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We systematically study the anisotropic magnetoresistance �AMR� in a two-dimensional electron system
with a combined Rashba and Dresselhaus spin-orbit interaction by exactly solving the kinetic equation. This
AMR originates from the combination of spin-orbit coupling and in-plane magnetization, instead of the com-
bined effect of spin-orbit coupling and polarized impurities emphasized in previous theoretical studies. A
combined electromagnetic potential is taken into account to investigate the effect of impurity scattering. The
electric component of the potential is long ranged, and both the positions and the directions of the magnetic
moments of magnetic impurities are random. For long-range electric collision, AMR occurs and AMRs due to
remote charged scatterers and background ones are comparable. For pure magnetic scattering, the magnitude of
AMR is tiny when the magnetization is smaller than a singular magnetization. However, the anisotropy of
spin-spin coupling can enhance the AMR and its magnitude reaches up to nearly 100% when only the majority
band is occupied. For the combined electromagnetic potential, the magnitude of AMR is not very large and its
sign is always positive when the electric part of scattering is remote. A sudden step of AMR emerges when the
value of magnetization is near the Fermi energy, which is due to the uncontinuity of the density of state.
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I. INTRODUCTION

The discovery of the anisotropic magnetoresistance
�AMR�, describing the dependence of electric resistance on
the direction of magnetization in magnetic materials, dates
back over 150 years.1 Recently, this phenomenon causes
people renewed attention due to the fact that it is related to
the spin-orbit coupling �SOC�, the key point of the emerging
spintronics.2 In particular, owing to the strong spin-orbit
splitting energy and few involved bands,3 diluted magnetic
semiconductor has become one of the favorable systems for
AMR investigation.4–8 In spite of the long history of AMR
study, the mechanism of the AMR is still ambiguous. The
origin of it is often described vaguely in terms of anisotropic
carrier lifetimes. Most of the experimental results are ex-
plained based on a phenomenological analysis.9,10

Very recently, AMR is investigated in the combined
Rashba and Dresselhaus model in the presence of electro-
magnetic impurity �EMI�.11 It seems that the polarized mag-
netic impurity is an essential condition for the occurrence of
AMR. However, it is found that AMR can also exist in spin-
orbit-coupled systems with an in-plane magnetization in the
presence of long-range electric collision.12,13 The combina-
tion of SOC and magnetization leads to the anisotropy of
group velocity or distribution function, hence, AMR may
occur �see the discussion in Sec. II C�. Nevertheless, in the
presence of short-range spin-independent disorders, the
AMR vanishes14 due to the complete cancellation between
the nonvertex and vertex parts of the conductivities when
both two spin-orbit coupled bands are occupied.15 This can-
cellation is in sharp contrast to the spin-Hall effect, where
the cancellation takes place for arbitrary nonmagnetic scat-
tering, but is similar to the anomalous Hall effect16,17 and the
current-induced spin polarization effect18 in spin-orbit
coupled system with an out-of-plane magnetization. It is very
interesting that for some transport properties the cancellation

takes place for any nonmagnetic collision while for other
properties it is valid only for the short range one in two-
dimensional electron gas �2DEG� with SOC.

The s-d exchange coupling is the usual form describing
the interaction between the magnetic impurity and the carrier
in dilute magnetic semiconductor theoretically. The coupling
between single impurity and single carrier is given by

hM = Jexs · S̃ .

Here Jex is the exchange strength, s is the carrier’s spin, and

S̃ is the spin of the magnetic impurity. In this equation, the
spin of carrier is treated as a quantum operator while the
impurity’s spin is considered to be a classical one. Unfortu-
nately the exchange interaction in dilute magnetic semicon-
ductor is far from being fully understood. The value of cou-
pling strength Jex in dilute magnetic semiconductor is still a
subject of debate. The experimental measurement shows that
the coupling constant is negative19 while the first-principles
calculation gives a positive value.20 Furthermore, this ex-
change model only gives qualitative agreement with the ex-
perimental observation.21 Hence, in this paper we consider
one type of anisotropic s-d interaction, i.e., the XXZ �or
XYZ� interaction, where the in-plane exchange constant is
different from the out-of-plane one. Many aspects can induce
anisotropic coupling, such as the surface effect, the SOC and
the strain, etc. When the magnetic impurity is near the sur-
face of the sample, an anisotropic term with the form

