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Using an approach to open quantum systems based on the effective non-Hermitian Hamiltonian, we fully
describe transport properties for a paradigmatic model of a coherent quantum transmitter: a finite sequence of
square potential barriers. We consider the general case of asymmetric external barriers and variable coupling
strength to the environment. We demonstrate that transport properties are very sensitive to the degree of
opening of the system and determine the parameters for maximum transmission at any given degree of
asymmetry. Analyzing the complex eigenvalues of the non-Hermitian Hamiltonian, we show a double transi-
tion to a super-radiant regime where the transport properties and the structure of resonances undergo a strong
change. We extend our analysis to the presence of disorder and to higher dimensions.
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I. INTRODUCTION

Open quantum systems, which exchange matter and en-
ergy with an environment, are at the center of many research
areas in condensed matter, atomic, molecular, and nuclear
physics. Major problems of current interest range from quan-
tum computing to transport in mesoscopic systems to basic
theoretical issues, including the measurement problem in
quantum mechanics.

The nature and degree of opening affect the properties of
a system in a highly nontrivial manner. An example of this is
the super-radiance phenomenon in a finite quantum system
coupled to an environment characterized by a continuum of
states. Generically, at weak coupling, all internal states are
similarly affected by the opening and acquire small decay
widths, resulting in narrow transmission resonances. As the
coupling increases and reaches a critical value, the reso-
nances overlap, and a sharp restructuring of the system oc-
curs. Beyond this critical value, a few resonances become
short-lived states, leaving all other �long-lived� states effec-
tively decoupled from the environment. This general phe-
nomenon is referred to as the super-radiance transition,1,2 due
to its analogy with Dicke super-radiance3 in quantum optics.

In a recent work4 generalizing the schematic tight-binding
model discussed in Refs. 2 and 5, it was shown that the
phenomenon of super-radiance actually occurs in the prob-
lem of transport through realistic nanosystems. The specific
situation analyzed in Ref. 4 is transport through a one-
dimensional �1D� sequence of potential barriers �PBs�, see
Fig. 1. This paradigmatic model of solid-state physics ap-
pears in many important applications, including semiconduc-
tor superlattices and one-dimensional quantum-dot arrays. It
has been widely discussed in the literature;6–8 the transport
properties have been analyzed as the system-environment
coupling was varied by adjusting the widths of the external
barriers. In Ref. 4 only symmetric coupling was considered,
i.e., equal left and right external barriers. It was shown that

maximum transmission through the array is reached pre-
cisely at the super-radiant transition. The transport properties
of a 1D sequence of potential barriers were analyzed with the
aid of the energy-independent effective non-Hermitian
Hamiltonian. This approach produces excellent agreement
with the exact �numerical� treatment of the problem for weak
tunneling between the wells.

In this paper we use the same framework to analyze the
transport properties of a 1D sequence of potential barriers
with asymmetric coupling to the environment. We vary
the external coupling strength, keeping the ratio between
left and right coupling constant. This allows us to determine
the maximum transmission as a function of the asymmetry
and to extend the analysis to higher-dimensional systems:
quasi-1D, quasi-two-dimensional �2D�, and quasi-three-
dimensional �3D�.

The paper is organized as follows. In Sec. II, we introduce
the energy-independent effective Hamiltonian that relates the
sequence of barriers to the open Anderson model, and show
how the transmission properties can be determined in this
formulation. In Sec. III, we find the strength of coupling to
the environment at which both integrated transmission and
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FIG. 1. Sequence of potential barriers of finite height and
width.
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average transmission at the center of the energy band are
maximized, and derive the scaling of this critical coupling
strength as a function of asymmetry and degree of disorder.
The structure of resonances is analytically computed as a
function of energy and of asymmetry of the coupling for the
case of no disorder. Analyzing the complex eigenvalues of
the non-Hermitian Hamiltonian in Sec. IV, a double transi-
tion to a super-radiant regime is shown to occur. Contrary to
the symmetric coupling case, the maximum transmission in
the asymmetric case is not reached at either transition, but
occurs instead at a critical value located between the two.
The super-radiant transitions have significant consequences
for the transport properties of the 1D Anderson model. The
number of resonances decreases by 1 every time a super-
radiant transition is crossed. For a large number of sites in
the 1D chain, a clear signature of the two super-radiant tran-
sitions is observed when we analyze the resonance structure
near the center of the energy band as a function of the cou-
pling strength to the leads. In Sec. V, we compare our results
with the random matrix theory of transport, showing that
random matrix theory is only partially applicable to the 1D
Anderson model. Finally, in Sec. VI, we extend our results to
multidimensional scenarios, showing that the validity of our
findings is not limited to the 1D case.

II. EFFECTIVE HAMILTONIAN

The effective Hamiltonian approach to open quantum sys-
tems was formulated in the book9 for nuclear reactions, and
later generalized and studied in detail, see, for example,
Refs. 1, 2, 4, 5, 10, and 11. In Ref. 4 two of the present
authors demonstrated how to build an effective non-
Hermitian Hamiltonian that correctly describes transport
through a sequence of potential barriers. Here we will only
review the main points of the approach and establish defini-
tions and notations.

In the absence of disorder, we consider quantum transport
through a sequence of N+1 potential barriers of height V0

and interbarrier separation L, as illustrated in Fig. 1. All
N−1 internal barriers have width � while the two external
barriers have widths �1,2.

We may compute transmission through the system in a
standard way, by matching the wave function and its deriva-
tive on either side of each barrier in Fig. 1. Throughout the
paper, we will use units with �2 /2me=1. Thus, when dis-
tances �, �1,2, and L are measured in nm �the typical scale
for semiconductor superlattices�, all energies are calculated
in units of 38 meV. In what follows we set L=2, �=0.2,
V0=1000, and E0=V0 /2=500 �so that the energy shift van-
ishes, see below�.

