The conductance at the
(imaginary) Matsubara frequencies, g(iw,) with w,=27nT,
is related in linear response to the current-current correlation
function in the usual way. For a one-dimensional system with
open boundary conditions, current continuity can be
used!?2922 to express g(iw,) in terms of charge correlations
(polarizability),

. w.
g(lwn) =—

B
ﬁj dr cos(w,7)(P(7)P,(0)), (2)
(

0

where P, is the sum of the electron charge-density operators
to the right of y, PyEEyrzyﬁy,. Thus the time derivative of
(P,) is the current through the bond between sites y—1 and y.
We calculate g(iw,) for n>0 from the world-line QMC data
in this way. Not all combinations of x and y can be used in
Eq. (2) because the system is not a physical chain but only
effectively mapped to a chain. Notice that the current
through the four bonds closest to the impurity site (Iabeled 0)
corresponds to the physical current. Therefore, x and y must
be chosen from among {-1,0,1,2}. In addition, left-right
symmetry reduces the number of independent combinations.
In our calculation, we choose three cases for x and y: (0,1),
(0,0), and (-1,0).

The linear conductance G is obtained by extrapolating
gliw,) to zero frequency, G=lim,, o glimw,). We carry out
this extrapolation as follows. First, we try to fit the data at
the four or five lowest Matsubara frequencies [g(iw,) for n
=1,...,40r1,...,5] to a linear or quadratic polynomial. If
this method yields a good fit, we simply extrapolate the data
by using the polynomial. If neither polynomial fit is good,
the data at the first 14 lowest Matsubara frequencies are fit
by using a series of rational polynomial functions of different
degree [p/q] (e.g., p for the numerator, g for the denomina-
tor, p=1 for a constant, p=2 for linear function, etc.) as
described in Ref. 22. We use all p and ¢ such that 5=p+gq
=10 and p,q=2 but exclude cases in which spurious poles
appears. The final extrapolated value is the average of the
results for these different forms, and the error bar at zero
frequency is the maximum spread, which is larger than the
error bar of any single [p/q] extrapolation. To justify this
method, we check that three conditions are met. (i) The data
for all the combinations of x and y must extrapolate to nearly
the same value (the current through different bonds at non-
zero frequency can be different but current continuity re-
quires that at zero frequency the current through all bonds be
the same). (ii) The data should fit well to most of the func-
tional forms of degree [p/¢] (we cannot exclude too many
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FIG. 2. (Color online) Conductance through a single-level
Anderson model without orbital degeneracy as a function of gate
voltage: QMC result (symbols) compared to NRG calculation (Ref.
13) (lines). Data for four temperatures are shown: 7=0.11Tg
(brown, dot-dashed, B=98.3), T=0.24Tx (blue, upper solid, B
=4377), T=12Tx (red, dashed, 8=8.6), and T=6.1T (black,
lower solid, B=1.7). For T=6.1T, the black stars are for (x,y)
=(0,1) while the black circles are for (0,0). Tk denotes the Kondo
temperature found by NRG (Ref. 13) at the particle-hole symmetric
point (—€,/U=0.5). Note the high accuracy of the QMC result as
long as T<Tg.

cases). (iii) Finally, the conductance should have a small er-
ror bar (a large error bar shows that the extrapolation is
model dependent).

Conductance without orbital degeneracy. We first con-
sider the standard single-level Anderson model, M =2 in Eq.
(1). We compare the conductance obtained by our QMC cal-
culation to that from the NRG calculation of Ref. 13 [see
their Fig. 2(a)]. The parameters are D=100, '=1.0, and U
=37. The NRG value'® for the Kondo temperature at the
particle-hole symmetry point (—e/U=0.5), which we denote
Tk throughout, is Tx=0.1.

Figure 2 compares our calculation of the conductance as a
function of gate voltage to the NRG results'? for several
temperatures. The QMC results are in excellent agreement
with the NRG results for T=Ty for all values of the gate
voltage—that is, in both the mixed-valance and Kondo re-
gimes. For T slightly larger than Ty, agreement is good; in
contrast, note that there is a substantial error in the extrapo-
lated conductance value for larger 7.

