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For a long finite chain with repeated units it is demonstrated that terminal substitution can change the dipole
moment per unit. On the other hand, the dipole moment per unit is known to be essentially a bulk property
accessible through crystal orbital calculations on the corresponding infinite periodic system which, by con-
struction, does not have terminal regions. This seeming contradiction is resolved by relating the accumulated
charge at the ends of a finite chain to an apparently arbitrary, and nonphysical, integer associated with the phase
of the crystal orbitals. Model one-dimensional calculations show that the measurable structural responses of a
finite chain to an electrostatic field can be exactly reproduced by an infinite periodic treatment of the same
system. The field is seen to affect the lattice constant and, thereby, the internal structural parameters.
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I. INTRODUCTION

A detailed understanding of the response of materials to
electromagnetic fields is essential to their spectroscopic char-
acterization and application in linear and nonlinear optics.
For processes involving low-frequency fields, either alone or
in combination with optical fields, both the structural �i.e.,
nuclear� and electronic responses are important. In this re-
gard the total dipole moment, including both permanent and
induced contributions, is the key carrier of information. Al-
though it is straightforward to calculate this property for any
finite system, it is only in the last couple of decades that
appropriate computational procedures for systems that can be
considered as infinite and periodic have been presented.

In the present work we shall concentrate on a large �mac-
roscopic� quasi-one-dimensional �1D� material that consists
of a sequence of identical building blocks �units� which de-
viate from regularity only in the terminating regions. Since
the number of units in the terminations relative to the total is
very small, it is a good approximation for most purposes to
neglect the terminations and treat the material as an infinite,
periodic system. In the thermodynamic limit the �intensive�
property per unit corresponding to the extensive property
��N�, may be determined as �N is the total number of units�

�̄ = lim
N→�

��N�
N

= lim
N→�

1

�N
���N + �N� − ��N�� . �1�

For our discussion we will be particularly interested in the
total energy per unit as well as the dipole moment per unit.
The latter is related to the polarization,

P� =
1

a
�̄� , �2�

where a is the length of one unit. In the case of two- or
three-dimensional �2D or 3D� materials the length is re-
placed by the area or volume as appropriate.

The question of whether terminations or surfaces influ-
ence the polarization has been the subject of discussion for
several decades.1–8 A rigorous formulation establishing that
polarization is a bulk property was, finally, presented by
Vanderbilt and King-Smith.8 Nonetheless, there remains a

sense in which it is surface dependent. Thus, as we will
demonstrate here, the termination of 1D chains can influence
experimental observables determined by the polarization.
Specifically, we show that the lattice constant in the inner
part of an extended 1D system exposed to a uniform longi-
tudinal electrostatic field may be altered by changing the
terminations. The same is true of internal structural param-
eters as well. Most importantly, we also present a procedure
for determining this effect from calculations on the corre-
sponding infinite periodic system.

As pointed out, for example, by Souza et al.,9 one may
distinguish between the response of the structure with re-
spect to either the macroscopic field strength or the potential
drop across each lattice vector. As our treatment shows, in
1D the former is surface dependent whereas the latter is not.

An experimental realization of the surface-dependent case
may be obtained by considering a long chain like that of Fig.
1, placed between two electrodes. Applying a potential be-
tween the two electrodes, the length of the chain will change.
This change is monitored during the experiment and may, in
general, be partly due to changes in the length of the bulk
region and partly due to changes in the lengths of the units in
the terminations. Often the change in length due to the ter-
minations can be neglected in comparison with the macro-
scopic effect arising from the change in the bulk lattice con-
stant, a. Sometimes, however, we have found that such will
not be the case. In either event the contribution from the
terminations can be accounted for by determining the chain
length dependence of the structural response. Then, a plot of
the change in length per bulk unit versus the fixed field
strength, Edc, can be used to obtain the zero-field limit

da
dEdc

�Edc=0
. We shall demonstrate that this change, which can

FIG. 1. Schematic representation of a long but finite, regular
chain. Each filled circle, placed regularly along the chain axis �the z
axis�, represents a building block containing one or more atoms.
Donor and acceptor groups �D and A� may be included at the ter-
minations. The separation into a central �C� and two terminal �L and
R� regions is indicated by the vertical lines.
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be experimentally obtained,10 depends on the terminations.
Alternatively, one may also study the change in the lattice

constant for fixed potential drop over one unit cell. This re-
sponse does not depend on the terminations. Thus, the two
measurements, which are both feasible, contain complemen-
tary information. From a theoretical point of view, both re-
sponses can also be calculated.

