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X-ray reflectivity measurements from multilayer films contain information not only about the layer
thickness and interface roughness but also about correlations of the interface roughness parallel and
perpendicular to the interface. Due to the finite size of the receiving detector slit, it collects both
purely specular and diffusely scattered radiation. Separation of the diffuse contribution to the spectra
of specular reflectivity is an important task of processing the experimental data. For this purpose we
suggest and implement a measurement method for specularly scattered scans integrated over several
solid angles determined by the size of detector slits. Since in all cases the specular reflectivities
coincide, this approach allows a separation of the diffuse and pure specular contributions. This
separation is, in turn, required for obtaining information about the in- and out-of-plane structural
correlation lengths. The method was used to analyze the experimental data of two multilayer systems
with different interface properties: MgO / �V�1.212 nm� /Fe�0.715 nm��25 /V�24.24 nm� /Pd�5–8 nm� and
SiO2 /Si / �CoFeB�2.55 nm� /MgO�1.8 nm��15.
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I. INTRODUCTION

Magnetic heterostructures and nanostructures have a huge
impact on the development of modern science and
technology.1–3 Perfection of layers and interfaces are of ut-
most importance for the functionality and performance of
magnetoelectronic and spintronic devices.4 Theories describ-
ing spin transport and spin tunneling effects often assume
perfect epitaxy and smooth interfaces. However, on the
nanoscale real surfaces and interfaces are rough. Even one
atomic layer high steps at interfaces can lead to dramatic
changes in the interlayer exchange coupling,5,6 the exchange
bias effect,7 and the transport properties in nanosystems.8

Different types of roughness can be distinguished that
change the macroscopic properties of magnetic nanosystems,
such as structural roughness, interdiffusion, and magnetic
roughness. Furthermore, roughness occurs on different
length scales, each one requiring corresponding experimental
tools for their analysis. Therefore, detailed information con-
cerning the amplitude and the correlation of different types
of roughnesses is of great interest for research and applica-
tions of magnetic nanosystems.

Experimental characterization and theoretical description
of real interfaces is not an easy task and requires advanced
methods in order to make progress. Most experimental meth-
ods give only indirect information about the interface rough-
ness and their correlations in multilayer systems, such as
Mössbauer spectroscopy, x-ray scattering, and neutron scat-
tering. They need theoretical models to connect roughness
parameters with experimental spectra. Often different physi-
cal sources can lead to the same features in the experimental
spectra, which can cause ambiguities in the interpretation of
experimental data. Thus further development of experimental
methods and possibly modifications of common experimen-
tal procedures will be necessary for providing supplementary
information about interface structures, which ultimately will
improve the description of real systems.

One of the most widely used tool for the structural analy-
sis of interfaces is hard x-ray scattering. The analysis of the

specular and diffuse x-ray scattering is an effective method
for studying rough interfaces in multilayer systems.9,10 Usu-
ally interfaces are characterized by roughness amplitudes and
by in-plane and out-of-plane correlation lengths. Specular
reflectivities contain information about roughness amplitudes
whereas the in-plane spatial correlations are determined by
diffuse off-specular scattering. There are two main types of
experiments for measuring the diffuse scattering.6,9 In the
first type, referred to as off-specular scan, the incidence
angle �1 and reflection angle �2 differ by a small constant
mismatch angle. In the second case, called rocking scan, the
orientation of the sample is varied for fixed directions of the
incident and detected beams and the intensity of the x-ray
scattering is analyzed usually in the vicinity of Bragg
peaks.11,12 In both types of experiments the size of the detec-
tor slit remains constant. Actually the diffuse and the specu-
lar scattering are present in both types of experiments. The
separation of these contributions is a challenging problem.13

It may, however, be solved by another type of experiment
where both contributions to the scattering, specular and dif-
fuse, are recorded in a standard �1=�2 scan but with several
sizes of the detector slit. This work is devoted to a theoretical
description of x-ray scattering procedures with variable de-
tector slits and the analysis of respective experimental data.