Some examples of the extrapolations used to obtain the
conductance shown in Fig. 2 are given in Figs. 3-5, moving
from lower to higher temperature. Figure 3 shows four ex-
amples of the conductance at imaginary frequency, g(iw,),
for T<Ty. Examples of a linear fit [panel (a)], a quadratic fit
[panel (c)], and rational polynomial fits [panels (b) and (d)]
are shown. In the mixed valance regime, —e,/U<0.1 or
>0.9, a linear or quadratic polynomial works well, and the
three curves for different (x,y) all extrapolate to nearly the
same value, leading to a small error bar. In the Kondo re-
gime, 0.1 <-¢,/U<0.9, the linear or quadratic polynomial
does not fit well but the QMC data can be fit to a series of
rational polynomials as discussed above. Almost all values of
[p/q] work well, and the three sets of g(iw,) for different
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FIG. 3. (Color online) Conductance at Mat-
subara frequencies at low temperature (symbols)
for the single-level Anderson model without or-
bital degeneracy and the corresponding fits used

0 0.1 0.2 0.3

to extrapolate to zero frequency (lines). The val-

T=0.24Tk - Sd/U=0.1

ues of T and —e/U are (a) 0.11Tk, —0.1; (b)
0.11Tx, 0.5; (c) 0.24Tx, 0.1; and (d) 0.24Tx, 0.3.
Points for three choices of (x,y) are shown: (0,1)
red triangles, (0,0) blue squares, and (-—1,0)
green circles. A good quality extrapolation is ob-
tained in all cases.
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(x,y) extrapolate to nearly the same value, leading to a small
error bar. In this temperature regime, then, the extrapolation
is straight forward and the agreement with the NRG result is
excellent.

For T~ Tk, two examples of the conductance function
g(iw,) are shown in Fig. 4. For the mixed valance regime
[Fig. 4(a)], a quadratic polynomial works well for (x,y)
=(0,0) and (-1,0), and rational polynomials are used for
(0,1). All three combinations extrapolate to nearly the same
value, so the result is accurate. In the Kondo regime [panel
(b), —€,/U=0.5], g(iw,) for (0,1) can be fit with rational
polynomials. However, for both other cases, (x,y)=(0,0)
and (-1,0), there is a small wiggle near w=27Tg in the
imaginary frequency conductance function g(iw,), showing
that there is important structure below that frequency. Since
there is only one data point below w=27TY, the extrapola-
tion is unreliable. Thus, we do not use the data when struc-
ture appears at a frequency below which there are only a few
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FIG. 4. (Color online) Conductance at Matsubara frequencies
for T=1.2Tk in the absence of orbital degeneracy (symbols) and
the corresponding fits used to extrapolate to zero frequency (lines).
The values of —e/ U are (a) 0.1 (mixed-valence) and (b) 0.5 (Kondo
regime). Points for three choices of (x,y) are shown: (0,1) red tri-
angles, (0,0) blue squares, and (—1,0) green circles. Extrapolation
using (x,y)=(0,1) is accurate.

data points. The conductance in the Kondo regime for this
temperature is based only on (x,y)=(0,1); nonetheless, the
agreement with the NRG result is good.

Finally, for T> Tk (Fig. 5), the functions g(iw,) for the
three combinations of (x,y) do not extrapolate to the same
zero-frequency value. Notice also that the conductance ob-
tained in the mixed-valence regime (the gate voltage at
which the conductance peaks for this temperature) has a
large error bar. For the cases (x,y)=(0,0) and (-1,0), the
QMC data can be fit with a rational polynomial but the ex-
trapolated result disagrees substantially with NRG. For the
case (0,1), the average value of G from QMC roughly fol-
lows the NRG result (Fig. 2) but the large error bar in most
cases indicates that the result has little meaning. Thus, the
QMC extrapolation method is unreliable for 7 substantially
larger than Tk.