In the limit of weak tunneling between the sites, a se-
quence of N potential wells behaves as an open 1D Anderson
model. As shown in Ref. 4, the 1D effective Hamiltonian for
an energy band centered at E0 can be written in the site basis
in a way similar to that used in Refs. 2 and 5,

H =�
E0 + �1 −

i

2
�1 � 0 ¯ 0

� E0 � ¯ 0

0 � E0 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ E0 + �2 −
i

2
�2

� .

�1�

The edge states, �1�, localized in the first well on the left, and
�N�, localized in the last well on the right, acquire finite
widths, �1,2, and energy shifts, �1,2, due to the coupling to the
environment. By intersite tunneling, this coupling propagates
through the chain.

The effective Hamiltonian H correctly reproduces trans-
mission through a sequence of potential barriers if we define
the tunneling coupling � as

� =
2�2E0

V0�1 + �L/2�
exp�− ��� , �2�

where �=�V0−E0. Similarly, the widths and energy shifts
can be written as

�1,2 =
8�3E0k

V0
2�1 + �L/2�

exp�− 2��1,2� ,

�1,2 =
k2 − �2

4�k
�1,2, �3�

where k=�E0. The shifts �1,2 vanish for E0=V0 /2; otherwise
the sign of � is given by the sign of E0−V0 /2. We will study
how the transport properties depend on the system-
environment couplings �1,2, which are varied by adjusting
the external barrier widths �1,2 while keeping all other pa-
rameters fixed.

With the aid of the effective Hamiltonian, the transmis-
sion coefficient Tab�E� from channel b to channel a can be
determined,

Tab�E� = �Zab�E��2, �4�

where

Zab�E� = �
i,j=1

N

Ai
a	 1

E − H

i,j

�Aj
b�� �5�

is the transmission amplitude. The channels are labeled by
the quantum numbers that characterize the continuum states
in the environment, not including the energy. In the 1D case
we have two channels, a=1 and 2, corresponding to the left-
and right-scattering states, respectively. The factors Ai

a rep-
resent the transition amplitudes from state �i� to channel a. In
our arrangement, the only nonvanishing transition ampli-
tudes are A1

1=��1 and AN
2 =��2. The complex eigenvalues Ek

of H coincide with the poles of Z�E�. The spectrum of the
complex eigenvalues of the effective Hamiltonian is of great
importance for understanding the transport properties of the
system.
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Using the effective Hamiltonian of Eq. �1�, the transmis-
sion between left and right leads can be computed as

T�E� = � ���1�2/��

�
k=1

N

�E − Ek�/��
2

, �6�

where here and in the following T�E�
T12�E�. It was shown
in Ref. 4 that the exact transmission obtained by matching of
the wave functions is in excellent agreement with the effec-
tive Hamiltonian approach, Eq. �6�, for ���1.

III. TRANSMISSION THROUGH NANOSTRUCTURES
WITH ASYMMETRIC COUPLING

In this section we analyze the behavior of the transmis-
sion as we increase the coupling to the external environment,
keeping the ratio of the two external couplings, �1=� and
�2=� /q, fixed and equal to q, the asymmetry parameter. We
treat first the case of no disorder, where the unperturbed
states in all sites have the same energy E0, and later extend to
the disordered case. We will also drop the energy offset E0
from the effective Hamiltonian, so that the center of the en-
ergy band is always at zero energy, and for simplicity we
neglect the energy shifts �1,2 in the following considerations
�which in the potential of Fig. 1 corresponds to E0=V /2�.

A. Ordered case

Before considering the problem of a general N-level sys-
tem, we first treat the one-well and two-well cases, which
give us valuable insight into how transport properties change
as we increase the coupling strength to the environment.

We start with the transmission through a single quantum
level, namely, through a quasistationary state created by two
potential barriers. In this case we have only one resonance
and the effective Hamiltonian reduces to H=−i� /2− i� /2q.
The resonance height is independent of the coupling � and
transmission is never perfect for asymmetric barriers. Indeed,
from Eq. �6� we see that maximum transmission is attained at
E=0 and is given by

T�E = 0� =
4q

�q + 1�2 �7�

so that T�E=0�=1 only for the equal-coupling case of q=1.
The situation is different when we consider transmission

through two quantum states. This problem has been studied
previously, see, for instance, Refs. 12 and 13, and references
therein. In fact, many of the results obtained for the two-
level case are of more general validity. The effective Hamil-
tonian for two originally degenerate levels can be written as

H =�−
i

2
� �

� −
i

2
�/q� . �8�

From Eq. �6� we can then compute the transmission. In par-
ticular, the transmission at E=0 is

T�E = 0� = � ��/��/�q

1 + ��/��2/4q
�2

. �9�

At the critical value,

	 �

�



cr
= 2�q , �10�

transmission is perfect. This is in contrast with the one-level
situation, where transmission is never perfect for q�1.

By applying the residue method to Eq. �6�, we can also
compute the normalized integrated transmission,

S =
1

4�
� T�E�dE =

��/�
2�q + 1��1 + ��/��2/4q�

, �11�

where 4� is the width of the energy band. The maximum
integrated transmission occurs at the same critical � value
given by Eq. �10�. The quantitative behavior of S is impor-
tant in applications, for instance, in the design of electron
bandpass filters for semiconductor superlattices.6

We now analyze transport properties for the general
N-level system, many of which parallel those of the special
one- and two-level cases. Numerically calculating transmis-
sion as a function of energy, we find that perfect transmission
is attained at all resonance peaks precisely at the critical
coupling given by Eq. �10� independently of the value of N,
see, for example, the upper right panel of Fig. 6. Moreover,
for all N	2, the integrated transmission has a maximum at
the same value of the coupling. The simple theoretical ex-
pression �11�, obtained for the integrated transmission in the
two-level case, closely reproduces the integrated transmis-
sion for any N	2, see Fig. 2. The origin of this
N-independent behavior in the coherent transport regime has
been discussed previously in the context of symmetric
coupling.4