II. GENERAL EQUATIONS

We consider x-ray scattering by multilayer systems with
rough interfaces. In what follows we assume that the glanc-
ing angles �1 and �2 for the incident and scattered rays ex-
ceed significantly the critical angle �c for total external re-
flection. In this case the spectra may be described in a
kinematic approximation when multiple reflections by inter-
faces in multilayer systems can be neglected. For the differ-
ential cross section of x-ray scattering we have
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Here V is the scattering volume, k0=� /c is the wave number,
� is the angular frequency, c is the light velocity in vacuum,

��r� is the permittivity, q=ki−ks is the scattering vector, ki

and ks are the wave vectors of the incident and scattered
waves, and brackets � 	 mean the statistical or ensemble av-
erage.

For multilayers containing N layers located in �x ;y� plane,
Eq. �1� can be written in the form14–17
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where S is the film area and ��n=�n+1−�n is the permittivity jump at the nth interface. Equating z=zn�r�xy�� determines the
position of this interface. We will consider the multilayer film with N layers and N+1 interfaces. The interface number 0
separates the substrate and the first layer, the interface number N is the boundary to the external media. In what follows we
neglect the intermixing effect between neighboring layers.

It is convenient to present the function zn�r�xy��, which describes the interface position in the form zn�r�xy��=zn+hn�r�xy��,
where zn is the average position of the nth interface and hn�r�xy�� is the deviation from the average position �hn�r�xy��	=0. For
the differential cross section we have
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Assuming that the interface structure is homogeneous within the interface plane, then the local average values of the physical
parameters do not depend on the position in the �x ;y� plane. In this case we have �exp�iqzhn�r�xy���	= �exp�iqzhn�	. Then Eq.
�3� can be rewritten as
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We consider a slit of width a and length b. The y axis is
chosen to be parallel to the long side of the slit, which is
perpendicular to the scattering plane. The experimental setup
for specular and diffuse x-ray scattering investigation is
shown in Fig. 1. Figure 2 illustrates the corresponding scat-
tering vectors. In this case for scattered intensity �� into the
solid angle d� we have

�� = �
��

� d�
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�d� = �
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�qy dqy
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where

�qx =
a sin �2

2L
k0, �qy =

b

2L
k0, ���� =

ab

L2 =
4�qx�qy

k0
2 sin �2

.

Here �2 is the glancing angle of the scattered beam, and L is
the distance between the sample and the detector. The reflec-
tivity R is determined as the ratio of scattered intensity

within the solid angle �� and the intensity of the incident
radiation,

R =
1

S sin �1
�

��

� d�

d�
�d� . �6�

It is convenient to express this coefficient as the sum of two
terms9

R = R1 + R2, �7�

where

R1 =
k0

2

4qz
2 sin �1 sin �2
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�8�
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Here
Fn,m = ��n��m exp�− iqz�zn − zm���exp�− iqzhn�	�exp�iqzhm�	 , �10�

where 
�q� is the Heaviside function. The terms R1 and R2 describe the contributions of specular and diffuse scattering,
respectively. Here the diffuse term R2 is caused by the finite size of the slit. The difference of the reflectivities for two widths
of the slits may be written in the form
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It is worth to note that this difference depends on the diffuse contribution only and contains the width of the slits. Integration
over x and y is restricted by the correlation length l�xy�. For most experiments the inequality

�qxl�xy� =
�a sin �2

L

l�xy�

�
� 1 �12�

is valid and we can use the approximation sin��qxx���qxx. Indeed, for the typical experiments we have a�0.5 mm, L
�1 m, ��0.15 nm, and �210°. Therefore the inequality �Eq. �12�� leads to the restriction l�xy��500 nm. In this case Eq.
�9� can be rewritten in the form
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− 1� . �13�

Note that expressions �7�, �8�, and �13� for the reflectivity do
not contain the particular form of the roughness distribution
function.

