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We study the Kondo effect in a model system of a quantum dot embedded in an Aharanov-Bohm ring
connected to two leads. By transforming to the scattering basis of the direct interlead tunneling, we are able to
describe precisely how the Kondo screening of the dot spin occurs. We calculate the Kondo temperature and
zero-temperature conductance and find that both are influenced by the Aharanov-Bohm ring as well as the
electron density in the leads. We also calculate the form of an additional potential scattering term that arises at
low energies due to the breaking of particle-hole symmetry. Many of our results are supported by numerical
analysis using the numerical renormalization group.
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I. INTRODUCTION

A quantum dot in a gated semiconductor heterostructure
separating ballistic leads is known to exhibit some remark-
able phenomena. Most strikingly, at low temperatures, the
conductance through the quantum dot increases as the tem-
perature is lowered and can reach the ideal value of 2e2 /h
when the dot contains an odd number of electrons.1–3 This is
due to the Kondo effect, involving the screening of the spin
1/2 of the quantum dot by conduction electrons in the leads.
If there is an additional tunneling path connecting the two
leads that does not pass through the quantum dot, then some
interesting interference phenomena take place.4–8

Previous theoretical work on this problem has studied
both extended Aharonov-Bohm �AB� rings as well as short
“Kondo-Fano” devices. The conductance9,10 and
thermopower11 was found to exhibit an asymmetric Fano-
type dependence on the energy level of the quantum dot.
When the quantum dot is tuned to the Kondo regime that
favors a local moment, a flux-dependent Kondo temperature
has been proposed using different methods12–14 and the high-
and low-temperature conductances have been
described.10,12–18 While some numerical renormalization-
group �NRG� work was reported, this only studied the elec-
tron occupancy of the quantum dot10 or the density of states
on the quantum dot,16 both of which can be approximately
related to the conductance. It should also be noted that most
of these studies assume a particle-hole symmetric dispersion
relation and Fermi energy in the leads.

In this paper, we reexamine the Kondo-Fano device using
a combination of analytic and NRG methods. We only con-
sider the Kondo regime where a local moment is favored on
the quantum dot. We are able to reproduce many of the pub-
lished results cited above as well as predicting nontrivial
dependence of the Kondo temperature and zero-temperature
conductance on the electron density in the leads. Such a de-
pendence on electron density has not been investigated be-
fore given that a particle-hole symmetric Fermi energy has
always been assumed in the leads. We calculate the genera-
tion of additional potential scattering terms that have often
been neglected in previous studies but which do lead to small
corrections to the zero-temperature conductance. Numerical
confirmation of many of our results is provided using the
NRG.

Our analytic approach begins in Sec. II with a tight-
binding version of the Anderson model together with a direct
tunneling term between the two leads and factors represent-
ing magnetic flux between the two conducting paths. Follow-
ing Refs. 14 and 19–21, we then perform an exact transfor-
mation to the “scattering basis” which diagonalizes the direct
tunneling part of the Hamiltonian when the hybridization to
the Anderson impurity is turned off. This gives a Hamil-
tonian containing no direct tunneling term, only the hybrid-
ization to the impurity, albeit with a more complicated de-
pendence on flux, interlead tunneling, and particle
momentum. The initial Hamiltonian contains two scattering
channels, the even and odd states, for example. After trans-
forming to the scattering basis, only one linear combination
of these appears in the Anderson hybridization; we refer to it
as the “screening channel.”

As we are primarily interested in the Kondo regime of the
quantum dot, we perform a Schrieffer-Wolff transformation
in the screening channel basis to obtain an effective Kondo
model with an additional potential scattering term KR that is
of order the bare Kondo coupling and which vanishes �to this
order� when the dot level is tuned to the symmetric value of
�d=−U /2 �these terms are defined in Eq. �5��. This latter
term is discussed in Sec. III A. Both the generated Kondo
interaction and the potential scattering depend on the flux �,
the strength of the direct interlead coupling t�, and the mo-
mentum of electrons in the leads. From the strength of this
Kondo interaction we are able to obtain the dependence of
the Kondo temperature on these model parameters as dis-
cussed in Sec. IV A. This type of analysis utilizing the
Schrieffer-Wolff transformation was used to study a similar
Aharanov-Bohm ring model consisting of three quantum
dots22 �see also Ref. 23�.

Next, in Sec. III B, we integrate out high-energy states to
obtain a low-energy effective Hamiltonian. In addition to
renormalizing the Kondo interaction, this also generates a
small potential scattering term, VR, of second order in the
bare Kondo coupling. Hence, VR contributes to the leading
order term in the potential scattering when �d=−U /2 though
there may be other contributions as we discuss in the text.
Otherwise, it is the KR term discussed above that provides
the leading order contribution to the potential scattering.

In Sec. IV B, we calculate the low-temperature conduc-
tance in terms of the effective S matrix for low-energy elec-
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trons via the Landauer formula. Below the Kondo tempera-
ture, a phase shift of � /2 occurs in the screening channel. To
a good approximation, the low-temperature S matrix is sim-
ply determined by the unitary transformation to the scatter-
ing basis and this � /2 phase shift in the screening channel. A
small correction to this S matrix occurs due to the KR poten-
tial scattering term �or VR in the case that �d=−U /2�. While
this approach confirms the results of Ref. 10 in the special
case of a half-filled band in the leads, we find that changing
the electron density in the leads has a large effect.

We confirm some of these results by NRG calculations
presented in Sec. V. We only consider the simplest case in
the Kondo regime, �d=−U /2, symmetric coupling of the left
and right leads to the dot, and with a half-filled band. We
begin by completely describing the renormalization-group
flow of our model, predicting the form of the various fixed
points and crossover energy scales which are then confirmed
in the NRG. Most notably, the Kondo temperature is ex-
tracted from the energy scale of the Wilson chain at which
the crossover to the low energy strong-coupling fixed point
occurs and agrees excellently with that predicted analytically.
The effective S matrix is compared to the low-energy exci-
tation spectrum over various parameter ranges. We obtain
quite good agreement through this comparison, including the
small corrections from VR.

II. MODEL AND ANALYSIS

We start with a tight-binding model depicted in Fig. 1.
The Hamiltonian for this model is

H = H0 + H−+ + Htd + Hd, �1�

H0 = − t�� �
j=−�

−2

+ �
j=1

� �cj
†cj+1 + H.c.	 , �2�

H−+ = − t��c−1
† c1 + H.c.� , �3�

Htd = − ��td−ei��/2�c−1
† + td+e−i��/2�c1

†�d + H.c.� , �4�

Hd = �dd†d + Und↑nd↓. �5�

Each annihilation operator for the leads, cj, and the Anderson
impurity, d, is a spinor where the spin indices are implied.
The anticommutation relationship is 
cj

† ,cj��=� j j�. The num-
ber operator for dot electrons of spin � is defined as nd�

�d�
† d�. The various parameters are described in Fig. 1. We

will assume that all of the couplings are real. The magnetic
flux has been introduced through the parameter �
=2�	 /	0, 	 being the magnetic flux threading the AB ring

and 	0=h /e being the magnetic flux quantum. We assume
that the magnetic field generating the flux is small enough in
the vicinity of the wires so that we may neglect the Zeemen
effect in the quantum dot and the leads.

Although such a tight-binding model for the leads is not a
very accurate description of leads in a semiconductor hetero-
structure on which such geometries are often defined, we use
it here as an example of a relatively simple model that con-
tains a natural bandwidth of 4t. We now define a basis of
even and odd combinations of electron operators

ej �
1

2

�cj + c−j�, j 
 0, �6�

oj �
1

2

�cj − c−j�, j 
 0 �7�

so that the Hamiltonian can be written as

H0 = − t�
j=1

�

�ej
†ej+1 + oj

†oj+1 + H.c.� , �8�

H−+ = − t��e1
†e1 − o1

†o1� , �9�

Htd = −
1

2


�tde
� e1

† − tdo
� o1

†�d + H.c.� , �10�

where we have defined the shorthand notation

tde � td−e−i��/2� + td+ei��/2�, �11�

tdo � td−e−i��/2� − td+ei��/2�. �12�

Hd remains unchanged.
Immediately we notice that, for the case of zero flux, �

=0, and symmetric coupling td−= td+, the model reduces to
two decoupled chains, the even channel interacting with the
quantum dot and having a potential scattering interaction −t�
at j=1 and the odd channel decoupled from the dot and with
a potential scattering interaction t� at j=1. However, in the
general case of ��0, we must analyze both channels
together.

If we remove the dot from the system we are left with two
independent channels, even and odd, with a potential �t� at
j=1. As shown in Appendix B, this potential gives rise to
two scattering phase shifts �k

� in the even/odd channel re-
spectively, the form of which is given at the Fermi surface to
be

tan �� � �

� sin kFa

1 � 
� cos kFa
, �13�

where 
�� t� / t and ����kF

� . Note that, at half-filling when
kF=� / �2a�, �+=−�−=�, where tan �=
�. These phase shifts
will play an important part when we discuss the zero-
temperature properties of this system in Sec. IV.

−4 −3 −2 −1 2t’

td+

t t t ttttt
Φ

εd

td−

31 4

FIG. 1. The lattice model described by the Hamiltonian of Eq.
�1�.
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Noting that H−+ serves as a potential scattering term, we
seek to transform to the scattering basis that essentially re-
moves these interactions from the Hamiltonian. We do this
by first introducing the complete set of wave functions that
solve the Schrödinger equation for H0

� j�k� =
2a

�
sin�kja� �14�

with a being the lattice spacing. We can expand our opera-
tors as

ej =
2a

�
�

0

�/a

dk sin�kja�ek, �15�

oj =
2a

�
�

0

�/a

dk sin�kja�ok �16�

so that 
ek
† ,ek��= 
ok

† ,ok��=��k−k��. The Hamiltonian be-
comes

H0 = �
0

�/a

dk�k�ek
†ek + ok

†ok� , �17�

H−+ = �
0

�/a

dkdk�vkk��ek
†ek� − ok

†ok�� , �18�

Htd = −
 a

�
�

0

�/a

dk sin ka
�tde
� ek

† − tdo
� ok

†�d + H.c.� ,

�19�

where we have defined

�k � − 2t cos ka , �20�

vkk� � −
2t�a

�
sin ka sin k�a . �21�

With H−+ written in such a simple form, we now trans-
form to the scattering basis. Ignoring Htd for the moment, we
note that the only difference between the e and o channels is
the sign of the vkk� interaction. Hence, we define the scatter-
ing basis

qek
† � �

0

�/a

dk��k�
+�k�ek�

† , �22�

qok
† � �

0

�/a

dk��k�
−�k�ok�

† , �23�

where

�k�
��k� � ��k − k�� +

Tk�k
�

�k − �k� + i�
�24�

and � is a positive, infinitesimal parameter. It is shown in
detail in Appendix A that Tkk�

� is given by

Tkk�
� = �

vkk�

1 � 
�e−ik�a
. �25�

Thus, the Hamiltonian greatly simplifies in the qek, qok basis
to

H0 = �
0

�/a

dk�k�qek
† qek + qok

† qok� , �26�

H−+ = 0, �27�

Htd = −
 a

�
�

0

�/a

dk
�tde
� �k

+�qek
† − tdo

� �k
−�qok

† �d + H.c.� ,

�28�

where

�k
� � �

0

�/a

dk� sin k�a�k�
��k� =

sin ka

1 � 
�e−ika . �29�

The last equality is proven in Appendix A.
With the potential scattering Hamiltonian H−+ vanishing

due to the transformation to the scattering basis, we are now
free to rotate the basis once more to the channel that couples
directly to the impurity and its orthogonal complement. In
this way, anticipating our discussion on the Kondo effect, we
define the screening channel

�k
scr �

tde�k
+qek − tdo�k

−qok


td−
2 + td+

2 
��k
+�2�1 + � cos �� + ��k

−�2�1 − � cos ��
,

�30�

where we have defined the asymmetry parameter

� �
2td−td+

td−
2 + td+

2 . �31�

In this way the dot coupling Hamiltonian can be written
as

Htd = �
0

�/a

dkṼdk��k
scr†d + H.c.� , �32�

where

Ṽdk � −
 a

�

td−

2 + td+
2

�
��k
+�2�1 + � cos �� + ��k

−�2�1 − � cos �� , �33�

=− �sin ka�
2a

�
�td−

2 + td+
2 �
1 + 
�2 − 2�
� cos � cos ka

�1 + 
�2�2 − 4
�2 cos2 ka
.