D�S̃ · ẑ�2 appears.22 Here D is an anisotropic constant. This
anisotropic term is closely related to the XXZ exchange
model.23 The SOC and the strain can induce an effective
spin-orbit field. This field causes rotation of the impurity’s
spin through a angle, leading to the anisotropy of the ex-
change coupling. For example, if the classical impurity’s
spin rotate about z axis through a counterclockwise angle �,
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the spin becomes S̃�= �S̃x cos �− S̃y sin � , S̃x sin �

+ S̃y cos � , S̃z�. Therefore, the s-d exchange Hamiltonian be-
comes the anisotropic one Jexs · S̃�=Jex�cos �sxS̃x+cos �syS̃y

+szS̃z�+¯. In this work we introduce the anisotropy through
the phenomenological constants in XXZ �or XYZ� exchange
model and do not emphasize a specific microscopic origin of
the anisotropy. It is expected to obtain some novel results
contrast to the isotropic s-d exchange model and these results
could be realized experimentally by tuning the above-
mentioned factors. Recently, this XXZ anisotropic exchange
model has been used to discuss the spin-Hall effect,24

anomalous Hall effect,25 and current-induced spin
polarization26 in magnetic semiconductor, theoretically.

One of the remarkable AMR features in �Ga,Mn�As-
diluted magnetic semiconductors is its minus sign of the non-
crystalline component,27,28 i.e., the conductivity parallel to
magnetization is larger than perpendicular to magnetization,
which is opposite to most metallic ferromagnets. Introducing
a “coherent” sum of electric and magnetic scatterings, Rush-
forth et al.6,29 studied the AMR under the relaxation-time
approximation. Both the magnitude and the sign of AMR are
found to rely on the relative strength of the nonmagnetic and
magnetic contributions of magnetic-ionized Mn acceptors.
The destructive interference induced from the combination
of electric and magnetic potential when the current is parallel
to the magnetization leads to the negative AMR.30 A maxi-
mum AMR magnitude �−200%�, originating from vanishing
scattering rate, is obtained at certain relative strength of two
parts of scattering. In 2DEG with Rashba SOC �Ref. 31� or
combined Rashba and Dresselhaus SOC,11 exact solution of
linear-response Boltzmann equation is obtained to investi-
gate AMR. Similarly, the coherent superposition of electric
and magnetic parts, leading to zero scattering probability of
one particular state, produces a 200% magnitude AMR when
two components have equal strength. One notes that, in the
previous theoretical research, the spins of the magnetic im-
purities are assumed to be fully polarized in the mean-field
description, i.e., all the moments of the local magnetic im-
purities are along a single direction �we refer to it as to the
“single-orientation model”�. However, in some magnetic ma-
terials, where the spins of magnetic impurities are polarized
partially, both the positions and the orientations of classical
magnetic moments should be randomly distributed. Hence, a
complementary study of AMR in this system is highly desir-
able. It is interesting to see whether the AMR in this partly
polarized system could be negative and its magnitude could
be large. For this magnetic system, the random magnetic
impurities give rise to a finite spontaneous magnetization at
the lowest order approximation. This average magnetization
acts on the electron spin, leading to an effective Zeeman
splitting term in the single-particle Hamiltonian. The remain-
ing effect of magnetic impurities on the collision is modeled
by XXZ or XYZ model, describing the interaction between
the effective impurity spins and the electron spins. This in-
teraction describes the remaining effect of magnetic impuri-
ties hence it should be regarded as the effect of effective
impurities. The orientations of the effective impurity spins
are isotropic, hence, in the lowest order, both two models
result in zero average exchange fields. These effective mag-

netic impurities only have an effect on the relaxation. There-
fore, the AMR in this system originates from the combina-
tion of SOC and polarized bands. This mechanism is
different from the previous studies, where the AMR is due to
SOC and polarized impurities.