Our results agree with the full analytical expression for
the transmission amplitude, Eq. �5�, in the general N-level
case,2
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FIG. 2. �Color online� Integrated transmission S obtained in the
effective Hamiltonian approach for N=100 sites and different
asymmetry parameters q: squares refer to q=1, circles to q=10, and
diamonds to q=25. The solid curves represent result �11� obtained
for N=2. The vertical dashed lines indicate the critical value of the
coupling strength in each case, � /�=2�q, where S is predicted to
have its maximum, see Eq. �10�.
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Z�E� = −
2��1�2P−�E�

1 + i��1 + �2�P+�E� + �1�2�P−
2�E� − P+

2�E��
,

�12�

where

P
�E� =
1

N + 1�
n=1

N

�
1�n 1

E − En
sin2	 �n

N + 1

 �13�

and the sums are over the unperturbed Bloch wave energies
of the closed system,

En = 2� cos	 �n

N + 1

 . �14�

This determines the exact transmission probability,

T�E� =
4�1�2P−

2

�1 + �1�2�P−
2 − P+

2��2 + ��1 + �2�2P+
2 . �15�

Inside the energy band, at any pole E=En corresponding to a
Bloch eigenstate, both sums P
 diverge with �P+ / P−�→1,
and the transmission takes the N-independent and
�-independent value given by Eq. �7�,

T�E = En� = T1 

4q

�q + 1�2 , �16�

obtained above for E=0 in the special case N=1. Outside the
band, for �E��2�, the sum P+ converges at large N to the
N-independent value

P+��� �
z


2�
�17�

�see Appendix�, whereas the sum P− is exponentially small at
large N,

P−��� � 

��2 − 1

�z

N+1 , �18�

where �=E /2� and z
=�
��2−1. The fast decay of P−
results in exponentially weak transmission. In Eqs. �17� and
�18�, the upper and lower signs should be chosen for ��1
and ��−1, respectively. For energies E inside the band, the
sums in Eq. �13� take a simple form, see Appendix,

P
��� =
1

2��
sin�N��

sin��N + 1���

−
sin���

sin��N + 1���
,� �19�

where �=cos−1���.
A convenient simplification does occur for energies near

the middle of the band, �E���, where for large N the sums
P
 are dominated by terms associated with n�N /2, while
distant contributions from the left and right sides of the
Bloch spectrum cancel. Near the center of the band, En may
be replaced by a picket fence spectrum with spacing D
=2�� /N while the last factor in Eq. �13� reduces to unity.
Defining r by E=En0

+rD, we then have the N-independent
result,

P
�E� �
1

2�
�cot��r�

�
1�n0csc��r� ,
� �20�

and therefore

T�E� �
16�1�2

�4� + �1�2/��2sin2��r� + 4��1 + �2�2cos2��r�
.

�21�

At energies in the Bloch spectrum �r=0�, Eq. �21� reduces,
as it must, to the exact expression �16� while midway be-
tween any two neighboring poles �r=1 /2� the transmission
becomes

T�E = En + D/2� � T2 
 � ��/��/�q

1 + ��/��2/4q
�2

, �22�

which agrees with the transmission at E=0 obtained above in
the special case of N=2 wells, Eq. �9�. At these energy mid-
points, perfect transmission occurs at the critical value of the
coupling given by Eq. �10�, just as it does in the special case
N=2. Averaging Eq. �21� over an energy window containing
multiple resonances, � /N��E��, we obtain the energy-
averaged transmission near the middle of the band,

T̄ = �
0

1

T�E�dr �
8�/�

�q + 1��4 + ��/��2/q�
, �23�

that reaches its maximum, Tavg
max=2�q / �1+q�, again at the

critical value of the coupling � /� given by Eq. �10�.
The critical value associated with the maximum transmis-

sion in Fig. 2 is also consistent with the results of Ref. 14.
There, the authors found that given a sequence of potential
barriers of width �, adding two external barriers satisfying
�L+�R=� produces an increase in transmission while leav-
ing the resonance energies unchanged. From Eqs. �2� and �3�,
we can see that the maximum transmission condition �10�
obtained from the tight-binding model coincides with the
condition �L+�R=� for the case of E0=V0 /2, in which case
the energy shift is zero.

B. Disordered case

In this section we analyze the effect of disordered on-site
energies. The survival of the super-radiant restructuring in
the disordered chain was established in Ref. 5. In Ref. 4 we
showed that the effective Hamiltonian, Eq. �1�, correctly de-
scribes the sequence of potential barriers in the presence of
disorder �e.g., variable well width�, when the disorder is suf-
ficiently weak. We consider random variations in the diago-
nal energies, E0+�E0, where �E0 is uniformly distributed in
the interval �−W /2,+W /2�, and W is the disorder parameter.
In Ref. 4 it was shown that for ���1, a random variation in
�E0 in the interval �−W /2,+W /2� corresponds to a random
variation in the well width �L in �−WL /4E0 ,+WL /4E0�.

The effective non-Hermitian Hamiltonian with diagonal
disorder is equivalent to a 1D open Anderson tight-binding
model.15,16 The eigenstates of the Anderson model are expo-
nentially localized on the system sites with the tails given by
exp�−x /Lloc�. Here the localization length Lloc depends on
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the disorder strength,17 and x is distance in the direction of
transmission, measured in units of the well size. For Lloc
�N, the transmission decays exponentially with N; this is
the localized regime.

Let us first consider the case when the mean level spacing
D �at the center of the energy band� is not strongly modified
by the disorder. In the ordered case, D�2�� /N for E=0
while for strong disorder the bandwidth is W and we have
D�W /N. Thus, we expect that for W�2�� the mean level
spacing is not strongly influenced by the disorder. This re-
gime is shown in Fig. 3, where we plot the average transmis-
sion as a function of the coupling strength � /� for N=100
and W /�=0.5. As indicated by the vertical dashed lines, the
maximum transmission is reached at the same critical values
of � /� obtained previously in the absence of disorder, Eq.
�10�. At this critical value, each transmission curve intersects
the transmission curve for the symmetric case q=1. Indeed,
at the critical coupling, the tunneling probabilities from the
left and right are equal, implying that for this value the
asymmetric system behaves as a system with symmetric
coupling, see Sec. V.