�34�

This form of the hybridization was first found in Ref. 14.
We are interested primarily in the Kondo effect which

involves only the screening channel since it is the only one
that couples to the quantum dot. Hence, one can perform the
Schrieffer-Wolff transformation24,25 so that the screening
channel Hamiltonian assumes the form
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H = �
0

�/a

dk�k�k
scr†�k

scr + �
0

�/a

dkdk��Jkk��k
scr†�� �k�

scr · S�d

+ Kkk��k
scr†�k�

scr� , �35�

where we have defined the effective dot spin operator

S�d � d†��

2
d �36�

with �� being the three Pauli matrices �recall that �k
scr and d

are spinors�. The coupling parameters are given by

Jkk� = ṼdkṼdk�� 1

�k − �F − �d
+

1

U + �d − �k� + �F
	 , �37�

Kkk� =
ṼdkṼdk�

2 � 1

�k − �F − �d
−

1

U + �d − �k� + �F
	 . �38�

At this point, one can obtain a low-energy effective theory
by integrating out high-energy modes in the usual way. The
potential scattering term Kkk� is marginal and does not renor-
malize. We will discuss this term in more detail in Sec. III A
and neglect it for now. The exchange interaction is relevant
and diverges, giving rise to the usual Kondo screening of S�d
by the screening channel Fermions for temperatures T below
the Kondo temperature TK. There are, however, physical con-
sequences due to the flux � and interlead coupling t� that
will be determined in Sec. IV.

To summarize the analysis thus far, through a series of
basis rotations we have cast the interlead Hamiltonian into a
potential scattering form. By transforming to the scattering
basis, we have eliminated this potential scattering term and
identified the operator that couples directly to the quantum
dot. It is this combination that will participate in the Kondo
screening of the dot. Nevertheless, there are additional po-
tential scattering terms that can arise in the screening channel
and it is this subject that we next discuss.

III. ADDITIONAL POTENTIAL SCATTERING

Our goal is to derive an effective theory of our system that
is valid at low temperatures, keeping the leading order con-
tributions in the effective strength of the Kondo coupling

J �
1

a
JkFkF

�t�=0 =
2�td−

2 + td+
2 �sin2 kFa

�
� U

− �d�U + �d�� ,

�39�

which has dimensions of energy and which we take to be a
small parameter.

The effective theory can be derived, to a first approxima-
tion, by linearizing the dispersion �k in a region −Q�k
−kF�Q and approximating the coupling constants Jkk� and
Kkk� by their values at the Fermi energy JkFkF

and KkFkF
.

However, it will be shown that when the dot level is tuned to
the value �d=−U /2, KkFkF

vanishes to second order in VdkF
.

In this case, a more careful derivation of the low-energy
Hamiltonian reveals that there is still an additional potential

scattering generated by the renormalization of Jkk�. This is
higher order in J than the leading order contribution to KkFkF
written in Eq. �38� but contributes to the leading order term
in the additional potential scattering when Eq. �38� vanishes
at �d=−U /2. We address each of these cases separately
below.

A. Asymmetric dot εdÅ−U Õ2

Restricting excitations to a small region about the Fermi
energy as described above, the potential scattering term gen-
erated by the Schrieffer-Wolff transformation assumes the
form

HR = KR�
−Q

Q

dkdk��k
scr†�k�

scr, �40�

where

KR � KkFkF
=

a

�
sin2 kFa�td−

2 + td+
2 �

��−
U + 2�d

�d�U + �d��1 + 
�2 − 2�
� cos � cos kFa

�1 + 
�2�2 − 4
�2 cos2 kFa
.

�41�

In order to observe the Kondo effect, we require that
�d�−U /2 so as to favor the formation of a local moment
rather than a doubly occupied or unoccupied dot level. In this
case, we see that KR is of order J. However, for the precise
value of �d=−U /2, KR vanishes and there is no potential
scattering generated directly by the Schrieffer-Wolff transfor-
mation at low energies to linear order in J.

The presence of this potential scattering term will give
rise to a phase shift �R at the Fermi surface in the screening
channel. As shown in Appendix B, this is given by

tan �R = − ��KR �42�

for small KR and where � is the density of states at the Fermi
energy. We will show in Sec. IV B how this additional po-
tential scattering contributes to the T=0 conductance of the
AB ring.

B. Symmetric dot εd=−U Õ2

As discussed above, integrating out the high-energy
modes to obtain a low-energy Hamiltonian leaves the mar-
ginal interaction Kkk� unchanged and so one obtains the term
discussed in the above section. However, one can ask the
question as to whether or not an additional potential scatter-
ing term is generated by the Kondo interaction Jkk�. Nor-
mally this is not the case for one often considers a Kondo
interaction that is particle-hole symmetric. It can be shown
that this is not true for Jkk� of Eq. �37�. This is a consequence
of a nonzero t� which necessarily breaks particle-hole sym-
metry. Although we have transformed away the explicit t�
interaction, the particle-hole symmetry breaking is manifest
in this more complicated Kondo interaction. As a result,
there is no symmetry forbidding this Kondo interaction from
generating an additional potential scattering term and it is to
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the calculation of this that we now turn our attention.
Consider a renormalization-group scaling by integrating

out all of the wave vectors down to the Fermi energy. Al-
though it is difficult to perform such a transformation ex-
actly, one can make progress through a perturbative expan-
sion in J. The leading order contribution is of order J2 which
will be much smaller than KR, Eq. �41�, which is of order J.
However, KR vanishes when �d=−U /2 so that the J2 term
calculated below will contribute to the leading order term in
the potential scattering. Hence, in this section, we assume
that �d=−U /2.

Evaluating the Feynman diagrams to second order in the
Kondo interaction Jkk� in Eq. �35�, one finds a potential scat-
tering term generated of the form

HR = VR�
−Q

Q

dkdk��k
scr†�k�

scr, �43�

where the region of integration is restricted to small momen-
tum about the Fermi momentum kF and VR is given by

VR =
3

16
�

0

�/a

dk
JkFkJkkF

�F − �k + i� sgn��F − �k�
. �44�

The factor of 3/16 comes from the trace over spin degrees of
freedom and the denominator is simply the time-ordered
propagator of the intermediate �k

scr Fermion.
Substituting in the definition of Jkk� of Eq. �37� together

with the definition of Ṽdk from Eq. �34� and J from Eq. �39�,
VR can be written as

VR =
3a

128 sin4 kFa

J2

t
���kF

+ �2�1 + � cos �� + ��kF

− �2

��1 − � cos ����IR
+�1 + � cos �� + IR

−�1 − � cos ��� .

�45�

The factors of IR
� are dimensionless integrals given by

IR
� � �

0

�

dy
sin2 y

1 � 2
� cos y + 
�2

1

cos y − cos kFa + i� sgn�cos y − cos kFa�
u2 − �cos y − cos kF�2

u2 − 4�cos y − cos kF�2 �46�

with

u �
U

2t
. �47�

To evaluate these integrals, we break them up into two
regions

IR
� = ��

0

kFa

dy
1

cos y − cos kFa + i�

+ �
kFa

�

dy
1

cos y − cos kFa − i�	 sin2 y

1 � 2
� cos y + 
�2

�
u2 − �cos y − cos kF�2

u2 − 4�cos y − cos kF�2 . �48�

The imaginary parts from each integral cancel each other.
Upon evaluation of the principle part of each integral, one
obtains

IR
� = �

�

8
�
� 1 − 
�2

1 � 2
� cos kFa + 
�2

��1 −
3u2
�2

�1 � 2
� cos kFa + 
�2�2 − u2
�2� − 1� .

�49�

Substituting this back into the above expression gives us our
final result for VR

�VR = −
3�2��J�2

64
� sin kFa

1 + 
�2 − 2�
� cos kFa cos �

�1 + 
�2�2 − 4
�2 cos2 kFa
� �� cos � +

2
��1 − 
�2�cos kFa − �1 − 
�4�� cos �

�1 + 
�2�2 − 4
�2 cos2 kFa

+
3u2� cos �
�2�1 − 
�2���1 + 
�2�2 + 4
�2 cos2 kFa − u2
�2� − 12u2
�3�1 − 
�4�cos kFa

��1 + 
�2�2 + 4
�2 cos2 kFa − u2
�2�2 − 16
�2�1 + 
�2�2cos2 kFa
� , �50�
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where � is the density of states at the Fermi energy. Just as
with the potential scattering term KR, this VR term will give
rise to a phase shift in the screening channel given by

tan �R = − ��VR �51�

as shown in Appendix B.
It should be noted that, although the potential scattering

generated by the Schrieffer-Wolff transformation vanishes to
order J, there may be a nonzero term at order J2 in addition
to that given by VR calculated above. Such a calculation of
the higher order Schrieffer-Wolff terms is beyond the scope
of this paper and so we leave it as a future project.

In conclusion, the transformation analysis of Sec. II pro-
vides a simple, generic way to account for the presence of
interlead coupling which takes the form of a potential scat-
tering interaction. Such a transformation effectively removes
the potential scattering explicitly from the Hamiltonian in
favor of a more complicated, particle-hole asymetric Kondo
interaction when the dot is tuned to the Kondo regime. We
have further shown that additional potential scattering terms
are generated in the screening channel. The leading order
contribution to this additional potential scattering is given by
KR, Eq. �41�, in the case that �d�−U /2 and by VR, Eq. �50�,
when �d=−U /2. In the next section, we analyze the physical
consequences of this low-energy model.