In this paper, by exactly solving Boltzmann-type kinetic
equation, we analyze the AMR of a combined Rashba and
Dresselhaus model in the presence of an in-plane spontane-
ous magnetization and EMI scattering. This model can be
applied to discuss the AMR in magnetic material where the
magnetic impurities are polarized in part. The AMR of this
system has been studied relatively little. Furthermore, the
origin of AMR in this paper is significantly different from
previous studies. The relatively realistic long-range potential
is used to discuss the effect of the electric scattering part. We
find that, in such system, the AMR exists even when both
bands are occupied and the remote and background impuri-
ties have comparable effects on AMR. At the same time, the
XXZ model, after taking the average over the directions of
local magnetic moments, is applied for the magnetic part of
collision. It is found that the AMR is observable only when
the magnetization is larger than a singular one. Moreover, it
is interesting that the out-of-plane coupling between the elec-
tron and impurity spins can enhance the magnitude of AMR
drastically. More generally, we also discuss the effect of
XYZ model on AMR. Moreover, we numerically investigate
the dependence of AMR on the ratio between two scattering
contributions of conductivity and find that the magnitude of
AMR is not very large for this partly polarized system.

The paper is organized as follows. In Sec. II we derive the
kinetic equation for nonequilibrium distribution function in
the presence of EMI scattering and discuss the general origin
of AMR from the kinetic equation. In Secs. III A–III C, we
perform numerical calculations to study AMRs in the pres-
ence of pure electric, magnetic, and combined electromag-
netic scatterers, respectively. Finally, we conclude our results
in Sec. IV.

II. BASIC FORMALISM

A. System and Hamiltonian

We consider a Rashba and Dresselhaus spin-orbit coupled
2DEG in the x-y plane in the presence of an in-plane spon-
taneous magnetization along x direction �= �� ,0 ,0�. The
single-particle Hamiltonian can be written as

Ĥ0 =
k2

2m
+ ��ky�̂x − kx�̂y� + ��kx�̂x − ky�̂y� − ��̂x, �1�

where � ��� is the Rashba �Dresselhaus� SOC parameter, m
is the electron effective mass, �̂= ��̂x , �̂y , �̂z� are the usual
Pauli matrices, k= �kx ,ky� is the two-dimensional electron
wave vector. The origin of spontaneous magnetization will
be discussed in Sec. II B. By introducing a unitary transfor-
mation Uk= �uk1 ,uk2�, this Hamiltonian �1� can be diagonal-

ized, H0=Uk
†Ĥ0Uk=diag��k1 ,�k2�. Here the eigenenergies

�k� and the eigenstates uk� of Hamiltonian �1� are given by

�k� =
k2

2m
+ �− 1��	k, �2�
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uk� =
1
�2

� 1

i�− 1��+1ei
k
� . �3�

	k is the energy splitting due to the interplay between the
SOC and Zeeman term

	k = ���
2k2 + �2 − 2�k�� sin � + � cos �� ,

the angle 
k=tan−1���ky +�kx−�� / ��kx+�ky��, and �=1,2
with ��

2=�2+�2+2�� sin 2� and � being the polar angle of
momentum k. It should be noted that this unitary transforma-
tion changes the system from the spin basis to the helix
basis.

It is found that there is a degenerate point at Fermi con-
tours when �=�0 at �=−� ��=2−�� for ��� �����
with

�0 = �2m�F

��2 − �2�
��2 + �2

, �4�

� = tan−1�

�
. �5�

Here �F is the Fermi energy. This feature can be seen clearly
in Figs. 1�a� and 1�b�, where we show the Fermi contours
k���� for different average magnetizations. For combined
Rashba and Dresselhaus model with �=�, �0 equals zero. In
this case, the degeneracy appears at �=3 /4, 7 /4 for zero

magnetization. In Fig. 1�c� the schematic energy spectra at
�=−� and �=2−� are shown, where �0 is the energy at
the degenerate point. For fixed momentum k, �k2 is always
larger than �k1. It can be seen that for �F�� both the two
helix bands are occupied while for �F�� the upper band
��=2� is depopulated. Analogous to the pure Rashba
model,33 the Fermi energy is nearly a constant, independent
of the magnetization, when two helix bands are occupied for
this combined Rashba and Dresselhaus model. And the value
of it equals the one in the absence of magnetization, �F

0 , if the
electron density is fixed. For high magnetization when only
the lower band is occupied, the Fermi energy decreases lin-
early as �F	2�F

0 −�. It should be noted that the degenerate
magnetization �0 is not proportional to the SOC constant for
pure Rashba or Dresselhaus model since the Fermi energy �F
relies on the SOC strength.