III. ANALYSIS OF THE EXPERIMENTAL DATA

For systems with in-plane correlation lengths satisfying
the inequality �Eq. �12��, the diffuse contribution to specular

scattering is proportional to the slit width a, independent of
the distribution function for the interface roughness. The
specular contribution to the scattering R1 does not depend on
a. Therefore the reflectivity R can be written as

R�qz,a� = R1�qz� + aI�qz� , �14�

where we used the notation aI�qz��R2�qz ,a�. Equation �14�

FIG. 1. �Color online� Experimental setup for x-ray scattering
investigations. Slit parameters for the sample A are shown without
brackets and for sample B with brackets.
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FIG. 2. The geometry of scattering in q space. The inset shows
the wave vectors of scattered radiation which are collected by the
detector due to the finiteness of the detector slit size.
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allows a separation of the angular dependence of the specular
scattering R1�qz� and the diffuse contribution R2�qz ,a� from
experimental �1=�2 scans obtained for two different detector
slit widths. The equation set for reflectivities R��z ;a1� and
R��z ;a2� measured for two detector slits of widths a1 and a2
has the form

 R�qz,a1� = R1�qz� + a1I�qz�
R�qz,a2� = R1�qz� + a2I�qz� .

� �15�

From this system it is possible to get the inputs R1 and R2
separately

�R1�qz� =
1

a2 − a1
�a2R�qz,a1� − a1R�qz,a2��

R2�qz,a1� =
a1

a2 − a1
�R�qz,a2� − R�qz,a1�� .� �16�

Therefore from experiments with different slit widths the
universal function I�qz� can be found

I�qz� =
1

a2 − a1
�R�qz,a2� − R�qz,a1�� . �17�

In the experiment we investigated by x-ray scattering two
different multilayers:
�V�1.212 nm� /Fe�0.715 nm��25 /V�24.24 nm� /Pd�5–8 nm�
on MgO�001� substrate �sample A� and a multilayer
�CoFeB�2.55 nm� /MgO�1.8 nm��15 on a Si /SiO2 substrate
�sample B�. The subscripts denote the number of repeats in
the multilayers. In sample B the alloy was prepared in the
proportion Co:Fe:B=60:20:20. These two multilayer sys-
tems were chosen since their interfaces differ significantly. In
particular, the interfaces in sample A are considerably
smoother than in sample B. The preparation of the multilay-
ers is described in more detail in Refs. 18 and 19. The ex-
perimental setup is shown in Fig. 1. The size of the detector
slit along the y axis was constant, b=4 mm for sample A and
b=2 mm for sample B. The width of the scattered beam was
adjusted by two slits located at distances 350 and 1050 mm
from the specimen for sample A, and at distances 315 and
985 mm for sample B. The second slit was placed directly in

FIG. 3. �Color online� Measured angular dependence of specular
x-ray scattering by sample A for various detector slit sizes. From up
to down the slit opening angle 	=a /L equal to: 1 �light blue�—4.29
mrad, 2 �red�—2.86 mrad, 3 �green�—1.43 mrad, and 4 �blue�—
0.476 mrad.

FIG. 4. �Color online� Measured angular dependence of the
specular x-ray scattering by sample B for various detector slit sizes.
From up to down the slit opening angles 	=a /L equal to: 1 �red�—
4.762 mrad, 2 �green�—3.175 mrad, and 3 �blue�—1.587 mrad.

FIG. 5. Angular dependence of the pure specular contribution
R1 calculated via Eq. �16� from the experimental data presented in
Fig. 3.

FIG. 6. �Color online� Angular dependence of the pure specular
contribution R1 calculated via Eq. �16� from the experimental data
presented in Fig. 4.
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front of the detector. The measurements were performed in a
series of reflectivity scans in which the resolution was re-
leased successively via the detector slit system in the scatter-
ing plane. All other parameters were kept constant.