IV. PHYSICAL PROPERTIES

A. Kondo temperature

One of the primary insights of the scattering transforma-
tion analysis is in revealing how the Aharanov-Bohm ring
influences the coupling between the quantum dot and the
screening channel of electrons. That is, it allows us to obtain
an expression for the dot-lead coupling in the Hamiltonian of

Eq. �32�, given by ṼdkF
�in the long wavelength limit�, show-

ing the dependence of the coupling on t�, �, and kF. We then
determine the t�, �, and kF dependence of the effective
Kondo coupling via the Schrieffer-Wolff transformation, Eq.
�37�. This, in turn, gives rise to a t�, �, and kF dependent
Kondo temperature, the precise expression of which is easy
to derive.

Using the low-energy effective Hamiltonian, we deter-
mine the effective Kondo coupling by evaluating Eq. �37� at
the Fermi energy

Jeff � JkFkF
= ṼdkF

2 − U

�d�U + �d�
, �52�

=J
1 + 
�2 − 2�
� cos � cos kFa

�1 + 
�2�2 − 4
�2 cos2 kFa
, �53�

where J is defined in Eq. �39�. The leading order RG defini-
tion of the Kondo temperature25,26 is

TK = De−1/�2�Jeff� �54�

and dividing by the t�=0 Kondo temperature TK
0 =De−1/�2�J�,

we get

ln
TK

TK
0 = −


�

2�J

2� cos � cos kFa + 
��1 − 4 cos2 kFa� + 
�3

1 − 2�
� cos � cos kFa + 
�2 .

�55�

Although the denominator is always positive, we see that the
Kondo temperature can be raised or lowered by the presence
of the Aharanov-Bohm ring depending on the values of 
�, �,
and kF. This is shown in Figs. 2 and 3 which show the flux
and t� dependence for various values of the other parameters.

For the special case of half-filled leads, kF=� / �2a�, the
result is particularly simple

ln�TK

TK
0 �

kF=�/2a

= −

�2

2�J
�56�

showing that the Kondo temperature is independent of flux in
this case. This limiting form of the Kondo temperature is
verified by the NRG as discussed in Sec. V.
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FIG. 2. �Color online� The flux dependence of the Kondo tem-
perature for a value of 
�=0.4 and �=1. Here we see an increase in
the flux dependence as the electron density is lowered.
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FIG. 3. �Color online� The 
� dependence of the Kondo tem-
perature for a value of kF=� /6a. This exhibits the variety of be-
havior that can be seen for different values of the flux and that the
Kondo temperature always vanishes as 
�→�.
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B. S matrix and conductance

The strong-coupling fixed point of the Aharanov-Bohm
model under consideration can be described by a two-
channel Fermi liquid. In this way, the fixed point model is
fully described by a 2�2 S matrix describing how the qua-
siparticle excitations of the two channels are scattered at the
Fermi energy. In this section, we derive this S matrix and
relate it to the conductance between the two leads.

The analysis of Secs. II and III provide the following
simple picture of the strong-coupling fixed point. The direct
coupling between the two leads, t�, gives rise to a phase shift
�� in the qek and qok channels, respectively. The form of
these phase shifts is presented in Eq. �13� as computed in

Appendix B. By transforming to the scattering basis and re-
moving the t� interaction from the Hamiltonian, we were
able to identify the screening channel of Eq. �30�. Defining

the orthogonal complement, �̃k
scr, to �k

scr and evaluating both
at the Fermi energy �relevant here since we are talking about
T=0 properties�, we can write the relation between the
screening/nonscreening basis and the even odd basis in terms
of the above phase shifts as

��k
scr

�̃k
scr	 = U�qek

qok
	 , �57�

where

U = N�− e−i�+
sin �+�td−e−i��/2� + td+ei��/2�� − e−i�−

sin �−�td−e−i��/2� − td+ei��/2��

ei�−
sin �−�td−ei��/2� − td+e−i��/2�� − ei�+

sin �+�td−ei��/2� + td+e−i��/2��
	 �58�

with normalization

N � 
�td−
2 + td+

2 ��sin2 �+�1 + � cos ��

+ sin2 �−�1 − � cos ����−1/2. �59�

In the screening channel, there will be a phase shift with
two contributions. The first is the usual � /2 Kondo phase
shift. The second is the phase shift �R generated by the ad-
ditional potential scattering, the leading order contribution to
which will either be KR or VR �Ref. 27� depending on the
value of �d. Since the additional potential scattering was ob-
tained by integrating out the high-energy modes, the gener-
ated Hamiltonian term of Eq. �43� must be considered as a
low-energy, long wavelength continuum model where the in-
fluence of the lattice is inconsequential. The phase shift for
such a model is derived in Appendix B and shown to be
either that of Eq. �42� or �51�.

This is all of the information we require to write down the
S matrix in the even/odd basis

S = U†�− e2i�R 0

0 1
	U�e2i�+

0

0 e2i�−	 . �60�

The far right matrix describes the potential scattering phase
shifts due to t� in the qek and qok channels, U rotates the basis
to the screening channel and the matrix between U and U†

describes the phase shift �R due to VR or KR as well as the
� /2 Kondo phase shift giving rise to the factor of −1
=e2i��/2�.

Multiplying the matrices, we can write S as

S = �See Seo

Soe Soo
	 �61�

with

See = − Me2i�+
�e2i�R�1 + � cos ��sin2 �+

− �1 − � cos ��sin2 �−� , �62�

Seo = − 2Mei��−+�++�R��� − i� sin ��sin �− sin �+ cos �R,

�63�

Soe = − 2Mei��−+�++�R��� + i� sin ��sin �− sin �+ cos �R,

�64�

Soo = Me2i�−
��1 + � cos ��sin2 �+ − e2i�R

��1 − � cos ��sin2 �−� , �65�

where we have defined

� �
td−
2 − td+

2

td−
2 + td+

2 �66�

and

M �
1

�1 + � cos ��sin2 �+ + �1 − � cos ��sin2 �− . �67�

To relate this S matrix to the conductance, we first con-
struct general scattering wave functions between the even
and odd channels. Consider an incoming plane wave in the
even channel that is then scattered into the even and odd
outgoing channel according to the above S matrix. Such a
wave function takes the form

�e = e−ik�x� + Seee
ik�x� + Soe sgn�x�eik�x�, �68�

where the first term is the incoming wave in the even chan-
nel, the second term the scattered even wave and the last
term the scattered odd wave. Similarly, considering an in-
coming wave in the odd channel gives the wave function
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�o = sgn�x�e−ik�x� + Seoeik�x� + Soo sgn�x�eik�x�. �69�

Next, we wish to form a combination of �e and �o that
corresponds to a right-moving wave incoming from the left.
That is, we wish to form a superposition of the above two
wave functions that has no left-moving component for x
0.
To this end, we form

� �
1

2
��e − �o�

= �
1

2
�See + Soe − Seo − Soo�eikx x 
 0

eikx +
1

2
�See + Soo − Seo − Soe�e−ikx x � 0,� �70�

where, indeed, we find no e−ikx component in � for x
0.
Looking at the x
0 portion of �, we recognize the coef-

ficient of the plane wave as the transmission probability am-
plitude for transmission from the left lead to the right lead

T =
1

2
�See + Soe − Seo − Soo� . �71�

Using the Landauer-Buttiker formula, we obtain an expres-
sion for the conductance

G =
2e2

h
�T�2

=
2e2

h

�1 + � cos ��2sin4 �+ cos2��+ − �− + �R�

+ �1 − � cos ��2sin4 �− cos2��+ − �− − �R�

+ sin2 �− sin2 �+�4 cos2 �R sin2 � − �1 − �2 cos2 ��

��cos�2��+ − �−�� + cos 2�R���/��1 + � cos ��sin2 �+

+ �1 − � cos ��sin2 �−�2. �72�

This is the most general expression for the conductance ex-
pressed in terms of the phase shifts �� generated by the
interlead coupling t�, the additional potential scattering KR or
VR via �R, and in terms of the flux �. The latter includes the
explicit � dependence written above as well as the depen-
dence implicit in �R via the flux dependence of KR or VR
written in Eq. �41� or �50�. Although the equation is rather
complicated, we see that the conductance satisfies the neces-
sary symmetry relation G���=G�−��. We now turn our at-
tention to special limiting cases.

For the case of kF=� / �2a� and td−= td+ considered in most
previous studies, �+=−�−�� with tan �=
� and the conduc-
tance simplifies to

G�kF=�/2a =
2e2

h
�cos2�2� − �R�cos4�

2
+ cos2�2� + �R�sin4�

2

+ cos2 �R sin2 � −
1

4
�cos 4� + cos 2�R�sin2 �� .

�73�

It is interesting to compare this with the numerical results of
Ref. 10. For the case of �d�−U /2, when KR is the leading

order contribution to �R, we are able to qualitatively repro-
duce the Fano-Kondo behavior seen in Ref. 10 in the region
�d�−U /2 for which our analysis is valid. An example of
this is given in Fig. 4.

For the symmetric value �d=−U /2 when KR vanishes, we
can view the �R generated by VR as a small correction to the
results of Ref. 10. Indeed, in the limit of �R→0 and kF
=� / �2a�, our result reduces to

G��R=0,kF=�/2a =
2e2

h
�1 − Tb cos2 �� , �74�

where Tb=sin2 2� is the transmission probability through the
lower arm of the Aharanov-Bohm ring in the absence of the
upper arm. This is precisely the form reported in Ref. 10 for
the case of a singly occupied quantum dot.

In this way, Eq. �73� can be viewed as an analytic descrip-
tion of the results of Ref. 10, the latter of which required
numerical input from the NRG. Such an analytic description
is only valid for values of �d close to −U /2 so as to strongly
favor a local moment on the quantum dot whereas the results
of Ref. 10 are valid for all �d. On the other hand, our com-
plete expression for the conductance, Eq. �72�, extends pre-
vious results to cases where the Fermi energy is not situated
in a particle-hole symmetric manner relative to the band
edges �e.g., kF�� / �2a�� as well as taking into account the
additional potential scattering VR discussed in Sec. III.

To further examine the correction due to VR, we look at
the flux dependence of the conductance in Fig. 5 for the case
that �d=−U /2 and hence VR contributes to the leading order
behavior of �R. There, each of the different colored lines
indicates a different value of the direct interlead coupling t�
as encoded by �. It is seen that the conductance contrast �the
difference between the minimum and maximum conduc-
tance� reaches a maximum for an intermediate value of the
interlead coupling 
�=1 �t�= t�.

Furthermore, it is shown that for 
��1, the effect of the
additional potential scattering VR is to decrease the conduc-
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FIG. 4. �Color online� The conductance as a function of dot
level �d for various values of the direct interlead transmission prob-
ability given by Tb=sin2 2�. Here, we assume the particle-hole
symmetric value of half-filling, kF=� /2a and �=1. This is the be-
havior seen numerically in Ref. 10.
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tance whereas for values 
�
1, the additional potential scat-
tering serves to increase the conductance. This fact is made
more evident in Fig. 6 where the conductance is plotted ver-
sus 
� for �=0. There, one can clearly see the crossover from
reduced to enhanced conductance around 
�=1.