II. THEORY

During the last two decades a mathematically rigorous
way to treat polarization has been developed through the
Berry phase approach �modern theory of polarization �MTP��
�Refs. 8 and 11–14� and the related �see Refs. 14 and 15�
vector potential approach �VPA�;16,17 with the latter based
upon earlier work by Blount18 and by Genkin and Mednis.19

As background we begin by briefly reviewing some key re-
sults from these treatments and, then, turn to our analysis and
illustrative calculations for the case of a system extended in
1D.

A schematic representation of a long but finite 1D chain is
shown in Fig. 1. It is useful to split this system into three
distinct spatial parts, a perfectly regular central region �C�
where the electrons do not feel the finite size of the system,
and two terminal regions �L and R�. The component of the
dipole moment per unit along the �z� chain axis can be de-
fined as

�̄ = lim
N→�

���N + 1� − ��N�� , �3�

where N is the number of units in the chain and � is the z
component of the total dipole moment. With the spatial sepa-
ration above we have20,21

� = �
L

��r��zdr� + �
C

��r��zdr� + �
R

��r��zdr� = NC�C

+ �zR�
R

��r��dr� + zL�
L

��r��dr��
+ ��

L

��r���z − zL�dr� + �
R

��r���z − zR�dr�� �4�

in which ��r�� is the total charge density, �C is the z compo-
nent of the dipole moment of a �neutral� central unit and NC
is the number of units in C. Finally, zR and zL describe the
centers of nuclear charge in the R and L regions, respec-
tively. Assuming that the entire system is neutral, a combi-
nation of Eqs. �3� and �4� gives �see Ref. 20�

�̄ = �C + QR · a , �5�

where QR�=−QL� is the total charge in R �L�, and a is the
unit-cell lattice constant of C. According to this expression
the dipole moment per unit depends on the charge accumu-
lated in the terminal regions which, at first glance, can vary
widely.

There are, however, restrictions on the surface charges as
Vanderbilt and King-Smith8 have shown. They write the
electronic part of the dipole moment in terms of localized
orbitals wlp

�e = 	
l

	
p
� �wlp�r���2zdr� , �6�

where wlp, the pth orbital localized to the lth unit, is obtained
by a unitary transformation of the occupied canonical orbit-
als. Then, using the idempotency of the density matrix, it is
proved that the number of electrons associated with the ter-
minal regions must be integral. On this basis, the dipole mo-
ment per unit �and, consequently, the polarization� is essen-
tially a bulk property with quantized values that differ from
one another only by lattice vectors.20,22 It follows that this
property is accessible �modulo a lattice vector� through a
conventional band-structure calculation on an infinite peri-
odic system, even though there are no terminations �per con-
struction� in the latter case.

For a 1D periodic system the electronic orbitals may be
written as

� j�k,r�� = eikzuj�k,r�� , �7�

where j is a band index and uj�k ,r�� is lattice periodic. Usu-
ally, a finite set of K equidistant k points in the interval
�− �

a ; �
a � is employed in a band-structure calculation. Accord-

ing to both the MTP and VPA treatments one may write the
electronic part of the static dipole moment per unit as12,15,23

�̄KSV =
i

K
	
k=1

K

	
j=1

B


uj�k��
�

�k
uj�k�� . �8�

In Eq. �8� B is the number of singly occupied bands �we
assume that there is a gap between occupied and empty or-
bitals and allow for spin-up and spin-down orbitals to be
different�. The total dipole moment per unit is obtained by
adding the contribution from the nuclei in the zeroth unit
cell.

In Eq. �7� the orbitals may be modified by band and
k-dependent phase factors,

� j�k,r�� → ei�j�k�� j�k,r�� �9�

in which

� j�+ �/a� − � j�− �/a� = nj · 2� �10�

since

ei�j�+�/a� = ei�j�−�/a�. �11�

Thus, �̄ contains an unknown, additive constant, n ·a, with
n=	 jnj.