Evidently relations �Eq. �16�� remain valid if we substi-
tute the slit widths a1 and a2 in the scattering plane by the
angles of observation at the receiving detector slits 	1
=a1 /L and 	2=a2 /L, respectively. All experiments were car-
ried out at the “Hamburg Synchrotron Radiation Laboratory”
HASYLAB, Hamburg, Germany, using a six-circle diffracto-
meter at the wiggler beamline W1. For the reflectivity
measurements of the samples A and B the monochromator
was set to the wavelengths �=0.154071 nm and �
=0.11272 nm, respectively. The experimental data are pre-
sented in Figs. 3 and 4. Note the curves diverge for large
angles of scattering for both systems.

The experimental dependence of the purely specular con-
tribution R1 on the scattering angle 2� calculated by Eq. �16�
are shown in Figs. 5 and 6. Note that on the log scale the
pseudo-Debye-Waller factor determines the decay of R1 as
const−�2qz

2, i.e., this decay increases with 2�. Most of the
experimental spectra show a slower decay at large
angles.15–17,20–22 This means that the contribution of diffuse
scattering to the specular spectra have to be taken into ac-
count for a proper interpretation of the data.

For sufficiently large scattering angles the difference
R�	1�−R�	2� increases proportional to the difference of the
slit opening angles �	1−	2�. The reflectivity differences
R�	1�−R�	2� obtained for various slit sizes divided by the
�	1−	2� is the universal function, which is independent of 	1
and 	2,

� =
R�	1� − R�	2�

	1 − 	2
. �18�

For both systems the universal function � depending on the
scattering angle 2� is shown on Figs. 7 and 8. For large
scattering angles these curves indeed coincide independently
of the opening angles of the slits 	1 and 	2. The value of the
diffuse contribution R2 is calculated via Eq. �16� by subtract-
ing the experimental data for various slit openings. As far as
for the small scattering angles the contribution of R2 is rela-
tively small, its value is determined with rather large error
bars in the region of the first two Bragg peaks. Thus the
function � is the diffuse contribution to the scattering per
unit slit opening angle,

R2�qz,a� = 	� =
a

L
� . �19�

Note that the difference in the interface roughness in these
systems results in different angular dependencies for large
scattering angles. For sample A the universal function � de-
pends only weakly on the scattering angle and shows only
contributions in the neighborhood of Bragg peaks, decaying
rapidly with higher orders. For the B sample with rough
interfaces this dependence has much more structure and is
essentially nonmonotonic. This dependence permits us to ob-
tain information about the correlation properties of the inter-
face roughness.

For a Gaussian distribution of the interface roughness
�Eq. �13�� can be transformed as

R2 =
ak0

3

8�2Lqz
2 sin �1



n,m=0

N

Fn,m/

S

dxdy cos�qxx�
sin��qyy�

y
�exp�qz

2�hn�x,y�hm�0,0�	� − 1� . �20�

Expression �10� for Fn,m in Eqs. �8� and �20� are replaced in this case by

FIG. 7. �Color online� Angular dependence of the normalized
function � calculated via Eq. �18� from the experimental data, pre-
sented in Fig. 3: 1 �blue�—	1=1.43 mrad, 	2=0.476 mrad; 2
�green�—	1=2.86 mrad, 	2=0.476 mrad; and 3 �red�—	1

=4.29 mrad, 	2=0.476 mrad.

FIG. 8. �Color online� Angular dependence of the normalized
function � calculated via Eq. �18� from the experimental data, pre-
sented in Fig. 4: 1 �green�—	1=3.175 mrad, 	2=1.587 mrad and 2
�blue�—	1=4.762 mrad, 	2=1.587 mrad.
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Fn,m = ��n��m exp�− iqz�zn − zm��exp�−
qz

2

2
��hn

2	 + �hm
2 	�� . �21�

The calculated results of Eqs. �7�, �8�, �20�, and �21� and the experimental data are presented in Figs. 9 and 10. Here we used
the standard model for the correlation function of interface roughness.14,15 In our calculations the roughness of all interfaces
were taken to be the same, besides the interfaces to the substrate and to the cap layers,

�hn�r�xy�,1�hm�r�xy�,2�	 = �n�m exp�− � �zn − zm�
lz

�2�exp�− � �r�xy�,1 − r�xy�,2�

l�xy�
�2� , �22�

where �n is the mean square roughness of the nth interface, ln and l�xy� are the correlation lengths transverse and parallel to the
interfaces.