Given that VR offers only a small correction, we look at
the �R=0 limit of the conductance for general kF which takes
the form

G��R=0 =
2e2

h

cos2��+ − �−��sin4 �+�1 + � cos ��2 + sin4 �−

��1 − � cos ��2� + sin2 �− sin2 �+�4 sin2 �

− 2 cos2��+ − �−��1 − �2 cos2 ����/�sin2 �+�1

+ � cos �� + sin2 �−�1 − � cos ���2. �75�

Even without including the small correction due to VR, this is

a generalization of the conductance reported in Ref. 10
which, like most similar studies, only considered the case
where the leads exhibit particle-hole symmetry �kF=� / �2a�
for our tight-binding leads�. For quantum dots constructed on
semiconductor heterostructures where the two-dimensional
electron gas has very low density, the Fermi energy will be
very close to the bottom of the energy band and so exhibit
strong particle-hole asymmetry. Hence, the generalized
forms for the conductance reported above seem to be more
applicable to such devices than those reported in previous
studies.

The description of the conductance that emerges from this
analysis is quite interesting. In the limit that 
�→0, we re-
cover the well-studied model of a single quantum dot em-
bedded between two leads where one obtains unitary con-
ductance at zero temperature. As one increases 
�,
interference effects play a stronger role until one obtains
maximal interference at 
�=1 �Tb=1� where one is able to
obtain total destructive interference in the form of zero con-
ductance for certain values of the parameters �e.g., kF
=� / �2a� and �=0�. As one further increases 
�, the trans-
mission Tb through the lower arm decreases and interference
effects are diminished.

V. SUPPORT FROM THE NUMERICAL
RENORMALIZATION GROUP

A. Phase diagram and Kondo temperature

1. Fixed points of the single-channel Anderson impurity model

We begin by reviewing the various fixed points present in
the single-channel Anderson model28 before describing the
influence of the Aharanov-Bohm ring. When investigating
low-energy, long-wavelength properties, it is customary to
define a model in terms of continuous fields with a linearized
dispersion relation characterized by a Fermi velocity vF. In
this way, we can write the single-channel Anderson model in
terms of right-moving one-dimensional electron annihilation
operators ��x� as

H = vF�
−�

�

dx�†�x��− i�x���x� + Vd��†�0�d + H.c.�

+
U

2
�d†d − 1�2 −

U

2
, �76�

where we have set the dot level to �d=−U /2 �assumed
throughout this section�.

This model has three fixed points summarized in Table I.
The free orbital (FO) fixed point occurs when Vd=U=0. This
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FIG. 5. �Color online� The conductance plotted as a function of
magnetic flux for kF=� /2a, �d=−U /2, and �=1. Each of the dif-
ferent colored lines indicates a different value of the inter-lead cou-
pling 
�. The solid lines are the prediction with VR=0 �equivalently
�R=0� with the dotted lines showing the finite VR correction. This
data assumes a value �J=0.287 for the bare Kondo coupling.
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FIG. 6. �Color online� The conductance plotted as a function of
interlead coupling tp when kF=� /2a and �d=−U /2. Here, J
=0.287 and �=0.

TABLE I. Summary of fixed points for the single-channel
Anderson impurity model.

Fixed point Vd U Stability

Free orbital 0 0 Unstable

Local moment 0 � Unstable

Strong coupling � � Stable
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describes free � Fermions with a decoupled free dot level d.
The spectrum of such a model is that of free Fermions plus
the four degenerate, zero-energy states of the dot.

The FO fixed point is unstable and flows toward the local
moment (LM) fixed point as the energy scale is lowered. The
LM fixed point is characterized by a diverging U→� and
Vd=0. This LM fixed point is the same as the FO except that
two of the four dot levels are energetically forbidden,
namely, those for which d†d=0 and d†d=2. In other words,
the quantum dot can only be singly occupied with either a
spin up or spin down electron. Hence, the spectrum will be
that of free Fermions plus two degenerate, zero-energy states
of the dot.

The LM fixed point is also unstable and eventually flows
to the strong coupling (SC) fixed point described by a diverg-
ing �Vd�2 /U→�. The nature of this fixed point can most
easily be understood by first considering a Hamiltonian close
to the LM fixed point with a small �Vd��U. In this case, one
can perform a Schrieffer-Wolff transformation24 perturba-
tively in Vd to obtain a dot interaction

Htd + Hd � J�†�0�
��

2
��0� · Sd

� , �77�

where �� is a vector of the three Pauli matrices, Sd
�

�d†��� /2�d is the effective spin of the singly occupied dot
level, and the coupling strength J is proportional to �Vd�2 /U.
This is the Kondo interaction between the localized spin of
the quantum dot and the electrons in the leads. The SC fixed
point of the Anderson model is essentially the same as the
strong-coupling fixed point of the Kondo model wherein J
→� and the dot spin is screened by forming a singlet with
the lead electrons.

2. Fixed points of the Aharanov-Bohm quantum dot model

The low-energy transformations of Sec. II reveals that the
renormalization group flow for the Aharanov-Bohm ring
model under consideration will be very similar to that of the
single-channel Anderson model just described. Indeed, we
have learned that a single, independent combination of the
lead electrons, �k

scr, couples directly to the dot just as in the
single-channel Anderson model. The precise nature of this
screening channel will depend on both flux � and the inter-
lead coupling t� but the point is that there is a single channel
available to screen the spin of the quantum dot. For simplic-
ity, we consider only the symmetric case where td−= td+= td
and �d=−U /2.

The primary difference with the Anderson model dis-
cussed in the previous section is the addition of some poten-
tial scattering phase shifts �� depending on t� and the modi-

fication of the dot-lead coupling VdkF
→ ṼdkF

. We find that the

FO and LM fixed points, with ṼdkF
=0, will be the same as in

the single-channel Anderson model with the addition of the
phase shifts �� arising from the direct tunneling between the
leads which were incorporated into the definition of qek and
qok. The SC fixed point of the Aharanov-Bohm ring model
will be one in which the dot spin is fully screened by the �k

scr

combination of lead electrons. Just as in the Kondo model,
this will give rise to a � /2 phase shift in the �k

scr channel in

addition to the phase shifts �� arising from the direct tunnel-
ing t�.

Furthermore, the FO and LM fixed points occur for ṼdkF

=0 and, since ṼdkF
encodes the t� dependence of the model,

we predict that the crossover scale of these fixed points will
be unaffected by the presence of the Aharanov-Bohm ring
�i.e., in the region of these fixed points, the t� and � depen-

dence of ṼdkF
is inconsequential�. However, the crossover

energy scale to the SC fixed point, that is, the Kondo tem-
perature TK, will be influenced by the direct tunneling t� and
flux � as discussed in Sec. IV A.

We can check these predictions for the fixed points of the
Aharanov-Bohm ring model using the NRG. This numerical
algorithm is exhaustively detailed in the pioneering
papers28–30 and in a recent review31 so we give only an out-
line sketch here.

We begin with a long wavelength version of the Hamil-
tonian described in Eqs. �17�–�19� with a dispersion relation
linearized about the Fermi energy �F=0, a cutoff in momen-
tum at k= �Q �here, k is measured with respect to kF, i.e.,
k−kF→k�, td−= td+= td, and �d=−U /2.

The resulting Hamiltonian is

H = vF�
−Q

Q

dkk�ek
†ek + ok

†ok� − Vp�
−Q

Q

dkdk��ek
†ek� − ok

†ok��

+ Vd�
−Q

Q

dk��cos
�

2
ek

† + sin
�

2
ok

†	d + H.c.�
+

U

2
�d†d − 1�2, �78�

where we have simplified our notation by defining the poten-
tial scattering term Vp�−vkFkF

, Vd�−2td

a /� sin kFa, and

redefining the phase of ok so as to make all coefficients real.
Note that this version of the Hamiltonian does not involve a
transformation to scattering states. In this way, agreement
between the NRG and results inferred from the transforma-
tions of Sec. II will serve as support for the scattering trans-
formation analysis.

However, it should be observed that such a linear disper-
sion necessarily exhibits particle-hole symmetry whereas the
tight-binding model discussed in Sec. II generally breaks
particle-hole symmetry except for the special case of kF
=� / �2a� that occurs when there is one electron per site. For
this reason, the NRG as formulated here strictly serves only
to support our scattering transformation analysis for the
particle-hole symmetric case of kF=� / �2a�. Nevertheless,
we trust that our analytic results hold true for arbitrary kF.

Setting up the NRG involves a series of transformations
and approximations that map the model for the lead electrons
onto two semi-infinite tight-binding chains, often termed
Wilson chains, with hopping amplitudes that exponentially
decrease with distance from the quantum dot
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H

D
�

1

2
�1 + �−1�1/2 �

b=e,o
�
n=0

�

�−n/2�n�fnb
† f �n+1�b + H.c.�

+
U

2D
�d†d − 1�2 − 2�Vp�f0e

† f0e − f0o
† f0o�

+
 2�

�D
��cos

�

2
f0e

† + sin
�

2
f0o

† 	d + H.c.� . �79�

In general, each fermionic fne and fno is a complicated linear
combination of ek and ok, respectively. The details of this
relationship are not of great importance for the present dis-
cussion except to note that the Fermions created on the n
=0 site by f0e

† and f0o
† are proportional to the e and o elec-

trons at the origin: f0e�e�x=0� and f0o�o�x=0�. Of the
other parameters defined in this Wilson-chain Hamiltonian,
2D is the bandwidth and �
1 is a dimensionless discreti-
zation parameter defined such that the continuum limit is
recovered in the limit �→1. The dimensionless parameter �n
is given by

�n = �1 − �−n−1��1 − �−2n−1�−1/2�1 − �−2n−3�−1/2 �80�

and tends to unity for n�1. We have also defined

� � 2��Vd
2 �81�

with � the density of states at the Fermi energy.
The renormalization group is realized by truncating the

infinite chain to N sites and rescaling the Hamiltonian such
that the eigenvalues are of order unity

HN � ��N−1�/2� �
b=e,o

�
n=0

N−1

�−n/2�n�fnb
† f �n+1�b + H.c.�

+ Ũ�d†d − 1�2 − Ṽp�f0e
† f0e − f0o

† f0o� + �̃1/2

���cos
�

2
f0e

† + sin
�

2
f0o

† 	d + H.c.�� , �82�

where the quantities with tildes are simply dimensionless
versions of the original parameters of Eq. �79� with � depen-
dent rescaling. The renormalization-group transformation
then takes the form of the recursion relation

HN+1 = �1/2HN + �N �
b=e,o

�fNb
† f �N+1�b + H.c.� �83�

and is realized by iterative diagonalization, using the eigen-
values and eigenvectors of HN to define HN+1 via Eq. �83�. In
practice, the eigenvalues are shifted so that the lowest one is
zero.