For both the extended but finite, system and the infinite
periodic model for this system the dipole moment per unit
may be changed by an integer multiple of the unit cell lattice
constant. However, the origin of the integer is quite different
in the two cases. For the finite chain it has a physical origin
determined by the terminations which govern the charge ac-
cumulated at the chain ends. Accordingly, the integer is fixed
by the electronic structure. For the infinite periodic model
the integer is related to a mathematical ambiguity in the
phase of a complex number and is completely arbitrary. Here
we demonstrate that a fixed choice of the integer for the
infinite periodic system corresponds to modeling a finite
chain with a specific charge in the terminal region. We do
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this by considering a long finite oligomeric chain with dif-
ferent terminations �see Fig. 1� and, as a result, different
charge accumulation at the chain ends. When exposed to
electrostatic �dc� fields different electronic and structural re-
sponse properties are obtained. It is, then, shown that all such
properties can be reproduced by maintaining an appropriate
fixed value of n in corresponding model infinite periodic
chain calculations.

III. COMPUTATIONAL APPROACH

In order to perform extensive calculations, and to avoid
truncation and other numerical errors, we use a model
Hamiltonian similar to the ones employed in earlier
studies.15,21,24 In doing so we emphasize that no attempt is
made to reproduce results for any real system but that the
model Hamiltonian contains all important features of a
parameter-free electronic-structure calculation.

Our system is a linear chain with an −A=B-repeat unit
that has alternating atoms and bond lengths. There are four
electrons per repeat unit and the nuclear charges are each +2.
For the infinite periodic chain two parameters describe the
structure. One is the lattice parameter a and the other is a
parameter u that describes the bond-length alternation, i.e.,
the two atoms of the nth unit cell are placed at

z = 	
a

4
+ n · a 
 u , �12�

where the upper �lower� sign is used for the A �B� atoms.
Predetermined values for the field-free structural constants u
and a are obtained by adding an elastic contribution to the
electronic energy. This contribution contains terms of second
and fourth order in the nearest and next-nearest bond lengths,

Eelastic =
f1

2 	
i
�zi − zi−1 −

d0

2
2

+
f3

4 	
i
�zi − zi−1 −

d0

2
4

+
f2

2 	
i

�zi − zi−2 − d0�2 +
f4

2 	
i

�zi − zi−2 − d0�4. �13�

Here zi is the z coordinate of the A atom of the i+1
2 th unit cell

for odd i and of the B atom of the i
2 th unit cell for even i.

The parameters of this function �i.e., f1, f2, f3, f4, and d0� are
varied so that the field-free optimized geometry gives the
desired values for a and u. In the finite chain calculations the
structure of the central part of the chain containing N units is
used for comparison with the infinite periodic chain as fol-
lows �the notation is the same as in Eq. �13��,

a =
1

2
��zN+1 − zN−1� + �zN+2 − zN��

u =

1

8
�zN+2 − 3zN+1 + 3zN − zN−1� �14�

with the upper �lower� sign in the second identity for odd
�even� N. When the finite chain is sufficiently long the values
of a and u so obtained agree with those of the infinite peri-
odic chain. The origin of the coordinate system is chosen as

the arithmetic average of all nuclear positions for the finite
chains and as that of all nuclei in the Born von Kármán zone
for the infinite, periodic chains.

For the calculation of electronic properties a restricted
Hartree-Fock-type approximation is used as well as a basis
set of orthonormal atom-centered functions with two func-
tions per atom denoted by �lXp where p is the basis function
on atom X of the lth unit, i.e., p=1,2 and X=A or B. Cor-
responding to each spatial orbital �lXp there are two spin-
orbitals �lXp� and �lXp.

We let ĥ0 be the field-free one-electron operator and v̂ the
two-electron operator. The one-center one-electron term


�lXi��ĥ0��lXj�� is taken to be nonzero only if i= j. Moreover,
the two-center matrix elements are assumed to vanish except
for those between functions that have the same spin and are
located on neighboring atoms. These nonvanishing elements
are taken to vary linearly as a function of interatomic dis-
tance. For each of the four pairs of nearest-neighbor basis
functions there are, accordingly, two parameters. Finally, for
simplicity, the only two-electron terms retained are

�lXi�1�lXi�2�v��lXi�1�lXi�2�.

For the finite chain the dc field is included in the elec-
tronic Hamiltonian through the term −	iEdczi, where zi is the
z coordinate of the ith electron, Edc is the amplitude of the dc
field, and we have set the magnitude of the elementary
charge �e�=1. It turns out to be important for this term that
the matrix elements of the dipole moment operator are con-
sistent with the overlap matrix elements. This is most conve-
niently achieved by fixing the spatial form of the basis func-
tions which, for simplicity are chosen to be: �lX1�z�= 1

�wX1
for

�z−z0��
wX1

2 , and zero elsewhere; �lX2�z�= 1
�wX2

for
wX2

4 � �z
−z0��

wX2

2 , −1
�wX2

for �z−z0��
wX2

4 , and zero elsewhere, where z0

is the position of the atom X in the lth unit. The widths,
w �wX1�wX2�, are kept sufficiently small so that functions
on non-neighboring atoms do not overlap.