IV. MODELS OF THE ROUGHNESS CORRELATION FUNCTIONS

The interface roughness is characterized by the displacement h�r�xy�� along the z axis in the point r�xy�. The probability of
the roughness configuration in Gaussian approximation can be written as

P�h�r�xy��� = exp�−� � dr�xy�,1dr�xy�,2G�r�xy�,1,r�xy�,2�h�r�xy�,1�h�r�xy�,2�� , �23�

where the kernel G�r�1 ,r�2� in general contains the differential operators �see, e.g., Ref. 23�. For multilayer films with N
interfaces the probability of the displacements of all interfaces may be presented in the form

P�h1�r�xy��,h2�r�xy��, . . . ,hN�r�xy��� � exp�−
1

2 

n,m=1

N � � dr�xy�,1dr�xy�,2Gnm�r�xy�,1 − r�xy�,2�hn�r�xy�,1�hm�r�xy�,2�� . �24�

This form of P assumes that the roughness is homogeneous within each layer. In Fourier representation Eq. �24�
gives

P�h1,q�xy�
h2,q�xy�

¯ hN,q�xy�
� � exp�−

�S

2 

n,m=1

N



q�xy�

Gnm,q�xy�
hn,q�xy�

hm,q�xy�� , �25�

where Gnm,q�xy�
is the Fourier image of the kernel Gnm�r�xy��.

hq�xy�
=

1
�S
�
S

dr�xy� exp�− iq�xy�r�xy��h�r�xy��, h�r�xy�� =
1
�S



q�xy�

exp�iq�xy�r�xy��hq�xy�
. �26�

The probability of the roughness configuration has to obey
the normalization condition. This condition is satisfied when
the matrix Gnm,q�xy�

is positive determined. In this case the
correlation function �hn,q�xy�

hm,−q�xy�
	 is expressed via ele-

ments of the inverse matrix G−1,

�hn,q�xy�
hm,−q�xy�

	 =
1
�S

�G−1�nm,q�xy�
. �27�

In this work we analyze the susceptibility of the x-ray
scattering spectrum to the form of the interface roughness
correlation function �hn�r1

�xy��hm�r2
�xy��	. Most of the models

used in practice assume that the spatial correlation function

for multilayer systems decay monotonically in the direction
transverse to the layers. In the plane of the layers the
weakening of the correlations with the distance can be
either monotonic or oscillatory. Oscillations may be caused,
for example, by regular distortions of the interface surface
or island formation during epitaxial growth. The only
severe constrain in case of homogeneous roughness is the
positively definiteness of the Gnm,q�xy�

matrix. The standard
model which describes the monotonic weakening of the
roughness correlation with the distance has the form, Eq.
�22�. We will consider the simple generalization of Eq.
�22� which may lead to an oscillation of the correlation func-
tion
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�hn�r�1�hm�r�2�	 = �n�m exp�− � �zn − zm�
lz

�2�exp�− � �r�xy�,1 − r�xy�,2�

l�xy�
�2�J0� �r�xy�,1 − r�xy�,2�

l
� , �28�

where J0 is the zero-order Bessel function. In the limit l→� Eq. �28� transfers to Eq. �22�.
The Fourier transform of the correlation function has the form

�hn,q�xy�
hm,−q�xy�

	 =� dr�xy� exp�− iq�xy�r�xy���hn�r�xy��hm�0�	

=�n�m exp�− � �zn − zm�
lz

�2��l�xy�
2 exp�−

l�xy�
2

4l2 �1 + q�xy�
2 l2��I0�q�xy�l�xy�

2

2l
� , �29�

where I0�z� is the modified Bessel function which admits
positive values only. Consequently, although at finite l the
correlation function �hn�r�xy�,1�hm�r�xy�,2�	 oscillates, the ma-
trix Gnm,q�xy�

is positive defined.
Figures 9 and 10 show the results of calculations by Eqs.