The finite Hamiltonian HN can be related to the Hamil-
tonian of Eq. �79� by

H

D
= lim

N→�

1

2
�1 + �−1��−�N−1�/2HN. �84�

Since the dimensionless scale of HN is of order unity by
definition, this indicates that the spectrum of HN describes
the spectrum of the physical Hamiltonian at an energy scale
given by

EN �
1

2
�1 + �−1��−�N−1�/2D . �85�

In this way, we can associate HN with the effective Hamil-
tonian at the renormalization-group energy scale EN. Fixed
points can be identified as regions of N over which the en-
ergy spectrum of the associated HN changes very little �for
unstable fixed points� or not at all �for stable fixed points�.
These fixed point NRG spectra can then be compared with
that predicted by the scattering transformation analysis de-
scribed above to test the validity of said analysis.

Our analysis of the fixed points follows that of Refs. 28
and 30. Let us first consider the FO fixed point which, in
terms of the NRG formalism, is defined by �̃=0 and Ũ=0,
resulting in

HN,FO = ��N−1�/2� �
b=e,o

�
n=0

N−1

�−n/2�n�fnb
† f �n+1�b + H.c.�

− Ṽp�f0e
† f0e − f0o

† f0o�� . �86�

This has the form of two decoupled Wilson chains, each with
a potential scattering term at the origin. Such chains were
analyzed in Ref. 30, where the Ṽp dependence of the single-
particle energies was described in detail.

Extending their analysis to two decoupled channels as de-
scribed in Eq. �86�, one can diagonalize the noninteracting
fixed point Hamiltonian and write it in terms of the single-
particle and hole excitations

HN,FO = ��b=e,o �n=1

�N+1�/2
��nb

+ �Ṽp�gnb
† gnb + �nb

− �Ṽp�hnb
† hnb� N odd

�b=e,o 
�n=1

N/2
��̂nb

+ �Ṽp�gnb
† gnb + �̂nb

− �Ṽp�hnb
† hnb� + �̂0b

+ g0b
† g0b� N even.� �87�
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Here, gnb destroys a quasiparticle while hnb destroys a quasi-
hole. The corresponding single particle/hole excitations are
N dependent, in general, but, for N
10 �approximately�,
they are found to only depend on whether N is even or odd,

in which case one obtains Ṽp-dependent energy levels

�̂��Ṽp� or ���Ṽp�, respectively.
The precise numerical values of these energy levels de-

pend on � and Ṽp. The Ṽp dependence is described in Ref.
30, where it was found that

�nb
+ �Ṽp� = �nb

− �− Ṽp� �88�

and similarly for �̂. Furthermore, since the potential scatter-
ing in the e channel is equal in magnitude but opposite in
sign to that in the o channel, the above relation can be writ-
ten as

�ne
� �Ṽp� = �no

� �Ṽp� �89�

and similarly for �̂. In this way, we recover a form of

particle-hole symmetry even at finite Ṽp where the energy
spectrum of particles in the e channel are equivalent to the
spectrum of holes in the o channel and vice versa.

We can now combine these single-particle/hole excita-
tions in multiparticle/hole combinations �being sure to re-
spect the Pauli exclusion principle�, together with the four
degenerate zero-energy states of the dot level and so con-
struct the FO fixed point spectrum. The lowest such energy
levels are given in Table II along with the corresponding
total charge Q and total spin S quantum numbers.

The spectrum for the LM fixed point is closely related to
that of the FO. The corresponding NRG Wilson-chain
Hamiltonian for the LM fixed point is

HN,LM = ��N−1�/2� �
b=e,o

�
n=0

N−1

�−n/2�n�fnb
† f �n+1�b + H.c.�

− Ṽp�f0e
† f0e − f0o

† f0o� + lim
Ũ→�

Ũ�d†d − 1�2� . �90�

which is identical to that for the FO fixed point with the
addition of an infinite U Coulomb repulsion on the dot level.
The corresponding spectrum of the LM fixed point will be
the same as that for the FO fixed point with the exclusion of
all of those states for which the dot level is empty or doubly
occupied as these now have an infinite energy cost. The low-

TABLE II. The lowest energies and associated total charge Q and total spin S quantum numbers of the FO
NRG fixed point of the Aharanov-Bohm ring model for odd N. The numerical values for the single-particle

excitation energies were obtained by diagonalizing the Hamiltonian of Eq. �86� using a value of Ṽp=3.0 and
�=2.5. All energies in a section denoted by a single numerical value are equal by Eq. �89�.

Energy Num. value Q 2S Energy Num. value Q 2S

0 0.0000 −1 0 2�1e
+ +�1o

− 0.4485 0 1

0 1 1 0

1 0 1 2

�1e
+ 0.1495 0 1 2 1

1 0 �1e
+ +2�1o

− 0 1

1 2 −1 0

2 1 −1 2

�1o
− 0 1 −2 1

−1 0 2�1e
+ +2�1o

− 0.5980 −1 0

−1 2 0 1

−2 1 1 0

2�1e
+ 0.2990 1 0 �1o

+ 1.3580 0 1

2 1 1 0

3 0 1 2

2�1o
− −1 0 2 1

−2 1 �1e
− 0 1

−3 0 −1 0

�1e
+ +�1o

− −1 0 −1 2

−1 2 −2 1

0 1

0 1

0 3

1 0

1 2
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est energy levels of the LM fixed point are listed in Table III.
To determine the spectrum of the SC fixed point, we must

first identify the linear combination of electrons that screens
the local moment on the quantum dot. However, as dis-
cussed, we do not transform to scattering states in the NRG
and so we simply use the combination in Eq. �78� that
couples directly to the quantum dot as the screening channel,
keeping the potential scattering terms in the Hamiltonian,
allowing the numerics to account for those terms directly.
That is, we transform the original Hamiltonian, Eq. �78�, by
rotating to a basis

�1k = cos
�

2
ek + sin

�

2
ok, �91�

�2k = sin
�

2
ek − cos

�

2
ok �92�

so that

H = vF �
b=1,2

� dkk�bk
† �bk + Vd� dk��1k

† d + H.c.�

+
U

2
�d†d − 1�2 − Vp� dkdk��cos ���1k

† �1k� − �2k
† �2k��

+ sin ���1k
† �2k� + H.c.�� �93�

and take �1k as the screening channel.
The strong-coupling fixed point involves the �1�x=0�

electrons forming a singlet with the dot local moment, effec-
tively removing the �1�0� and d degrees of freedom from the
dynamics and giving rise to a � /2 phase shift in the �1

channel. One can then apply the standard NRG transforma-
tions and approximations to the resulting model in order to
obtain a Wilson chain NRG form of the SC fixed point
Hamiltonian. The � /2 phase shift is implemented by shrink-
ing the length of the �1 Wilson chain by one site representing
the removal of the site that is entangled in the Kondo singlet.

The result is

TABLE IV. The lowest energies and associated total charge Q and total spin S quantum numbers of the SC NRG fixed point of the

Aharanov-Bohm ring model for odd N. The NRG parameters used are Ṽp=3.0 and �=1.047. The same parameters were used to determine

the energy levels of HN,SC, where a value of Ṽp�=2.885 was found to reproduce the NRG data.

Num. Value Num. Value

Energy HN,SC NRG Q 2S Energy HN,SC NRG Q 2S

0 0.000 0.000 1 0 �2
−+2�1

− 0.8153 0.8158 −2 1

�1
− 0.0709 0.0711 0 1 �1

+ 0.8201 0.8203 2 1

2�1
− 0.1416 0.1422 −1 0 �1

++�1
− 0.8910 0.8914 1 0

�2
− 0.6737 0.6736 0 1 0.8914 1 2

�2
−+�1

− 0.7445 0.7447 −1 0 �1
++2�1

− 0.9618 0.9625 0 1

0.7447 −1 2 2�2
− 1.3474 1.3472 −1 0

TABLE III. The lowest energies and associated total charge Q and total spin S quantum numbers of the
LM NRG fixed point of the Aharanov-Bohm ring model for N odd. The single-particle energy levels are the

same as in Table II using Ṽp=3.0 and �=2.5. All energies within a particular box are equal by Eq. �89�.

Energy Num. value Q 2S Energy Num. value Q 2S

0 0.0000 0 1 2�1e
+ +�1o

− 0.4485 1 0

�1e
+ 0.1495 1 0 1 2

1 2 �1e
+ +2�1o

− −1 0

�1o
− −1 0 −1 2

−1 2 2�1e
+ +2�1o

− 0.5980 0 1

2�1e
+ 0.2990 2 1 �1o

+ 1.3580 1 0

2�1o
− −2 1 1 2

�1e
+ +�1o

− 0 1 �1e
− −1 0

0 1 −1 2

0 3
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HN,SC = ��N−1�/2��
n=0

N−2

�−�n+1�/2�n�fn,1
† fn+1,1 + H.c.�

+ �
n=0

N−1

�−n/2�n�fn,2
† fn+1,2 + H.c.�

− �−1/2Ṽp� cos �f0,1
† f0,1 + Ṽp cos �f0,2

† f0,2

− �−1/4
Ṽp�Ṽp sin ��f0,1
† f0,2 + H.c.�� . �94�

Here, fn,1 and fn,2 are the NRG Wilson chain operators de-
rived from �1 and �2 respectively. The differing � prefactors
are due to the normalizations required for the two different

length chains. We have also added an additional factor, Ṽp�,
which arises from the additional potential scattering term in
the screening channel discussed in Sec. III. For now we sim-

ply take it as a single fitting parameter and return to its pre-
cise analysis in Sec. V B. Since the �2 channel does not
participate in the screening of the quantum dot, we do not
expect any additional potential scattering term proportional
to f0,2

† f0,2. For the cross term involving f0,1
† f0,2+H.c., we

simply take the geometric mean of the two potential scatter-
ing terms of the two channels and find that this provides a
good fit to the NRG data.

To obtain the SC fixed point spectrum, we first find the
single-particle energy levels by numerically diagonalizing
Eq. �94� for a finite value of N. As before, we find that for
N
10 �approximately�, the energy levels depend only on the
parity of N and not on its precise value. Unlike the FO and
LM fixed point spectra, the resulting energy levels will de-

pend on the flux � in addition to the Ṽp dependence. Similar
to Eq. �87�, we can write the SC fixed point Hamiltonian in
terms of the single particle and hole excitations

HN,SC = � �
n=1

�2N+1�/2

��n
+�Ṽp,Ṽp�,��gn

†gn + �n
−�Ṽp,Ṽp�,��hn

†hn� N odd

�
n=1

�2N+1�/2

��̂n
+�Ṽp,Ṽp�,��gn

†gn + �̂n
−�Ṽp,Ṽp�,��hn

†hn� N even.� �95�

Because of the coupling of the 1 and 2 channels in Eq. �94�,
the quasiparticle excitations cannot be labeled by a channel
index since it is no longer a good quantum number.