The situation is different for strong disorder, W�2��.
The critical value for maximized transmission now depends
on the disorder strength. For strong disorder we enter the
localized transport regime studied in Ref. 18, where trans-
mission is log normally distributed, so that it is more conve-
nient to consider the average of ln T rather than the average
of T. Numerically we find that the value at which transmis-
sion is maximized is proportional to the mean level spacing
D at the center of the energy band: ��ND, see the arrows
that indicate �=1.2ND for each curve in Fig. 4, where q
=10. Since D�W /N when disorder is strong, the critical
value of the coupling is in this case proportional to the dis-
order strength.

Additionally, we note the close agreement between sym-
bols and solid curves in Figs. 3 and 4, demonstrating good
correspondence between the exact barrier problem, Fig. 1,

and the energy-independent effective Hamiltonian of Eq. �1�.
This correspondence persists for weak and strong coupling to
the environment, in highly symmetric and highly asymmetric
situations, and also for both weak and strong disorder.

IV. DOUBLE SUPER-RADIANT TRANSITION AND
STRUCTURE OF RESONANCES

In Ref. 4 we showed that maximum transmission is
reached at the super-radiant transition in the symmetric cou-
pling case. The transition is signaled by a segregation of
resonance decay widths, i.e., of the imaginary parts of the
eigenvalues of the effective Hamiltonian, into two groups,
super-radiant �short lived� and trapped �long lived�.1,2,4,19

The number of super-radiant states is equal to the number of
channels coupling the system to the environment �two for
Fig. 1 and for the effective Hamiltonian of Eq. �1��. In order
to identify the super-radiance transition we compute the av-
erage of the nonsuper-radiant widths, i.e. of the smallest
N−2 decay widths of the effective Hamiltonian. In Fig. 5, we
plot this average value as a function of the coupling � /� for
two asymmetry values, q=4 and q=10. In each case the
average width shows two maxima as � /� is varied. At each
maximum, one of the widths segregates from the others.
Thus, in the presence of asymmetry, we have two super-
radiant transitions associated with two critical values of the
coupling. According to the resonance overlap condition,
�1,2 /�=2,4 the two transitions are predicted to occur at the
values
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FIG. 3. �Color online� Average transmission near E=0 as a func-
tion of coupling strength � /� for a disordered 1D chain of N
=100 wells, for different values of the asymmetry parameter q. The
disorder strength is W /�=0.5. Each value of transmission corre-
sponds to the average over an energy window −0.1�E�0.1, and
ensemble average over 100 realizations of the disorder. The curves
are obtained from the effective Hamiltonian H �open Anderson
model�, whereas symbols are computed for the sequence of poten-
tial barriers. Vertical dashed lines indicate the critical values of the
coupling, Eq. �10�, for the ordered case.
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FIG. 4. �Color online� Average of the logarithm of transmission
at E=0 as a function of the coupling � /� for the 1D case, with
N=100 sites, and asymmetry parameter q=10. In our units, the
tunneling coupling is �=1, and the three data sets correspond to
different disorder strengths W. �ln T�0 represents the value of the
transmission at � /�=0.01, which is the lowest value of � /� com-
puted. For the sake of clarity, we plot �ln T�− �ln T�0 so that all data
start from the same point. In each case, symbols refer to the results
obtained from the effective Hamiltonian H: circles for W=4,
squares for W=10, and crosses for W=15, while the curves refer to
a sequence of potential barriers: dotted dashed for W=4, dashed for
W=10, and solid for W=15. Averaging is performed over 1000
realizations of the disorder. The dashed vertical line indicates the
critical value of the coupling, Eq. �10�, at which transmission is
maximized for low disorder. The arrows indicate � /�=1.2ND /�,
where D is the mean level spacing at the center of the energy band
and the factor 1.2 is obtained from fitting.
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��/��SR1 = 2, ��/��SR2 = 2q , �24�

indicated by the vertical dashed lines in Fig. 5, in very good
agreement with the numerical results for different values of
the asymmetry.

Comparing Eqs. �10� and �24�, we observe that, in the
presence of asymmetry, the point of maximum transmission
is always in between the two super-radiant transitions. The
transmission maximum occurs approximately at the mini-
mum of the average decay width while the super-radiant
transitions occur at the two maxima of the average decay
width. This can be compared to the case of symmetric barri-
ers, where the maximal transmission precisely coincides with
the �single� super-radiant transition,4 in agreement with Eq.
�24� for q=1.

Since the super-radiant states are very broad, the number
of observed resonances changes after each transition. As we
increase the coupling, the number of resonances changes
from N at weak coupling to N−1 after the first transition, and
finally to N−2 for strong coupling. This change in the reso-
nance structure can have important consequences for experi-
mental current-voltage curves, for example, in semiconduc-
tor superlattices.7 For symmetric coupling, the number of
resonances changes directly from N to N−2 at the �single�
super-radiant transition.4

Another important consequence of the two super-radiant
transitions can be seen in the structure of resonances near the
center of the energy band. In Fig. 6 we consider a 1D chain
with N=100, q=10, and no disorder �W=0�, and calculate
transmission as a function of energy for different values of
the coupling � /�. In each panel in Fig. 6, the dashed hori-
zontal line indicates the transmission at energy values be-
longing to the Bloch spectrum, Eq. �16�, which is also the
maximal transmission attainable for transport through one
level only, as given by Eq. �7�.

In the upper left panel of Fig. 6, the resonance structure is
shown for several cases of weak coupling, � /��2, i.e. be-
low the first super-radiant transition. The maximum reso-
nance height is here independent of � /�, and equal to the
single-level resonance height. Only the widths grow as � /�
is increased in this regime. In the upper right panel, we con-

sider 2�� /��2q, the intermediate regime between the two
super-radiant transitions. Perfect transmission is reached for
all resonances precisely at the geometric mean of the two
transitions, at � /�=2�q. In this regime, it is the minimum
transmission that is independent of � /� and equal to the
single-resonance transmission height, Eq. �7�. In the lower
left panel the region around the second super-radiant transi-
tion is shown. As � /� crosses the value � /�=2q, the mini-
mum transmission drops below the one-level transmission
value. Finally, in the lower right panel, we show the regime
of large coupling, � /��2q. Here it is again the maximum
transmission that is independent of � /� and given by Eq.
�7�, just as in the weak-coupling regime, but the resonance
widths now shrink with increasing � /�. The behavior shown
in Fig. 6 indicates that, at least for large N, a qualitative
change in the resonance structure near the center of the en-
ergy band occurs at each of the two super-radiant transitions.