�7�, �8�, �20�, and �21� and the results obtained from experi-
ments with sample B and described in Sec. III. In these cal-
culations the model for the correlation function with mono-
tonic decay in the plane of the interface �Eq. �22�� was used.
The film parameters were chosen so that the angular depen-
dence of the calculated total specular scattering shown in
Fig. 9 and diffuse contribution presented in Fig. 10 coincide
as much as possible. Figures 11 and 12 illustrate similar cal-
culations for a nonmonotonic correlation function, Eq. �29�.
The roughness amplitudes of the interfaces were the same as
for the model, Eq. �22�. The obtained results show that both
models, Eqs. �22� and �28�, describe the results of the experi-
ments with various width of the detector slit approximately
with the same accuracy. The correlation length l�xy� in the
model �Eq. �22�� with monotonic decay of the roughness

correlation is on the order of the parameter 2l, which deter-
mine the period of the oscillations in the model, Eq. �28�.
This model also predicts a very large value l�xy�, i.e., the
correlation function very slowly decays with distance in the
interface plane. Both correlation functions, Eqs. �22� and
�28�, are shown in Fig. 13. Although these correlation func-
tions differ significantly, they lead to very similar effects on
x-ray spectra �Figs. 9–12�. The x-ray spectra depend only on
those regions where the correlations are large and are not
sensitive to the tail of the correlation functions. Since both
models describe the experiment with similar accuracy we
have to conclude that weak long-range roughness correla-
tions cannot be extracted from specular x-ray spectra.

A similar analysis of the x-ray scattering data from
sample A leads to the following set of parameters: for sub-
strate and multilayer—�=0.17 nm, lz=0 nm, l�xy�=35 nm,
and 	=1.43 mrad; for cap layers: thickness of V layer is
24.24 nm; �=0.17 nm; for Pd cap layer thickness is 5 nm;
�=0.8 nm.

FIG. 9. �Color online� Calculated and measured angular depen-
dence of specular x-ray scattering by sample B: 1 �blue�—measured
with 	=1.587 mrad; 2 �green�—calculated via Eqs. �7�, �8�, and
�20�–�22�; and 3 �red�—diffuse part calculated via Eqs. �20�–�22�.
For calculations the following set of parameters was used: for sub-
strate: �=0.5 nm; for multilayer: �=0.62 nm, lz=11 nm, l�xy�
=25 nm, and 	=1.587 mrad.

FIG. 10. �Color online� The angular dependence of diffuse con-
tribution to specular x-ray scattering: 1 �blue�—diffuse part R2 cal-
culated from the experimental data with the help of universal func-
tion � via Eq. �19� and 2 �green�—diffuse part R2 calculated via
Eqs. �20�–�22�. The set of parameters is the same as in caption to
Fig. 9.
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V. DISCUSSION AND SUMMARY

All experimental x-ray scans are recorded with finite slit
openings in front of the detector. Consequently, they contain
both specular and diffuse contributions. The measurement
procedure using different slit openings for specular � :2�
scans as proposed above allows separating both contribu-
tions. This opens possibilities for investigating of interface
roughness in multilayer systems. It is worth to note that in
the literature procedures are described that intend to separate
diffuse contributions from specular scans: Savage et al.24 and
Phang et al.25 propose to subtract the diffuse intensity from
specular scans by estimating the diffuse intensity from rock-
ing scans near Bragg peaks. Indeed these spectra contain