The full many-body spectrum is constructed by combin-
ing these single-particle excitations in such a way as to re-
spect Fermi statistics. The effect of the Kondo singlet, in
addition to the � /2 phase shift already implemented in Eq.
�94�, is simply to add an additional charge to the quantum
numbers of the quasiparticle excitations due to the fermion
doing the screening. The lowest such energies are listed in
Table IV.

Guided by the results of the transformations of Sec. II, we
have now identified the three fixed points of the Aharanov-
Bohm quantum dot model and written the corresponding
Hamiltonians in a Wilson chain form, Eqs. �86�, �90�, and
�94�. This allows us to determine the fixed point spectra, the
lowest values of which have been listed in Tables II–IV. We
are now prepared to test these predictions by comparing
these spectra with the actual energy levels that are computed
in the NRG.

This comparison is achieved by looking at the flow of the
energy levels of each HN �as defined in Eq. �82�� for increas-
ing N. An example is shown in Fig. 7 where we have plotted
the lowest few energy levels of the Q=1, S=0 subspace as a
function of odd N. It is shown that the fixed point spectra
predicted above are indeed approached in the appropriate
regime. For example, for 5�N�10, all of the energies of
the Q=1, S=0 subspace of the unstable FO fixed point are
approached with the proper numerical value as given in

Table II. Similarly, for 19�N�33, the predicted energy lev-
els of the LM fixed point �Table III� are approached. The
same is true for the SC fixed point where, in Table IV, Ṽp� is
fit in order to produce the fixed point spectrum produced by
the NRG algorithm �for the parameters used to generate the
NRG data, a value of Ṽp�=2.885 was found to give the best
fit�.

In Fig. 8, we show a similar plot of a single energy level
as a function of odd N in the Q=1, S=0 subspace where the
different lines indicate energies produced from different val-
ues of the flux �. Here we see that, as predicted, the FO and
LM fixed point energy levels that are approached are inde-
pendent of � whereas those of the SC fixed point are strongly
flux dependent. The slight flux dependence that appears in
the LM region is probably due to the fact that Ṽd is not quite
zero �i.e., the LM fixed point is approached but never
reached�. Indeed, the flux dependence of the energy levels in
this region decreases the closer the LM fixed point is ap-
proached.

For a more quantitative analysis of this flux dependence,
we plot the lowest NRG energy levels of the final, stable
fixed point with those predicted by diagonalizing the Hamil-
tonian of Eq. �94� as a function of � in Fig. 9. The fact that

a single parameter fit of Ṽp� perfectly reproduces the flux
dependence of the entire NRG fixed point spectrum strongly
supports the validity of the above RG analysis. Indeed, be-
cause the SC fixed point is stable, we can explicitly compare
the fixed point spectrum produced by the NRG with that
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predicted by Eq. �94� as we have done in Table IV for the
first few levels.

3. Kondo temperature from the NRG

In Sec. IV A, we derived an expression for the Kondo
temperature in terms of the interlead tunneling t�, the flux �,
and the Fermi momentum kF, Eq. �55�. For the particle-hole
symmetric value of kF=� /2a, this expression takes the
simple form of Eq. �56�. It is this latter form that can be
compared to the NRG which was derived from a model with
a particle-hole symmetric linear dispersion.

To do this, we must write Eq. �56� in terms of the Ander-
son model parameters appearing in the NRG Wilson chain
form of the Hamiltonian, Eq. �79�, that serve as input to the
NRG. First, we define an effective Kondo coupling for the
continuum model of Eq. �78�

J = 2
4Vd

2

U
. �96�

The factor of 2 is included because Eq. �78� involves cou-
pling to both the even and odd channels whereas, in Eq. �39�,
we defined J for the screening channel only. In transforming

to the screening channel, a factor of 
2 appears in Ṽdk result-
ing in the derived J acquiring a factor of 2 which we account
for here explicitly so that we can compare the NRG results
with those derived analytically.

Using the definition of �, Eq. �81�, we get

�J = 4�/��U� . �97�

Next, we recall that Vp=−vkFkF
=2at
� /� so that we can

write 
�=��Vp. The resulting expression is

ln
TK

TK
0 = −

�2��Vp�2

2�J
. �98�

The right-hand side of this equation, together with Eq. �97�,
now contains parameters related directly to the input param-
eters of the NRG.

We now must extract the Kondo temperature from the
NRG data for multiple values of Vp and J in order to confirm
the validity of Eq. �98�. The Kondo temperature is defined as
the energy scale at which the screening of the local moment
takes place and the Hamiltonian crosses over to the stable SC
fixed point. In the NRG, TK will be related to the value of N
at which the energy levels cross over from that of the LM or

0 20 40 60 80
N (odd)

0

1

2

E
ne

rg
y

FIG. 7. �Color online� The lowest energy levels with quantum
numbers Q=1, S=0 as produced by the NRG as a function of odd
N. The values of the predicted fixed point energies from Tables II
and III are indicated by arrows on the left side and energies from
Table IV are indicated on the right. The parameters used to generate
this plot are � /D=0.0003142, U /D=0.001, �Vp=1.05, and �
=1.047. Here we see the unstable FO fixed point is approached for
5�N�10, the unstable LM fixed point for 19�N�33, and the
stable SC fixed point for N
60.
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FIG. 8. �Color online� The lowest nonzero energy level with
quantum numbers Q=1, S=0 as produced by the NRG as a function
of odd N. The different lines correspond to different values of the
flux �. The parameters used to generate this plot are the same as in
Fig. 7. The value of NK, related to the Kondo temperature via Eq.
�99�, is indicated by the arrow and is the same for all values of �.
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NRG data
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FIG. 9. �Color online� The lowest NRG energy levels of the
final stable fixed point �red circles� are plotted as a function of flux
� and compared with those given by the fixed point Hamiltonian of
Eq. �94� �solid blue lines�. The parameters used to generate this plot
are the same as in Fig. 7 except here we use a value of �Vp

=0.525. The single value of Ṽp� was tuned in order to fit the NRG
fixed point energy levels for �=0. This single parameter is able to
reproduce the predicted flux dependence.
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FO fixed point to those of the SC as described in the previ-
ous section. This value of N, which we denote NK, at which
the crossover takes place can be related to a corresponding
energy scale using Eq. �85�, namely,

kBTK �
1

2
�1 + �−1��−�NK−1�/2D . �99�

One simply has to extract the value of NK from the NRG
energy level data in order to obtain TK. In practice, we mea-
sure NK for the lowest 20 NRG energy levels and use the
mean value �NK� to determine TK.

In Fig. 10, we have plotted select NRG energy levels as a
function of N for different values of Vp. There is clearly a
trend of increasing NK with increasing Vp which, from Eq.
�99�, indicates a decrease in TK as a function of Vp as pre-
dicted in Eq. �98�. Furthermore, if one looks at Fig. 8, there
is clearly no change in the value of NK for the different
values of flux � indicating that there truly is no flux depen-
dence in TK when kF=� / �2a�.

For a more quantitive comparison, we have plotted the
value of TK extracted from the NRG as a function of �Vp in
Fig. 11 for multiple values of the Kondo coupling J. The
analytic form predicted in Eq. �98� provides an excellent,
parameter-free fit to the numerical data.

B. Phase shifts and VR

As discussed in Sec. IV B, the SC fixed point is com-
prised of two independent Fermi liquids characterized by
two phase shifts. These phase shifts are determined by the
eigenvalues of the S matrix of Eq. �61�. In this section, we
wish to compare these two predicted phase shifts with those
derived from the NRG.

Once again, given the particle-hole symmetric formula-
tion of the NRG, we can only make this comparison at the

special value of kF=� / �2a�. In this special limit, one can see
from Eq. �13� that �+=−�−�� where tan �=
�. We further
simplify to the symmetric case td−= td+= td. In this case, the
two eigenvalues of the S matrix are

�� = − ei�R�iA � 
1 − A2� �100�

with

A � cos 2� sin �R + sin 2� cos �R cos � . �101�

Writing these as pure phases ��=e2i��, the phase shifts are
given by

cos 2�� = A sin �R � 
1 − A2 cos �R. �102�

In the special case of �=0 when the two channels fundamen-
tally decouple, one obtains

cos 2�� = � cos�2� + �R � �R�, �� = 0� �103�

or

�+ =
�

2
− � − �R, �� = 0� , �104�

�− = �, �� = 0� . �105�

The two phase shifts �� fully define the strong-coupling
fixed point spectrum.

1. Phase shifts from the NRG

First, we consider a system of two independent Fermi
liquids on a finite line of length L and with linear dispersion
relations. The energy levels will then take the form

�n
�i� =

2�vF

L
�q −

�i

�
	 , �106�

where q�Z and �i are the phase shifts in the ith channel.
The situation with the NRG is not quite so simple due to

the nonuniform hopping in the Wilson chain that goes like
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FIG. 10. �Color online� Select energy levels with quantum num-
bers Q=1, S=0 as produced by the NRG as a function of odd N.
The different lines correspond to different values of the inter-lead
coupling Vp and the arrows of the same line type indicate the ap-
proximate value of NK at which the Kondo crossover takes place for
each case. The parameters used to generate this plot are the same as
in Fig. 7.
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FIG. 11. �Color online� A plot of TK �symbols� as extracted from
the NRG as a function of the input value of �Vp. The different
symbols describe data with different input parameters giving rise to
different effective Kondo couplings. The solid line indicates the
prediction described in Eq. �98�.
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�−n/2 at the nth site. However, one can still extract a sensible
phase shift describing the overall shift of the �nonuniform�
energy spectrum. We present a method for extracting these
phase shifts from the NRG data that is similar to that used in
Ref. 32 though we are much more modest about the claimed
analogy between the nonuniform NRG spectrum and that of
Eq. �106�.