To better study this change in the resonance structure, we
now compute �Tmax�, the average of the transmission
maxima, and �Tmin�, the average of the transmission minima,
as functions of the coupling strength. In each case, the aver-
aging is performed over a window near the center of the
energy band, −0.1�E�0.1. The upper panel of Fig. 7 shows
that �Tmax� is constant to the left of the first super-radiant
transition and to the right of the second transition �shown as
vertical lines�. The constant value coincides with that for the
one-level maximal transmission, Eq. �7�, as shown by the
horizontal line. Between the two transitions, �Tmax� reaches a
maximum value at � /�=2�q. In the lower panel of Fig. 7,
we show the behavior of �Tmin� as a function of � /�. This
average rises to reach the one-level transmission value at the
first transition, stays constant up to the second transition, and
then decreases.

For the ordered case we then find numerically the simple
results,

�Tmax� = �T2 for 2 � �/� � 2q

T1 otherwise
� �25�

and
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FIG. 5. �Color online� Average width �computed over the small-
est N−2 widths� in units of the mean level spacing at the center of
the energy band. The average width is calculated as a function of
� /� for N=100 and two values of the asymmetry parameter q.
Dashed vertical lines indicate the locations of the two super-radiant
transitions, as given by Eq. �24�.
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�Tmin� = �T1 for 2 � �/� � 2q

T2 otherwise,
� �26�

which agree well with the analysis in Sec. III A. Here T1 is
the transmission at resonant energies in the Bloch spectrum,
Eq. �16�, that coincides with the one-level maximal transmis-
sion value, Eq. �7�. Similarly, T2 is the transmission value at
midway points between these energies, Eq. �22�, that coin-
cides with T�E=0� for the two-level case, Eq. �9�. These
formulas, represented by the solid lines in Fig. 7, are in good
agreement with the numerical calculation.

It is also interesting to point out that from the analytical
expressions, Eqs. �16� and �22�, we have that T2	T1 for 2
�� /��2q so that we regain the thresholds for the two
super-radiant transitions. In the same figure, we also illus-
trate the effect of adding disorder. For weak disorder, the
behavior is similar to the ordered case, while for strong dis-
order the effect of the two super-radiant transitions is
smoothed out. In Fig. 7 the results obtained from the effec-
tive Hamiltonian �circles and squares� are compared with the
results from the sequence of potential barriers �crosses and
pluses�. Again, the agreement is excellent, both with and
without disorder.

V. COMPARISON WITH RANDOM MATRIX THEORY

It is interesting to compare our results on the 1D Ander-
son model with standard results obtained in the framework of
the random matrix theory of transport. In Ref. 20, the depen-
dence of the conductance on the degree of opening was ana-
lyzed for a quasi-1D system with symmetric coupling to the

leads, while the case of asymmetric coupling was later ad-
dressed in Ref. 18, with different tunneling probabilities for
the right and left ends. The tunneling probability used in Ref.
18 corresponds to the “elastic scattering” probability � de-
fined in Ref. 21, where the case of symmetric coupling and
varying degree of internal disorder was considered. This
probability for channel a is defined as �a=1− ��Saa��2, where
S is the scattering matrix, Sab=�ab− iZab, and Zab is given by
Eq. �5�. Again, we take a=1 and 2 to be the channels corre-
sponding to the left- and right-scattering states, respectively.
From Ref. 21 we know that in the random matrix framework
and at the center of the energy spectrum

�1,2 =
4�1,2

�1 + �1,2�2 , �27�

where �1,2 is the effective coupling to channel 1 and 2, re-
spectively. In the special case when the internal system is
described by a GOE random matrix,22

�1,2 =
��1,2

2ND
, �28�

where D is the mean level spacing at the center of the spec-
trum and N is the dimension of the internal system. As be-
fore, in the presence of asymmetry, �1=� and �2=� /q.

For asymmetric coupling, maximum transmission is
achieved when �1=�2.18 At this special point, the system with
asymmetric coupling behaves as a system with symmetric
coupling. This happens in the trivial case �1=�2 �where the
coupling is symmetric to begin with� or for �1=1 /�2. Since
in the 1D case we have ND�2�� at the center of the en-
ergy band and for moderate disorder, we find from Eqs. �27�
and �28� that the maximum transmission should be achieved
when � /�=4�q, which is off by a factor of 2 from the value
given by Eq. �10�.

In order to understand the origin of this difference, we
rederive below Eqs. �27� and �28� in a slightly different way,
following the approach of Ref. 21. The scattering matrix av-
eraged over the ensemble of random realizations is given by

�S� =
1 − i�K�
1 + i�K�

�29�

to leading order in 1 /N.1,21 Here Sab and Kab are matrices in
the channel space with the explicit expression for Kab given
below in Eq. �30�. Equation �29� is valid under the assump-
tion that the internal system can be described by random
matrix theory, when the elements of K matrices in the nu-
merator and the denominator of Eq. �29� are effectively un-
correlated since their correlations lead only to corrections no
larger than �1 /N. In the 1D Anderson model, the above
assumption breaks down both in the limit of very weak dis-
order, where the internal system approaches integrability, and
also for extremely strong disorder, where we enter the local-
ized regime.