instrument limited Bragg peak intensities above a slowly
varying diffuse background. However this diffuse contribu-
tion has to be measured not only near Bragg peaks but also
for all values of qz. Comparison of experimental and fitted
spectra reported in Refs. 24 and 25 shows a rather bad agree-
ment at large scattering angles. The experimental intensity
decreases much more slowly than predicted by the theory. In
Ref. 24 such discrepancy was attributed to changing x-ray
penetration depth at small glancing angles of incidence or to
the violation of a Gaussian distribution of interfacial heights.
However, more likely the discrepancy is a consequence of a
nonaccurate subtraction of the diffuse background. Salditt et
al.11,12 suggested an out-of-plane scattering geometry to de-
termine the diffuse contribution in x-ray scans. This allows
for given value of qz to measure the diffuse intensity over a
wide range of qy. But again if we try to separate pure specu-
lar spectra from the diffuse scattering, we need to make such
measurement for a large number of qz points. Our experi-
mental approach with different slit openings is simpler,
faster, and avoids the experimental problem of how to accu-
rately determine the diffuse intensity over a large area in
reciprocal space. In this way specular and diffuse scattering
contributions are obtained simultaneously from the same ex-
perimental data and do not need to be separated in order to
obtain comprehensive information on interface roughness
parameters and correlation lengths.

Let us first consider the information that can be extracted
from a pure specular spectrum. For any interface roughness
this spectrum does not depend neither on in-plane nor on
out-of-plane correlation lengths at least in the kinematic ap-
proximation, see Eqs. �8� and �10�. The decay of scattered
intensity is determined solely by the root-mean-square �rms�
roughness �. Often the interface roughness in multilayers
contains a gradient from the substrate toward the surface.
Roughness gradients lead to distortions of the phase relation-
ship in the specular spectrum. As a result high-order Bragg
peaks can be smoothed out whereas intermediate peaks may
disappear. The calculated dependence of specular spectra on
roughness gradients is shown in Fig. 14. Similar behavior
was simulated in Ref. 26 for Mo/Ni multilayers with a linear
variation in the rms roughness. Thus from the pure specular

FIG. 11. �Color online� Calculated and measured angular depen-
dence of specular x-ray scattering by sample B: 1 �blue�—measured
with 	=1.587 mrad; 2 �green�—calculated via Eqs. �7�, �8�, �20�,
�21�, and �28�; and 3 �red�—diffuse part calculated via Eqs. �20�,
�21�, and �28�. For calculations the following set of parameters were
used: �=0.5 nm, for substrate and �=0.62 nm, lz=11 nm, l�xy�
=100 nm, l=13 nm, and 	=1.587 mrad for multilayer.

FIG. 12. �Color online� The angular dependence of diffuse con-
tribution to the specular x-ray scattering: 1 �blue�—diffuse part R2

calculated from the experimental data with the help of universal
function � via Eq. �19�, 2 �green�—diffuse part R2 calculated via
Eqs. �20�, �21�, and �28�. The set of parameters is the same as in
caption to Fig. 11.

FIG. 13. �Color online� Best-fitting in-plane correlation func-
tions used in calculations. Blue—correlation function defined via
Eq. �22� and green—defined via Eq. �28�.
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part of x-ray scattering it is possible to estimate the rms
roughness amplitude and its variation from layer to layer.
Experimental control over the interface roughness can be
achieved via the choice of substrate, the deposition tempera-
ture, the growth rate, and the interaction with inert gases
during the sputtering process. Examples of roughness varia-
tion in sputtered Nb /Al2O3 and W/Si multilayers in Ar at-
mosphere are presented in Refs. 12 and 21, respectively. It
was found that the rms roughness increases drastically when
the Ar pressure is raised above a critical value. In these
samples the disappearance of high-order Bragg peaks in
x-ray spectra was explained by a cumulative roughness
model.24,26 However, it was noticed that the intensity of the
specular scattering for samples with large rms roughness de-
cayed slower than predicted by theory.12 This is most likely
due to the diffuse contribution in the specular spectra. If the
diffuse component exceeds the specular one for a given slit
width, then it also leads to a suppression of higher order
Bragg peaks.