For the infinite periodic chains the dc field is included by
means of the VPA methodology.16,17 This treatment, pre-
sented originally within a perturbation theory framework,25

has been developed over the past few years into an efficient
working machinery for automatically calculating the re-
sponse of structural and electronic degrees of freedom to a
finite static field.15,21,24 If the crystal orbitals are written in
the form

� j�k,r�� = 	
X,p

CX,p,j�k�
1

�K
	

l

eikal�lXp�r�� �15�

then the orbital coefficients are obtained by solving the
equations15–17,21,24

�F=�k� − Edc · �M=�k� + iS=�k�
d

dk
�� · C� j�k� = � j�k� · S=�k� · C� j�k� ,

�16�

where Sqp�k�, Mqp�k�, and Fqp�k� are the overlap, unit cell
dipole, and Fock �or Kohn-Sham� matrix elements, respec-
tively. In other words, the finite chain dipole moment matrix
is replaced by the quantity in square brackets in Eq. �16�.
This introduces a d

dk term and, thus, Eq. �16� does not corre-
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spond to a normal matrix-eigenvalue problem. In order to
obtain a solution we have developed an efficient and numeri-
cally stable protocol15,21,24 which will not be discussed here
except for one aspect. Our treatment is based on a smoothing
procedure whereby C� j�k� is modified by a band �j� and
k-dependent phase factor, making the evaluation of d

dkC� j�k�
numerically stable. With this approach the phases of C� j�k�
are continuous as a function of k. This makes it possible to
use analytical expressions for the derivatives of the total en-
ergy as a function of structure even when Edc�0.15

The dipole moment per unit of the infinite periodic sys-
tem, which is determined by the operator in square brackets
in Eq. �16�, will lie in a certain range of length a. In order to
modify this range by an integer times a, the orbitals of one or
more bands are given additional phase factors, eiaknj, with nj
being an integer. Then, the phases become discontinuous
across the boundary of the Brillouin zone, although the phase
factors remain continuous. This leads to an additional term,
−Edc	 jnj =−Edcn, in the derivative of the total energy with
respect to the lattice parameter a.

For the finite chain Eq. �1� is used to determine the dipole
moment per unit. We found that chains of length N=40 and
N=41 were sufficient to achieve convergence. For the infi-
nite periodic chains K=80 k points were used. Finally, in
order to obtain different terminations for the finite chains we

modified the on-site energies 
�1Ai�ĥ0��1Ai� and 
�NBi�ĥ0��NBi�
for i=1,2. In the calculations below this allowed us to
change the charge at the chain ends by 
2 electrons.

IV. RESULTS

We now present our findings. In Fig. 2 the different sym-
bols in each panel correspond to periodic chain calculations
for different values of the integer n. The full lines are finite
chain values for charge accumulation of either 0 or
+2 electrons as compared to the case where the charge in the
chain terminations is similar to that of the central region.

The bottom panel shows the field-dependent dipole mo-
ment per unit at the optimized geometry. In the periodic
chain calculations the integer was chosen so that the dipole
moment coincides with the finite chain value at zero field.
For different n �or different charge� there is a large difference
in the dipole moment. In order to fit all our results in one
panel we have shifted the calculated values by a constant,
namely, an integer multiple of a0. Evidently, the periodic and
representative finite chain results coincide �within numerical
accuracy� at all fields. The panel just above the bottom one
gives the number of electrons �i.e., the Mulliken gross popu-
lations� on one of the central A atoms obtained for the same
set of calculations. Again, the infinite periodic chain results
and the finite chain values are identical at all fields.

The two upper panels display the optimized structural pa-
rameters for the periodic chains. Both parameters show a
clear dependence on the value of n, i.e., on the range inside
which the dipole moment per unit is required to lie. This is
consistent with the other panels and with the differing chemi-
cal nature of the finite chain that is being simulated. The
corresponding finite chain results �solid lines; for dotted lines

see below� obtained from Eq. �14� once more agree with the
periodic chain values.