The K matrix in channel space can be written as
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FIG. 7. �Color online� The case of N=100 sites with q=10 is
considered. Upper panel: the resonance height �transmission maxi-
mum� averaged over the center of the band �−0.1�E�0.1�, as a
function of � /�. Lower panel: the transmission minimum averaged
over the same energy window. The two vertical lines indicate the
positions of the two super-radiant transitions. The solid curve shows
the predictions of Eqs. �25� and �26�. A clear change in the transport
properties is seen at each of the two transitions. The effect persists
in the presence of disorder �W /�=0.2�. In each panel, the results
obtained from the effective Hamiltonian �H� are compared with
those obtained from the sequence of potential barriers �PBs�.
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Kab�E� =
1

2�
n

Bn
aBn

b�

E − En
, �30�

where real energies En are the eigenvalues of the closed sys-
tem. In our case of two channels, Bn

1=��1�1 ��n� and Bn
2

=��2�N ��n� are the transition amplitudes for the eigenstate
��n� to the left and right leads, respectively. The sum in Eq.
�30� contains the eigenvalues of the resolvent 1 / �E−H� of
the closed system. For energy E inside the spectrum of H we
should understand it as a limiting value, E→E+ i0. Using
the identity

1

E − En + i0
= P.v.

1

E − En
− i���E − En� , �31�

and replacing the summation with the integral, we can com-
pute the average K matrix. The principal value part is a
smooth function of energy that vanishes in the middle of the
spectrum; as a result, in this vicinity

�K11� = −
i�

2
��BEn=0

1 �2���E = 0� = − i�1, �32�

where ��E=0�=1 /D is the density of states at the center of
the spectrum. Thus we have

�1,2 =
��BEn=0

1,2 �2

2D
, �33�

which we can use in Eq. �27�. In particular, if the eigenstate
components are assumed to obey random matrix statistics,
we have �BEn=0

1,2 �2=�1,2 /N, and we recover Eq. �28�.
We analyze the statistics of the 1D Anderson model eigen-

states in Fig. 8, where we plot the ensemble-averaged value
of ��1 ��n��2 �the probability overlap of the eigenstate ��n�
with a state localized at the left edge of the chain, that for a
weakly open system would determine the width distribution
for intrinsic states� as a function of En for different strengths
of disorder. Evidently, the components of the eigenstates do
not follow random matrix theory for moderate disorder. Near
the center of the energy band we have ���1 ��n��2��2 /N for
W /�=0.5 and W /�=1. Then from Eq. �33� we obtain

�1,2 =
�1,2

2�
�34�

and �cr /��2�q, in agreement with our findings in the pre-
vious sections. The values of � /� at which we have perfect
tunneling probability, � /�=2, where �1=1, and � /�=2q,
where �2=1, coincide precisely with the values of � at which
the two super-radiant transitions occur, see the discussion in
Sec. IV. The fact that perfect tunneling probability � is
reached at the super-radiant transition has been pointed out
in Refs. 21.

From Fig. 8 we see that for large values of W we have
���1 ��n��2��1 /N but in this regime the eigenstates are
strongly localized and we no longer expect Eq. �29� to be
valid. The dip in the value of ���1 ��n��2� at the center of the
energy band shown in Fig. 8 is consistent with the analysis of
Ref. 17, where it was pointed out that the localization length
is shorter at the center of the energy band than for surround-
ing energies.

In Fig. 9 we compare our numerical results for the tun-
neling probability � with Eqs. �27� and �34�, showing reason-
able agreement for moderate disorder W /�=0.5 and 1. For
W /�=10, clear deviations from the analytical expressions
are visible, due to the fact that the assumptions of random
matrix theory break down at very strong disorder.

These results show that a blind application of random
matrix results would lead to incorrect conclusions for the 1D
Anderson model. Our empirical expression for the tunneling
probability works well for moderate disorder. In this regime,
we regain the critical value of the coupling strength, Eq.
�10�, for which maximum transmission is achieved.

VI. MULTIDIMENSIONAL CASE

In this section, we discuss the higher-dimensional cases.
Only selected results will be shown, sufficient to demonstrate
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FIG. 8. �Color online� Overlap probability of an eigenstate at
energy En with the edge �1� of the chain in the 1D Anderson model
for N=100. The result is averaged over 104 random realizations and
plotted versus energy for different disorder values W �in units �
=1�. The theoretical value for a GOE random matrix is indicated by
a dashed horizontal line.
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The numerical results �symbols� are obtained by averaging over 103
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that the general behavior of the maximum transmission
found in 1D systems can be extended to higher dimensions.
The open model in dimensions greater than one consists of
an array of sites with associated energy levels. Neighboring
sites are coupled to each other by the tunneling coupling �,
as in the 1D case. In higher dimensions, we have many ways
to couple the system to external leads. In the 2D case, where
the number of sites in a rectangular array is N=M �L, we
couple each of the M sites on the left side to a separate left
lead and each of M sites on the right side to a separate right
lead, see Fig. 10. The coupling amplitude for each of the M
left leads is �1=�, while the coupling amplitude to each of
the M right leads is �2=� /q. Similarly, in the 3D case, with
N=M �M �L sites, each site on an M �M face is coupled
to a lead. In this geometry, each lead represents a channel.
Such an open model can describe a variety of physical sys-
tems, such as an array of quantum dots, or a particle trapped
in a lattice potential.

The diagonal part of the effective Hamiltonian for this
system can be written as Hii=E0+�E0 for sites i that are not
coupled to leads and Hii=E0+�E0+�1,2− �i /2��1,2 for sites
coupled to the left or right leads, respectively. As in the 1D
case, we set the center E0 of the energy band to zero; �E0 is
a random variable uniformly distributed in �−W /2,+W /2�
and W is a disorder parameter. As before, �1,2 and �1,2 rep-
resent the energy shift and decay probability �inverse life-
time�, respectively, induced by the coupling to the left and
right leads. In the following we again neglect the energy shift
so that �1,2=0. Finally, for the off-diagonal matrix elements,
i� j, we have Hij =H ji=� if the sites i and j are neighboring
and Hij =0 otherwise.

Depending on the degree of disorder, different transport
regimes are possible in the multidimensional case. The bal-
listic regime is defined by the condition L� l, where L is the
system length and l is the mean-free path. The diffusive re-
gime is determined by the condition l�L�Lloc, where as
before Lloc is the localization length. Finally, for Lloc�L, we
are in the localized regime. The mean-free path and the lo-
calization length both depend strongly on the energy interval
under consideration and on the disorder strength, see the dis-
cussion in Refs. 23 and 24.