As discussed in Sec. V A 2, the many-body spectrum of
the strong-coupling fixed point is built up of two channels of
single-particle excitations, both of which we denoted to-
gether as �n

� where the � superscripts indicate whether the
excitation is that of a particle �+� or a hole �−�. With knowl-
edge of only the total charge Q and total spin S quantum
numbers of each many-body energy from the NRG, one can
identify the single-particle energy levels for each of the two
channels which we denote as �n+

� and �n−
� . It is from these

that we estimate the phase shift in each channel.
For clarity, let us assume that the NRG chain length N is

even33 and that the four lowest energy levels are ordered
such that �1+

− ��1−
− ��1−

+ ��1+
+ , as depicted in Fig. 12. The

phase shift in each of the channels is going to be proportional
to the lowest single-particle energy level in each channel, in
this case, �1+

− and �1−
− . However, because of the nonuniform

�-dependent spacing of the energy levels, we normalize each
phase shift by the lowest energy level spacing in their respec-
tive channels. That is, we define the phase shift as

�+ =
�1+

−

�1+
− + �1+

+ � , �107�

�− =
�1−

−

�1−
− + �1−

+ � . �108�

If the channels are shifted in the other direction relative to
the Fermi energy �that is, if the lowest single-particle excita-
tion is that of a particle instead of a hole: �1+

+ ��1−
+ ��1−

−

��1+
− �, the phase shifts are taken to be

�+ = −
�1+

+

�1+
− + �1+

+ � , �109�

�− = −
�1−

+

�1−
− + �1−

+ � . �110�

One can now extract the values of �1i
� from the many-

body NRG energy spectrum obtained by diagonalizing HN as
described in Sec. V A 2. Assume that N is sufficiently high
such that the RG has reached the strong-coupling fixed point.
The ground state, describing no particles or holes and set
arbitrarily to E0=0, will have total spin quantum number S
=0 and a charge quantum number of Q0=+1 or Q0=−1 de-
pending on whether the lowest single-particle energy is a
hole or a particle respectively. Let us assume that Q0=+1 for
clarity. Then, the values of �1+

− and �1−
− are given by the two

lowest many-body energies with a charge quantum number
of Q=0 and spin quantum number S=1 /2 �these lowest en-
ergies would be �1+

+ and �1−
+ if Q0=−1�. The values of �1+

+

and �1−
+ are given by the lowest many-body energies with

charge quantum number Q=+2 and spin quantum number
S=1 /2 �in the case of Q0=−1, �1+

− and �1−
− would be given

by the lowest Q=−2, S=1 /2 many-body energies�. In this
way, one can extract the single-particle/hole energies and es-
timate the phase shifts from the NRG data.

As an illustration of the � dependence of these phase
shifts, we consider the simple case of zero flux, �=0. In this
case, the original Hamiltonian can be completely decoupled
into two separate channels and so the two channels operate
completely independently. The channel coupled to the quan-
tum dot is the screening channel and so obtains a � /2 phase
shift in addition to that given by −� whereas the other chan-
nel is noninteracting with only a potential scattering phase
shift �. This can be seen clearly in Fig. 13 where we have
plotted the two phase shifts as a function of Vp �recall from
Sec. V A 2 that Vp=−vkFkF

and so is related to t� via Eq.
�21��.

The most striking feature of Fig. 13 is the different �
dependence in the phase shift of the screening and non-
screening channels obtained from the NRG data. To help
understand this, we have plotted as solid lines the phase
shifts that one would expect in a nonscreening and screening
Wilson chain �we ignore the effects of the small correction
due to VR for now�. For the nonscreening channel, one can
diagonalize directly the Wilson chain Hamiltonian with a po-
tential scattering Vp at the first site using different values of
� and so obtain the single-particle energy spectra directly
without having to perform the NRG. From this direct single-
particle spectrum one can define the phase shift as described
above and these are plotted as the solid ascending lines. As
can be seen, these match perfectly the phase shifts in the
nonscreening channel obtained from the NRG data, as they
must.

To leading order �again, neglecting VR�, one might expect
the phase shift in the screening channel to be simply � /2
minus the above �-dependent phase shifts since the potential
scattering in the screening channel is equal in magnitude but
opposite in sign to that in the nonscreening channel. We have
plotted this expectation as the descending solid lines in the
figure. On the contrary, the phase shifts obtained directly
from the NRG data show very little � dependence compared
with the nonscreening channel. The precise reason for this is
unknown though it may be due to a similar � dependence in

+ channel − channel

−

++
1−ν

1−ν
1+ν

1+
−ν

FIG. 12. Energy level diagrams of the single-particle NRG en-
ergy levels of the two channels. The shift of each relative to the
Fermi energy �here indicated by the dotted line� defines the phase
shift in each channel.
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the additional potential scattering VR as shown in Fig. 18 that
is compensating for the � dependence of the bare � phase
shift. Despite this, we nevertheless obtain good support for
our prediction of the phase shifts from the tight-binding
model.

In the remainder of our analysis, we will use the � de-
pendent phase shift obtained from diagonalizing the potential
scattering Wilson chain discussed above for the bare phase
shift � generated by Vp that appears in Eqs. �101�, �104�, and
�105�. See Ref. 30 for more information on the Vp depen-
dence of the NRG spectrum.

2. NRG evidence for VR

We now turn our attention back to the additional potential
scattering VR that was derived in Sec. III. Having shown that
the phase shifts can be extracted from the NRG, we can now
compare the predicted phase shifts in Eq. �102� with those of
the NRG. For simplicity, we continue to assume td−= td+= td
and �d=−U /2. To compare our analytic results with those of
the NRG, we use the same correspondence as was used in
Sec. V A 3, namely, 
�=��Vp and �J=4� / ��U�.

We focus first on the case of zero flux, �=0, where the
phase shifts take an especially simple form given in Eqs.
�104� and �105�. These two phase shifts are plotted in Fig. 14
as a function of Vp where the symbols indicate those values
derived from the NRG data while the lines are the analytic
prediction from the tight-binding model. Here we see that,
indeed, only the phase shift of the screening channel �the one
that obtains � /2 when Vp=0� deviates from the VR=0 pre-

diction, indicating that an additional phase shift is generated
in the screening channel only. However, VR provides only a
small correction so it is easier to extract VR from the NRG
phase shifts and compare its functional form directly with
that of Eq. �50�.

To extract VR, we take the arctan of the derived NRG
phase shift and subtract from that the � /2 contribution aris-
ing from the Kondo screening as well as the bare phase shift
� due to Vp. This latter phase shift will be � dependent and
can be calculated numerically as described in Ref. 30.

In Fig. 15, we compare directly the predicted dependence
of VR on Vp with that derived from the NRG phase shifts for
various values of J. We find that both analytic and numeric
calculations of VR share the same qualitative behavior, peak-
ing around �Vp�0.3 �corresponding to t�� t in the original
tight-binding model� but that precise quantitative agreement
is not obtained. The nature of this disagreement is discussed
in Sec. VI.
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FIG. 13. �Color online� The phase shift of the two channels as a
function of Vp=−vkFkF

from the NRG data with an effective Kondo
coupling �J=0.255 and zero flux. In this case, the two channels are
independent with the screening channel phase shift starting at � /2
for �Vp=0 and the nonscreening channel phase shift starting at 0 for
�Vp=0. The symbols are the phase shifts obtained from the full
NRG many-body energy levels. The ascending solid lines are the
phase shifts obtained from the single-particle energy levels of a
single non-interacting Wilson chain with potential scattering Vp and
the descending solid lines are � /2 minus the ascending lines. The
solid lines do not take into account the small correction due to the
additional potential scattering VR that occurs in the screening
channel.
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FIG. 14. �Color online� The phase shifts of the two channels as
a function of Vp. The symbols denote phase shifts derived from the
NRG data while the lines are the analytic predictions. The solid
black line is the curve expected if there is no additional potential
scattering �i.e., VR=0�. We have set �=0 to generate this plot.
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Kondo coupling J. We have set �=0 to generate this plot.
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We next turn our attention to testing the ��J�2 dependence
in Eq. �50� by plotting the value of VR as determined from
the NRG phase shifts versus �J in Fig. 16. The most striking
characteristic is the apparent deviation from universal behav-
ior as U /D approaches unity. We see that this trend is cap-
tured by the U dependence in Eq. �50� but that precise quan-
titative agreement is elusive, perhaps because of the presence
of a cubic term which we do not consider. A complete analy-
sis of VR with an Anderson impurity rather than reducing, via
the Schrieffer-Wolff transformation, to one with a spin im-
purity may elucidate the nature of this behavior.

For further analysis, we fit the largest data set with U /D
=0.001 to a third degree polynomial of the form

VR = a0 + a1��J� + a2��J�2 + a3��J�3. �111�

A third degree polynomial was chosen instead of a second
degree function because the data goes to quite large values of
�J where we expect our second-order analysis to break
down. The values of the parameters are tabulated in Table V.
It is seen that the coefficients a0 and a1, which we predict to
vanish, are indeed at least an order of magnitude lower than
the quadratic and cubic coefficients. Doing another fit ne-

glecting these first two terms, that is, to a form

VR = b2��J�2 + b3��J�3 �112�

gives b2=−0.42 which is the same order of magnitude as the
value of −0.24 predicted by Eq. �50�.

Up until this point we have been focusing primarily on the
form of the additional potential scattering VR and so, for
simplicity, have taken the flux �=0. In Fig. 17, we have
plotted the phase shifts �� versus the flux � as derived from
the NRG with comparison to the predicted form described in
Eq. �102�. There we find the agreement to be quite good and
suggests that our predicted flux dependence is robust.

Finally, we note that, although it seems that the � depen-
dence of the screening channel phase shift is suppressed �see
Fig. 13�, there does appear to be some systematic � depen-
dence in VR itself as seen in Fig. 18. In order to take this
effect into account, one would need to derive an expression
for VR from the Wilson chain Hamiltonian, Eq. �79�, as op-
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FIG. 16. �Color online� The additional potential scattering as
determined from the NRG phase shifts as a function of effective
Kondo coupling J. Each different symbol uses a fixed value of the
dot Coulomb repulsion U while varying � such that the range of J,
given in Eq. �97�, is roughly the same for each iteration. The solid
line presents the best fit third degree polynomial to the U /D
=0.001 points. In this data, �Vp=0.3 and �=0.

TABLE V. The parameters for the best fit of Eqs. �111� and
�112� to the U /D=0.001 data in Fig. 16.

Coefficient Value

a0 −0.00081

a1 0.045

a2 −0.62

a3 0.50

b2 −0.42

b3 0.29
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FIG. 17. �Color online� The phase shifts of the strong-coupling
fixed point as determined from the NRG �symbols� and compared
with that predicted in Eq. �102� �lines�. Here, the effective Kondo
coupling is �J=0.191 and �Vp=0.25.
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FIG. 18. �Color online� The value of the additional potential
scattering VR as derived from the NRG for various values of �, all
using a value of �J=0.254.
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posed to the much simpler tight-binding model as was done
in Eq. �50�. We still find convincing agreement of the behav-
ior of VR between that derived analytically and from the
NRG despite this apparent � dependence.

VI. DISCUSSION

We have presented a systematic study of a minimal model
of an Aharanov-Bohm ring with an embedded quantum dot
connected to two conducting leads. Although aspects of such
a system have been studied by other groups in the past,9–18

our work provides a complete picture of the physics of such
a system when the quantum dot chemical potential �d is near
−U /2 and the system is in the Kondo regime including ef-
fects not discussed previously.

In particular, we have elucidated precisely how the Kondo
effect arises in such a system by identifying the screening
channel; we have completely mapped out the renormaliza-
tion group flow of the system and its dependence on flux �
and interlead tunneling t�; we have calculated the depen-
dence of the Kondo temperature and conductance on the
same parameters as well as, for the first time, the electron
density in the leads �via the factors of kF appearing through-
out�; we have calculated the effects of additional potential
scattering that arises from the breaking of particle-hole sym-
metry; we have provided wide numerical support from the
NRG for many of our findings that goes beyond simply com-
puting the occupancy of the quantum dot as in Ref. 10 or the
dot density of states.16 Although our work is quantitatively
precise, the physical picture that arises has been stated in
simple physical terms that fully describes the zero-
temperature properties.