Now we will turn our discussion to the dependence of the
pure diffuse scattering R2 on roughness correlations. The im-
portance of the diffuse scattering in specular x-ray spectra
was emphasized in Ref. 26. The authors claim that with mod-
erately rough interfaces the diffuse component constitutes
the majority of experimental spectra and that its fine struc-
ture would provide the main information about interface
roughness. However, diffuse spectra depend on the in-plane
correlation length l�xy� and the out-of-plane correlation length
lz in different ways. If R2 contains well-defined lines
�streaks� corresponding to the Bragg peaks then lz of the
system is large. Small lz values as compared to the multilayer
period d will lead to a suppression of these peaks. Such
behavior is illustrated in Fig. 15. The value R2�qz� turns out

to be insensitive to the type of in-plane roughness correlation
function—Eq. �22� or Eq. �28�. Figure 16 shows that the
in-plane correlation length l�xy� affects only the magnitude of

FIG. 14. �Color online� Pure specular x-ray scattering calculated
via Eqs. �8� and �21� for the model system
�V�1.2 nm� /Fe�0.69 nm��25 /V�24.24 nm� /Pd�5 nm� on MgO
substrate. For dotted line �black�—rms roughness linearly increase
from �0=0.17 nm at the interface to the substrate to �N=3
�0.17 nm for the top layer; for dashed line �red�—rms roughness
linearly increase from �0=0.17 nm at the interface to the substrate
to �N=2�0.17 nm for the top layer; for solid line �blue�—�n

=0.17 nm is constant for all interfaces. The dashed and dotted
curves were shifted along Y axes for clarity.

FIG. 15. �Color online� The diffuse contribution to the specular
x-ray scattering calculated via Eqs. �20�–�22� for model system
�V�1.2 nm� /Fe�0.69 nm��25 /V�24.24 nm� /Pd�5 nm� on MgO
substrate. The following set of parameters was used: �n=0.17 nm
for all interfaces, l�xy�=10 nm. For dotted line �black�—lz=0 nm,
for dashed line �red�—lz=5 nm, and for solid line �blue�—lz

=15 nm.

FIG. 16. �Color online� The diffuse contribution to the specular
x-ray scattering calculated via Eqs. �20�–�22� for the same model
system as in Fig. 15. �a� The following set of parameters was used:
�n=0.17 nm, lz=0 nm for all interfaces. For 1 �blue� line l�xy�
=15 nm, for 2 �red� line l�xy�=5 nm, and for 3 �black� line l�xy�
=1 nm. �b� The following set of parameters was used: �n

=0.17 nm, lz=15 nm for all interfaces. For 1 �blue� line l�xy�
=15 nm, for 2 �red� line l�xy�=5 nm, and for 3 �black� line l�xy�
=1 nm.
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the diffuse contribution but does not change the general
shape of the R2��� dependence. As expected, the diffuse con-
tribution increases with increasing l�xy�.

As already mentioned, during the growth of multilayers
the roughness of interfaces often develops a gradient from
the substrate to the surface. A theoretical model assuming a
linear change in the rms roughness was reported in Ref. 26
on the basis of a Taylor expansion of the reflectivity ampli-
tude of the multilayer. In multilayer systems the variation in
the mean square roughness �n with layer number n affects
both, the specular and the diffuse contributions. In particular,
as shown in Fig. 17, for large correlation lengths lz the linear
increase in the interface roughness amplitude leads to a de-
crease and broadening of peaks in the diffuse contribution to
the specular spectrum. Such type of angular dependence of
the diffuse contribution to the specular spectra of multilayers
was also pointed out in Ref. 26.

In summary, we propose a measurement protocol to de-
termine simultaneously both the specular and the diffuse part
of x-ray reflectivity intensities from thin films and multilay-
ers. This protocol requires to take the same scan several
times with different slit openings for the detector. From fit-
ting the data the roughness parameters and the correlation
lengths are obtained. It should be noted that the specular part
yields the rms roughness parameter �, whereas from the dif-
fuse intensity the in- and out-of-plane correlation lengths are
extracted. The amplitude of the diffuse intensity is also
damped by the rms roughness. However, the main informa-
tion to be gained from the diffuse scattering is not the rough-
ness but the structural correlation functions. In the future this
method may be extended to magnetic correlation functions.
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