In our multidimensional arrangement, a double super-
radiant transition again occurs as in 1D, which we do not
discuss in detail here. In this section we will focus on the
dependence of the maximum conductance on the coupling
strength to the leads. The dimensionless conductance G,

which is proportional to the total transmission, can be com-
puted using the Landauer formula,18,25

G�E� = �
a=1

M

�
b=M+1

2M

�Zab�E��2. �35�

Here Zab�E� is the transmission amplitude between channels
a and b, see Eq. �5�, that can be computed from the effective
Hamiltonian.

We will not consider here the case of a small perturbation
to an integrable Hamiltonian, which displays very system-
specific behavior, and start by analyzing the case of moderate
disorder. In Fig. 11, we illustrate the behavior of the average
conductance in the diffusive regime for a quasi-1D lattice of
M �L=10�100 sites with W /�=�3 /4, upper panel, and
for a square 2D lattice of 30�30 sites with W /�=2, lower
panel. In both cases, the maximum conductance is obtained
at the critical value of the coupling given by Eq. �10�. In the
upper panel, we compare our numerical results with analyti-
cal expressions obtained in the context of random matrix
theory.18 The numerically computed left and right transmis-
sion coefficients as functions of � /� were used to evaluate
the analytical expression for the average conductance given
in Ref. 18. In the upper panel of Fig. 11, the numerical re-
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FIG. 10. �Color online� Two-dimensional open model used in
this paper, with N=M �L sites coupled to M incoming left chan-
nels and M outgoing right channels. Specifically, in this figure we
show M �L=5�5 sites coupled to 2M =10 channels. At each site
there is a bound state with energy E0 coupled to its nearest-neighbor
sites through a tunneling amplitude �.
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FIG. 11. �Color online� The average dimensionless conductance
as a function of the coupling strength � /�. In the upper panel we
consider the quasi-1D case of 10�100 sites in the diffusive regime,
with disorder W /�=�3 /4, so that L / l�3. The analytical results of
random matrix theory �Ref. 18� �solid lines� are compared with our
numerical results �symbols�. In each case, an overall multiplicative
factor in the analytical expression �Ref. 18� has been obtained by
fitting to the numerical data. In the lower panel, we consider the 2D
case with 30�30 sites and W /�=2 so that L / l�4. Here symbols
refer to our numerical results and the dashed lines simply connect
the symbols �random matrix results are not available for asymmet-
ric 2D systems in the diffusive regime�. Vertical dashed lines indi-
cate the critical values � /�=2�q, where the maximum conductance
is expected for each asymmetry value q. All numerical results are
obtained by averaging over 200 realizations of disorder and over
100 different energies in the interval −0.1�E�0.1 around the cen-
ter of the energy band.
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sults �symbols� are in good agreement with the analytical
results �solid curves� for a quasi-1D system in the diffusive
regime. To the best of our knowledge, there are no known
analytical results for the 2D case in the diffusive regime with
asymmetric coupling �lower panel�.

At the critical value of � /� given by Eq. �10�, each con-
ductance curve for the asymmetric case intersects the con-
ductance curve for the symmetric case �q=1�. This is similar
to what we have observed in the 1D case �see Fig. 3�, and is
also consistent with the results obtained in the context of
random matrix theory. As discussed in Sec. V, the maximum
conductance is achieved when �1=�2. In this case a system
with asymmetric coupling behaves as a system with symmet-
ric coupling.

In the regime of very strong disorder, the critical value at
which we have maximum conductance becomes dependent
on the mean level spacing, D. Similarly to the 1D case we
have

�cr � ND . �36�

Since in this regime D�W /N, we find that the critical cou-
pling for the maximum conductance is proportional to the
disorder strength W, see Fig. 12.

For strong disorder, we enter the localized transport re-
gime, where the transmission is log normally distributed,18

so that, similarly to Fig. 4, it is more convenient to consider
the average of ln G rather than the average of G. In Fig. 12
we plot the average logarithm of the conductance as a func-
tion of � /� in 2D, upper panel, and in 3D, lower panel. As

indicated by the arrows, the critical value of � /� at which
the conductance is maximized is in both cases proportional
to the mean level spacing, which in turn is proportional �for
strong disorder� to the disorder strength. For moderate disor-
der in either 2D or 3D, see, e.g., W=2 in the upper panel and
W=5 in the lower panel, the critical value of � /� for which
we have the maximum conductance is again given by Eq.
�10�. A detailed comparison between random matrix results
and the Anderson model will be presented elsewhere.

VII. CONCLUSION

We have analyzed coherent quantum transport through a
finite sequence of potential barriers with asymmetric cou-
pling to the external environment. As the coupling to the
environment is varied, transport properties are greatly af-
fected. In a previous paper,4 the super-radiant transition that
occurs in this paradigmatic model at a critical value of the
coupling was studied for the case of symmetric coupling to
environment. Here, with the aid of the effective non-
Hermitian Hamiltonian, we show that for asymmetric cou-
pling a double super-radiant transition occurs, as compared
with a single transition in the symmetric case.

The super-radiant transitions have important conse-
quences for the observable resonance structure. In particular,
the number of resonances decreases by 1 after each transi-
tion. Focusing on the behavior of transmission near the en-
ergy band center, see Fig. 7, we demonstrate that a sharp
change in the structure of the resonance occurs in correspon-
dence with the two super-radiant transitions. This change can
be characterized by the behavior of the transmission maxima
and minima, which we describe analytically as functions of
the coupling to the environment and of the asymmetry of this
coupling. As far as we know, these features of the structure
of resonances as a function of the coupling strength to the
leads have not previously been reported in the literature.