The fact that the structure depends on n can easily be seen

by expanding the total energy per unit, Ē, about the field-free
value through second order in terms of the lattice constant
�a�, internal structural parameter �u�, and Edc,

Ē � ĒE�a,u,Edc� � ĒE,0 + Edc
�ĒE
�Edc

+
1

2
�a − a0�2�2ĒE

�a2

+
1

2
�u − u0�2�2ĒE

�u2 + �u − u0��a − a0�
�2ĒE

�u � a

+
1

2
Edc

2 �2ĒE

�Edc
2 + Edc�a − a0�

�2ĒE

�Edc � a
+ Edc�u − u0�

�2ĒE

�Edc � u
.

�17�

We have added a subscript E here to emphasize that the field,
rather than the voltage �see later�, is considered as the inde-
pendent variable. This corresponds to an experimental setup
where different materials that may possess different macro-
scopic changes in size due to the electrostatic field are expe-
riencing the same field strength.

With the expansion of Eq. �17� one may derive an ap-
proximate expression for the change in the lattice parameter
due to a given electrostatic field by setting the derivative
�ĒE
�a =0 at the field value and the same may be done for the

internal structural parameter. The result of solving this pair
of coupled simultaneous equations can be expressed in terms
of the piezoelectriclike coefficients da,E= da

dEdc
�Edc=0 and du,E

= du
dEdc

�Edc=0

da,E = � �2ĒE

�Edc � u

�2ĒE

�u � a
−

�2ĒE

�Edc � a

�2ĒE

�u2 �
� � �2ĒE

�a2

�2ĒE

�u2 − � �2ĒE

�u � a
2�−1

du,E = � �2ĒE

�Edc � a

�2ĒE

�u � a
−

�2ĒE

�a2

�2ĒE

�Edc � u
�

� � �2ĒE

�a2

�2ĒE

�u2 − � �2ĒE

�u � a
2�−1

.

Since the dipole moment per unit, �̄=−
�ĒE
�Edc

contains a con-

tribution equal to na the partial derivative
�2ĒE

�Edc�a depends
upon n. Hence, both piezoelectriclike coefficients will de-
pend upon this integer.

The coefficients obtained from Eq. �18� were used to cal-
culate the first-order �in the field� structural changes. From
the results shown in Fig. 2 it is seen �cf. dotted lines� that
these simple estimates agree well with the “exact” results.

The dependence of the bulk quantities on the surfaces is
solely due to the fact that the lattice parameter depends on n.
This can be seen by repeating the periodic chain calculations
of Fig. 2 but with this parameter fixed at the field-free value,
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a0. The results in Fig. 3 show that all symbols fall on the
same curve. Thus, all values of n lead to the same results.
Moreover, by comparing with Fig. 2 it is seen that relaxing a
leads, in general, to considerably stronger property varia-
tions, as a function of field strength, than just relaxing u.

So far we have considered how the structural parameters
change as a function of the field strength. In particular, the
analog of da /dEdc for thin films can be determined by phase
modulation measurements.10 Alternatively, one may deter-
mine the variation in the structural parameters as a function
of the voltage. Assuming that the length of the macroscopic

chain in the absence of the field equals L �L�a0�, the total
potential across the sample, Vext is given by

Vext =
L

a0
Vdc =

La

a0
Edc. �19�

Here Vdc is the potential drop over one unit cell, i.e., a ·Edc.
In an experiment where different samples are exposed to the
same external voltage, Vext or Vdc, the field strength will

generally be different. For that case, we express Ē in terms of
the independent variables Vdc, a, and u. This leads to the
piezoelectriclike coefficients defined as da,V=a0

da
dVdc

�Vdc=0 and
du,V=a0

du
dVdc

�Vdc=0. These coefficients have the same dimen-
sion as those of Eq. �18�. After transforming the analog of
Eq. �17� to the same set of partial derivatives that appear in
the latter, it turns out that da,V and du,V are given by the same
expressions as in Eq. �18� except for the replacement

�2ĒE

�Edc � a
→

�2ĒE

�Edc � a
−

1

a0

�ĒE
�Edc

= − � ��̄

�a
−

�̄

a
�a=a0

.

�20�

This term is independent of n and, consequently, the depen-
dence of the responses �da,V=a0

da
dVdc

�Vdc=0 and du,V

=a0
du

dVdc
�Vdc=0� on the surfaces is removed.