Conductance with orbital degeneracy. We now turn to
considering an Anderson model in which all the states, both
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FIG. 5. (Color online) Conductance at Matsubara frequencies
for high temperature, 7=6.1T, in the absence of orbital degen-
eracy (symbols) and the corresponding fits used to extrapolate to
zero frequency (lines). (a) —e/U=-0.1 and (b) —€/U=0.5. Points
for three choices of (x,y) are shown: (0,1) red triangles, (0,0) blue
squares, and (—1,0) green circles. The black stars are the NRG data.
The accuracy of the extrapolation is poor in all of these cases.
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FIG. 6. (Color online) Conductance in fourfold degenerate
model as a function of gate voltage: QMC results (symbols) com-
pared with NRG calculations (Ref. 12) (lines with symbols). Re-
sults for three temperatures are shown: T=0.30T% (blue circles and
solid line, 8=79.4), 0.93Tx (red squares and dashed line, 8=25.6),
and 2.7T (green triangles or stars and dotted line, 8=8.77). For the
highest temperature (7T=2.7Tk), the QMC data labeled case 1 are
based on (x,y)=(0,0) and (-1,0) while those for case 2 use (0,1).
Tx here denotes the Kondo temperature found by NRG (Ref. 12) at
the particle-hole symmetric point. The good agreement of the QMC
data with the NRG results illustrates the value of the QMC ap-
proach, though note the growing error bar when 7= T.

those in the dot and in the leads, have an orbital degeneracy
in addition to spin degeneracy: M=4 in Eq. (1). This situa-
tion arises, for instance, in carbon nanotube quantum dots
connected to carbon nanotube leads.”*?” To assess the qual-
ity of our QMC results, we compare with the NRG results of
Ref. 12 (see their Fig. 16). The parameters we use are D
=30, U=0.1 D=3, I'; ,=0.003%D, and I'; 4=0.0027D. At
the particle-hole symmetric point where the Kondo tempera-
ture is a minimum, the NRG estimation'? for Ty yields
Tx=0.0014 D.

Figure 6 compares our calculation of the conductance as a
function of gate voltage to the NRG (Ref. 12) results. For
T=Tg, the QMC and NRG results are in very good agree-
ment throughout both the mixed-valence and Kondo re-
gimes. For T>Tyx (T=2.7 Tg), the QMC conductance
roughly follows the NRG result but does not accurately agree
with it. In addition, a large error bar is encountered at the
highest temperature, showing that, as in the doubly degener-
ate case, the extrapolation is not reliable for these tempera-
tures.

Four examples of the extrapolation from the imaginary
frequency conductance function, g(iw,), are shown in Fig. 7.
At low temperature, panel (a), the extrapolation is good and
consistent for all three values of (x,y) using the rational
polynomial fit. Near the particle-hole symmetry point and for
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T=0.93T, -¢/D=0.15 |

FIG. 7. (Color online) Imaginary frequency conductance func-
tion for single impurity Anderson model with orbital degeneracy
(M=4). The values of T and —€/ U are (a) 0.30T, 0.06, (b) 0.937%,
0.15 (near particle-hole symmetry), (c) 2.7Tk, 0.15, and (d) 2.7Tx,
0.02. Points for three choices of (x,y) are shown: (0,1) red tri-
angles, (0,0) blue squares, and (—1,0) green circles. The black stars
are the NRG data. The extrapolation is successful at low tempera-
ture but becomes increasingly problematic at higher temperature,
T>Ty.

T=Ty [panel (b)], the case with (x,y)=(0,1) fits nicely to a
rational polynomial and the extrapolated value agrees with
NRG. For the other two curves [(x,y)=(0,0) and (-1,0)], a
small wiggle appears near w=2mT¥, as in the case without
orbital degeneracy (Fig. 4), making extrapolation difficult.
For larger T, panels (c) and (d), although the QMC data for
two cases [(x,y)=(0,0) and (-1,0)] can be fit to rational
polynomials and yield an estimated conductance with small
error bar, the value does not agree accurately with the NRG
result. The (x,y)=(0, 1) yields a large estimated error. There-
fore, as we saw in the case without orbital degeneracy, when
the temperature become large, the QMC method becomes
inaccurate.

In summary, we developed and tested a method to obtain
the linear conductance by extrapolating from QMC data. By
studying two cases for which NRG results exist in the
literature,'>!* we demonstrated the accuracy of the extrapo-
lation technique as long as the temperature is not too high,
T<Tg (where Tx denotes the Kondo temperature at the
particle-hole symmetric point). We expect that this technique
will be useful for finding the conductance of more complex
quantum dot and/or impurity systems, such as three and four
quantum dot structures. !>
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