Maximum transmission through the system is reached at a
coupling � /�=2�q, where q is the asymmetry parameter.
This coupling is equal to the geometric mean of the coupling
strengths associated with the two transitions. We show that
this result does not follow from random matrix theory, as
usually assumed in statistical theories of quantum transport.
Moreover, for very strong disorder we show that the cou-
pling at which transmission is maximized is proportional to
the disorder strength. We also find that the latter results re-
main valid in higher dimensions. Specifically, we analyze the
average conductance as a function of the degree of opening,
of the asymmetry, and of the strength of disorder in the mul-
tidimensional cases: quasi-1D, quasi-2D, and quasi-3D. In
the quasi-1D case, we compare our results with analytical
expressions obtained in the context of random matrix theory.
We demonstrate the validity of our results in 2D and 3D, in
both diffusive and localized transport regimes, where, to the
best of our knowledge, no analytical results as a function of
the asymmetry of the opening are available in the literature.

The results presented here are based on an approach origi-
nally formulated in the framework of nuclear reaction theory.
Now we understand that they reflect general properties of
quantum signal transmission. Therefore they might be of rel-
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FIG. 12. �Color online� Average logarithm of the conductance as
a function of the coupling strength � /� for the multidimensional
case, with �=1, asymmetry parameter q=4, and different disorder
strengths W. For the sake of clarity, we plot �ln G�− �ln G�0 so that
all data start from the same point, where �ln G�0 is defined as in Fig.
4. In the upper panel, we show the 2D case with 20�20 sites, while
in the lower panel we show the 3d case, with 8�8�8 sites. The
dashed vertical line shows the critical value of the coupling, Eq.
�10�, at which we have maximum conductance for moderate disor-
der. The arrows indicate � /�=0.76ND /� for the 2D case, upper
panel, and 0.56ND /� for the 3D case, lower panel. The numerical
factors 0.76 and 0.56 have been found from fitting. All data have
been obtained by averaging the conductance over 104 ensemble
realizations at the center of the energy band, E=0.
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evance for numerous applications. The sequence of potential
barriers is a paradigmatic model for coherent quantum trans-
port. A better understanding of this transport regime is essen-
tial for the development of information technology using dif-
ferent nanoscale systems with complex geometry, including
quantum dots, photonic crystals, and molecular wires.
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APPENDIX: ANALYTICAL DERIVATION OF THE
TRANSMISSION IN THE ORDERED CASE

To derive closed analytical expressions for the sums, Eq.
�13�, it is convenient to double them, making the phase �n
=n� / �N+1� run over the whole circle. Then

P
��� =
1

2�

1

2N + 2 �
n=0

2N+1

�
1�n sin2��n�
� − cos��n�

, �A1�

where �=E /2�. Now the sum over n spans all the roots zn
=exp�i�n� of the equation z2N+2−1=0 so that

P
��� =
1

4�

1

2N + 2 �
n=0

2N+1

�
1�n �zn
2 − 1�2

zn�zn
2 − 2�zn + 1�

. �A2�

Splitting the summand into simple fractions and using the
identities

1

2N + 2 �
n=0

2N+1

�
1�n =
�1 
 1�

2
, �A3�

1

2N + 2 �
n=0

2N+1

�
1�nzn =
1

2N + 2 �
n=0

2N+1

�
1�n 1

zn
= 0, �A4�

1

2N + 2 �
n=0

2N+1

�
1�n 1

zn − z
= −

1

2
	 zN

zN+1 − 1



zN

zN+1 + 1

 ,

�A5�

we can write down the original sums in closed form,

P+��� =
1

2�
�� −

2��2 − 1�
z+ − z−

� z+
2N+2

z+
2N+2 − 1

−
z−

2N+2

z−
2N+2 − 1

�� ,

�A6�

P−��� = −
1

�

��2 − 1�
z+ − z−

� z+
N+1

z+
2N+2 − 1

−
z−

N+1

z−
2N+2 − 1

� , �A7�

where z
=�
��2−1 are the roots of the quadratic equation
z2−2�z+1=0, and z+z−=1. In the asymptotics of large N and

energy outside the Bloch band, ����1, we have either �z+
N�

�1� �z−
N� or �z−

N��1� �z+
N�, for ��1 or ��−1, respectively,

while inside the band we have z
=exp�
i��. This leads to
Eqs. �17�–�19� in the main text.

To calculate the transmission amplitude, Eq. �12�, or
transmission probability, Eq. �15�, we also need

P+
2��� − P−

2��� =
1

4�2

sin��N − 1���
sin��N + 1���

, �A8�

valid for all energies inside the band, ����1. For N�1, we
can consider averaging over a small energy interval, simi-
larly to Eq. �23�, where �=cos � is constant while the trigo-
nometric functions depending on N� change from −1 to +1.
This can be done formally with the substitution �→�
+� /N, where � is of order 1. Then the average transmission

T̄
T12= �Z12�2 is given by the integral

T12 = 4�1�2� d�N��
�

1

��N��
, �A9�

where �1,2=�1,2 /2� and

��y� = A2 sin2 y + B2 cos2 y + 2C sin y cos y , �A10�

A2 = ��1 + �2�2 + �1 − �1�2�2cos2 � , �A11�

B2 = �1 + �1�2�2sin2 � , �A12�

C = �1 − �1
2�2

2�cos � sin � . �A13�

After changing the integration variable to x=tan�N��, the
integral becomes

I��� =
1

�
�

−�

� dx

A2x2 + 2Cx + B2 =
1

�A2B2 − C2
. �A14�

This leads to the final result for the average transmission at
any energy inside the band,

T12 =
4�1�2 sin �

��1 + �2��1 + �1�2�
, �A15�

where sin �=�1−�2, to be compared to Eq. �23�. By means
of slightly more complicated integrals, we derive �here
cos�2��=2�2−1�

T11 = 4�1
2�1�1 + �1�2 + �2

2� + �2 cos�2�� + �1 + �2
2�sin �

��1 + �2��1 + �1�2��1 + �1
2 + 2�1 sin ��

,

�A16�

and similarly for T22. This, along with Eq. �12�, allows one to
check the unitarity condition,

T11 + T12 = − 2 Im Z11, �A17�

which remains valid after averaging, where both sides are
equal to

4�1��1 + sin ��
1 + �1

2 + 2�1 sin �
. �A18�
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