It is interesting to compare our results for the Kondo tem-
perature with those of Refs. 13 and 14. In the former refer-
ence, the authors use a slave boson mean field theory to
estimate the Kondo temperature for variable sized rings. For
the smallest configuration with only one site in the ring in
addition to the quantum dot, they find a flux dependent
Kondo temperature assuming particle-hole symmetric leads,
kF=� / �2a�. Although the calculation of Ref. 13 was for a
different model than that considered here, the two models are
quite close and the nature of this apparent discrepancy is not
clear. It is interesting to note that the authors of Ref. 13 find
very similar behavior at kF=� / �2a� to that found by us for
electron densities less than half-filled, kF�� / �2a� �see Fig.
2�. It may be that the particle-hole symmetry breaking
caused by moving away from half-filling in our calculation
mimics the particle-hole symmetry breaking caused by the
negative on-site energy of the additional site in the ring used
in Ref. 13. Perhaps it is this type of particle-hole symmetry
breaking that leads to a flux dependent Kondo temperature.
This is speculation and further analysis of both methods
would be required to resolve this apparent discrepancy.

Reference 14 follows a very similar procedure to that
used here, transforming to the scattering basis and identify-
ing the screening channel. However, they mainly consider
the U→� limit with finite dot energy level �d. Their subse-
quent scaling analysis, assuming half-filled leads with
particle-hole symmetric Fermi energy �F=0, produces a flux

dependent Kondo temperature. Although this seems to con-
tradict our conclusion that the Kondo temperature is flux
independent at half-filling, our result was obtained in a much
different limit, with �d�−U /2. The authors do claim that,
for finite U, the flux dependence is suppressed �though still
present� when �d=−U /2. However, we find no evidence of
any flux dependence in the Kondo temperature when kF
=� / �2a�.

We close our discussion with a few comments on the
apparent discrepancies presented in the NRG evidence for
the additional potential scattering VR. As discussed in the
text, we expect there to be cubic and higher order contribu-
tions to VR that we do not calculate so discrepancies for
values of �J that approach unity should be expected. How-
ever, discrepancies remain even for relatively small values of
�J and we offer here some possibilities for why this might
be.

As written at the end of Sec. V B 2, the correspondence
between the tight-binding model used to derive VR in Eq.
�50� and that used in the NRG is only approximate, espe-
cially for values of �
1. This leads to artificial � depen-
dence in many of the quantities extracted from the NRG as
has been presented above. This is probably true for the value
of VR extracted from the NRG, as seen in Fig. 18, suggesting
that the form of VR may be nonuniversal in that it may de-
pend on the details of the band structure of the leads.

To explore the universality of the form of VR, the authors
have repeated the derivation of VR for a model with a linear
dispersion in the leads rather than the tight-binding cosine
dispersion presented in the text. It was found that, while
qualitatively the same as the form of VR in Eq. �50�, the two
forms of VR did differ in numerical details. From this we
conclude that the form of VR is nonuniversal. In light of this
fact, one would ideally repeat the calculation of VR, not for
the tight-binding chain presented but for the full
�-dependent Wilson chain and so obtain the � dependence
of VR. However, given the nonuniform “tunneling ampli-
tudes” in the Wilson chain that go as �−n/2 for hopping from
the nth site, such a calculation would be very difficult.

Another possible source for this discrepancy is the possi-
bility of additional contributions to potential scattering aris-
ing from the Schrieffer-Wolff transformation. We have per-

formed such a transformation to second order in Ṽdk and
concluded that the potential scattering KkFkF

that arises van-
ishes when �d=−U /2 so that, in this regime, VR contributes
to the leading order term in the potential scattering. How-
ever, given the fact that a nonzero t� breaks particle-hole
symmetry, there is nothing preventing the Schrieffer-Wolff
transformation from generating a potential scattering term

that is fourth order in Ṽdk �equivalently, second order in J�. It
would be interesting though nontrivial to carry out the
Schrieffer-Wolff transformation to higher orders to see if in-
deed such potential scattering terms are present and if they
can account for the disagreement with the NRG.

Despite all of these possibilities, it is clear that such a VR
term is present in both the tight-binding model as well as in
the NRG, and that they share the same qualitative behavior
and modestly agree quantitatively. Given this, we expect
such a VR term to be present in any real physical system and
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we expect it to share the same qualitative dependence on flux
�, interlead tunneling t� �peaking around t�� t� and on elec-
tron density in the leads via the dependence on kF but do not
claim that it will be precisely as that given in Eq. �50� which
is based on an overly simplified tight-binding model. Fur-
thermore, although present, the contribution of VR to the con-
ductance is very small for typical values of �J, as seen in
Fig. 5, and so will probably be difficult to detect explicitly in
any physical system. Nevertheless, the remainder of our
analysis is robust and confirmed numerically and provides a
framework in which to think about such quantum dot
systems.
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APPENDIX A: DETAILS OF THE TRANSFORMATION
TO THE SCATTERING BASIS

Let us consider the Hamiltonian H=H0+H−+ where H0
and H−+ are given by Eqs. �17� and �18�, respectively. We
will now demonstrate that, under the transformation of Eqs.
�22� and �23�, the above Hamiltonian takes the form

H = �
0

�/a

dk�k�qek
† qek + qok

† qok� . �A1�

Another way of saying this is that we demand the transfor-
mation to be such that

�H,q�k
† � = �kq�k

† , � = e,o . �A2�

Substituting into Eq. �A2� the definition of q�k
† in terms of

ek
† and ok

† from Eqs. �22� and �23� and using the relations

�H,ek
†� = �kek

† + �
0

�/a

dk�vk�kek�
† , �A3�

�H,ok
†� = �kok

† − �
0

�/a

dk�vk�kok�
† �A4�

one obtains

��k − �k���k�
��k� = � �

0

�/a

dq�q
��k�vk�q. �A5�

Substituting now the definition of �k�
��k� from Eq. �24� in the

above expression gives an integral equation for Tkk�
�

Tkk�
� = � �vkk� + �

0

�/a

dq
vkqTqk�

�

�k� − �q + i�
	 . �A6�

If we now take the ansatz

Tkk�
� = Tk�

� sin ka �A7�

and substitute this into Eq. �A6� together with the definition
of vkk� from Eq. �21� and �k=−2t cos ka, one obtains the
following equation for Tk

Tk
� = �

2t�a

�

sin ka

1 �

�
� Ik

, �A8�

where, as before, 
�� t� / t and Ik is the dimensionless inte-
gral

Ik �
1

2
�

−�

�

dy
sin2 y

cos y − cos ka + i�
. �A9�

This integral can be solved in the complex plane. Making the
change of variables z=eiy, one can write this as

Ik = −
1

4i
� dz

�z2 − 1�2

z2�z2 − 2z�cos ka − i�� + 1�
, �A10�

where the contour of integration is the unit circle centered at
the origin in the complex z plane.

The integrand has poles at z=z0=0 �second order� and at
z=z� �simple�, the latter given by

z� = cos ka � i�sin ka� − i� � �
cos ka

�sin ka�
. �A11�

Since � is a positive infinitesimal quantity, one can show that
�z+��1 whereas �z−�
1 so that only the z+ and z0 poles lie
within the contour. Applying the residue theorem

Ik = −
�

2
�Res�z = z0� + Res�z = z+�� , �A12�

=�e−ika. �A13�

Substituting this final value back into Eq. �A8� and the re-
sulting Tk back into the ansatz, Eq. �A7�, produces the prom-
ised form of Tkk�

�

Tkk�
� = �

2t�a

�

sin ka sin k�a

1 � 
�e−ik�a
�A14�

as stated in Eq. �25�.
Finally, we compute the functional form of �k

� as defined
and stated in Eq. �29�. Substituting the definition of �k�

��k� as
defined in Eq. �24� into the definition of �k

� and using the
derived form of Tkk�

� , Eq. �A14�, gives

�k
� � �

0

�/a

dk� sin k�a�k�
��k�, �A15�

=sin ka�1 �

�

�

Ik

1 � 
�e−ika	 , �A16�

where Ik is the same dimensionless integral defined in Eq.
�A9� and computed in Eq. �A13�. Hence, the final result is
obtained upon substitution
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�k
� =

sin ka

1 � 
�e−ika �A17�

as reported in Eq. �29�.

APPENDIX B: POTENTIAL SCATTERING PHASE SHIFT

1. Lattice model

Consider a single semi-infinite tight-binding chain with an
on-site potential at the first site

H = − t�
j=1

�

�ej
†ej+1 + H.c.� − t�e1

†e1. �B1�

This is the same as the even-channel Hamiltonian H=H0
+H−+ of Eqs. �17� and �18� in the limit td+= td−=0. The pres-
ence of a finite t� will give rise to a phase shift in the single-
particle wave function and it is the calculation of this phase
shift that is the subject of this appendix.

We write the eigenvectors of the Hamiltonian as

��� = �
j=1

�

� jej
†�0� , �B2�

where 
� j� are coefficients to be determined such that they
satisfy the Schrödinger equation

H��� = �k��� �B3�

with �k=−2t cos ka. The Schrödinger equation can be writ-
ten as the following series of algebraic equations:

− t�2 − t��1 = �k�1, �B4�

− t�� j−1 + � j+1� = �k� j, j 
 1. �B5�

The equations in the second line can be solved by taking
coefficients of the form

� j = sin�kja + �k� �B6�

and �k is determined by Eq. �B4� to be

tan �k =

� sin ka

1 − 
� cos ka
, �B7�

where, as before, 
�= t� / t. This is the form of the phase shift
�k

+ that occurs in the even channel. The phase shift in the odd

channel is the same but with 
�→−
� so that

tan �k
� = �


� sin ka

1 � 
� cos ka
. �B8�

2. Continuum model

At low energies �long wavelengths�, one can take the con-
tinuum limit of the tight-binding model and linearize the
dispersion relation about kF. In this way, one can write an
approximate real-space Hamiltonian

H = vF�
−�

�

dx�†�x��− i�x���x� + VR�†�0���0� , �B9�

where vF is the Fermi velocity. We assume that �VR�1
where � is the density of states at the Fermi energy.

As in the lattice model, we introduce eigenvectors of the
Hamiltonian

��k� = �
−�

�

dx�k�x��†�x��0� , �B10�

which satisfy the Schrödinger equation

H��k� = vFk�k� . �B11�

This puts the following condition on the functions �k�x�:

− ivF�x�k�x� + VR�k�0���x� = vFk�k�x� . �B12�

We now take the ansatz

�k�x� = �ei�kx+�R� x 
 0

ei�kx−�R� x � 0

cos �R x = 0
� �B13�

with derivative

�x�k�x� = �ikei�kx+�R� x 
 0

ikei�kx−�R� x � 0

2i sin �R��x� x = 0.
� �B14�

In order for �k�x� to satisfy Eq. �B12�, we require

tan �R = −
VR

2vF
= − ��VR. �B15�
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