V. CONCLUSIONS

In short, the purpose of the present paper was twofold. �1�
We have demonstrated that, for a long finite chain with re-
peated units, the structural responses to an external applied
field of fixed strength depends upon the charge at the chain
ends which, in turn, is governed by the terminations. Differ-
ent terminations of an otherwise identical chain can lead to
different responses. In passing we note that different re-
sponses will be observed only if the field is held constant
rather than the potential drop over a unit cell. �2� Although
an infinite periodic chain does not have terminations, the

FIG. 2. Results from the model Hamiltonian calculations for
finite chains with N=40 units and for periodic chains with 80 k
points. For the periodic chains the different symbols represent re-
sults for different values of the integer n whereas the full lines show
representative �see text� finite-chain results. From the top to the
bottom the panels show the optimized lattice constant a, the internal
structural parameter u, the number of electrons on the central A
atom relative to the neutral case and the adjusted dipole moment per
unit. In the two upper panels the dotted lines represent estimates
from Eq. �18�. In the lowest panel we have added an integer �m�
times the field-free lattice constant in order to facilitate a compari-
son between the different results.

FIG. 3. Results from model Hamiltonian calculations with fixed
lattice parameter. The left panels are for the initial structure and the
right ones after relaxing u.
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effect of introducing such terminations is indirectly included
in the MTP/VPA crystal orbital treatment through an �unde-
fined� integer, n, that appears in the boundary conditions for
the crystal orbitals. Thus, this arbitrary integer has now been
linked to a physical observable.

The dependence of the structural responses to an electro-
static field described above arises because the general ex-
pression for the electronic dipole moment per unit contains a
term given by the integer, n, multiplied by the lattice con-
stant and the latter couples mechanically with the internal
structural parameters of the unit cell. If the lattice parameter
is fixed, then the internal structural responses are suppressed.
By chemically modifying the terminations �for example, by
attaching specifically designed ligands� one can modify the
integer and thereby observe an effect on the piezoelectric
properties.

Theoretical arguments show that the dipole moment per
unit cannot be changed arbitrarily but only by an integer
multiple of a lattice vector �times the elementary charge�.
This is borne out here by calculations on a model system,
i.e., long but finite, chains. In simulating the same system
through an infinite periodic treatment we have shown that all
physical effects can be reproduced “exactly” by making a
specific choice for an integer related to a mathematical phase
ambiguity that occurs in determining the crystal orbitals.
Thus, an integer quantity, previously considered to be un-
physical, has been related to an observable physical surface
effect.

One may understand this result as follows. For the infi-
nite, periodic system, the expression Eq. �8� is equivalent to

�̄KSV = 	
P
� �wlp�r���2zdr� , �21�

i.e., an expression very similar to that of Eq. �6�. In Eq. �21�
l refers to a given unit cell to which the Wannier function w
is localized. Since the units per construction have to be neu-
tral we may choose any value of l. A substitution like that of
Eqs. �9� and �10� leads to a displacement of the Wannier
function by nj lattice constants, implying that �̄KSV changes
by nja.

For the large but finite system we may use Eqs. �4�–�6�. In
the central region, the w functions can be chosen as being
identical to the Wannier functions that we have for the infi-
nite, periodic system. Thus, changing the phases as in Eqs.

�9� and �10� will shift all Wannier functions in the central
region by one or more lattice constants. This means that one
of the boundary regions between the central region and the
terminations will have less electrons whereas the other will
have more electrons. Since the dipole moment per central
unit is unaltered the displaced Wannier functions lead to a
total dipole moment per unit that, according to Eq. �5�, is
identical to that of another large but finite chain with other
charges at the terminations.

It has been shown elsewhere17 that �hyper� polarizabilities
of infinite periodic systems do not depend upon surface
charge if the structure is fixed. They will do so, however, due
to structural changes induced by an electrostatic field. More-
over, the effects of the latter on experimental properties can
be quite large �see, for example, Ref. 26 and references cited
therein�. Finally, even the charge distribution in the central
region �also experimentally accessible and here quantified
through the net number of electrons on atom A� depends on
n for Edc�0. Our numerical model studies have shown that
piezoelectric surface effects can be quite significant.

In this paper we have focused on the response of the
system to a given dc field, which was found to depend on the
surfaces. This is not the case for a given potential drop. A
physical explanation for the difference between the two
quantities is as follows. In both instances the dipole moment
depends upon the surface charge �cf. Eq. �5�� as does the
nuclear response to an electrostatic field. However, by fixing
the potential drop over a unit cell, the effects of the strain
that might be induced by the surface charge and that will be
different for different surface charges are eliminated. On the
other hand, if the field strength is fixed, these effects have to
be taken into account.

In this work we have confined ourselves to 1D systems.
Naturally, the same issues arise in the case of 2D films and
3D solids. In future work we plan to consider how our 1D
results may be extended to the latter.
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