B. Kinetic equation

When the homogenous system is driven by an in-plane dc
electric field E= �Ex ,Ey ,0�, the 2�2 matrix Wigner distribu-
tion function ��k ,T�=−iG��k ,T ,T� in the helix basis obeys
the following kinetic equation17

� �

�T
− eE · �k�� + eE · ��,Uk

†�kUk� + i�H0,�� = − Isc �6�

with the scattering integral in the helix basis

Isc = 

−�

T

dt���rG� + ��Ga − Gr�� − G��a��T,t���t�,T� .

�7�

In this paper, we consider the EMI scattering. The electric
scattering originates from the interaction between the elec-
tron and the ionized impurity �including the ionized nonmag-
netic and magnetic impurities in the quantum well� and a
Coulomb interaction is assumed. The magnetic scattering is
described by the following XXZ exchange form:

ũM�r� = �
�Rj,�Mj,�Mj

J�r − R j��sxS̃x�R j,�Mj,�Mj�

+ syS̃y�R j,�Mj,�Mj� + �szS̃z�R j,�Mj,�Mj�� . �8�

The in-plane coupling between electron spin and impurity
spin is assumed to be different from the out-of-plane one.
Here s= �̂ /2= �sx ,sy ,sz� is the spin vector of the electron,

being treated as a quantum quantity, and S̃= �S̃x , S̃y , S̃z� is the
spin of the classical local magnetic disorder at position R j.
��Mj ,�Mj� denotes the orientation of the magnetic moment.
J�r−R j� is the exchange coupling and � is the anisotropic
parameter. We assume that the nonzero average spin of mag-
netic impurity is along the x direction. This average spin
results in the above-mentioned spontaneous magnetization
and, hence, the magnetic scattering is given by
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FIG. 1. �Color online� Two Fermi contours k���� for the mag-
netizations �a� �=0.5�0 and �b� �=�0. �c� The energy spectra at �
=−� and �=2−� are shown schematically. The relevant mate-
rial parameters for InAs-based heterojunction are taken as: electron
effective mass m=0.036me �Ref. 32�, the electron density N=1.0
�1011 cm−2, and the Rashba and Dresselhaus SOC constants �
=0.2 eV Å and �=0.1 eV Å. Here me is the free electron mass and
kF=�2N is the Fermi momentum in the absence of SOC and
magnetization.
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ũM�r� = �
�Rj,�Mj,�Mj

J�r − R j��sx�S̃x − �S̃x�� + syS̃y + �szS̃z�

− �̂x�−
1

2 �
�Rj,�Mj,�Mj

J�r − R j��S̃x��
� uM�r� − ��̂x. �9�

Here, for shortness, the arguments in impurity’s spin
�R j ,�Mj ,�Mj� are not written out. The effective scattering
potential uM�r� and the spontaneous magnetization are writ-
ten as

uM�r� = �
�Rj,�Mj,�Mj

J�r − R j��sxSx�R j,�Mj,�Mj�

+ sySy�R j,�Mj,�Mj� + �szSz�R j,�Mj,�Mj�� ,

�10�

� = −
1

2 �
�Rj,�Mj,�Mj

J�r − R j��S̃x� �11�

with the spin of the effective classical magnetic impurity

S�R j ,�Mj ,�Mj�= �Sx ,Sy ,Sz�= �S̃x− �S̃x� , S̃y , S̃z�=S�R j��sin �Mj
cos �Mj , sin �Mj sin �Mj , cos �Mj�. The term relating to the

spontaneous magnetization is absorbed in the single particle
Hamiltonian �1�. This magnetic scattering uM�r� describes
the remaining contribution of magnetic impurities apart from
the contribution to the spontaneous magnetization, hence it
should be regarded as the effect of effective impurities and
we neglect the word “effective” in the following text. This
effective scattering potential is still modeled by the XXZ
interaction.24 Note that this interaction does not break the
in-plane symmetry. We also assume that the orientations of
these classical magnetic moments are isotropic. Finally, the
total EMI scattering potential is given by u�r�=uN�r�
+uM�r� with the electric scattering and magnetic scattering
potentials

uN�r� = �
�Ri

vN�r − Ri� , �12�

uM�r� = �
�Rj,�Mj,�Mj

vM�r − R j�UM��Mj,�Mj� . �13�

Here vN�r−Ri� and vM�r−R j� are the electric and magnetic
scattering strengths, respectively. Ri is the position of the
electric impurity. The 2�2 matrix UM��M,�M� is written
as24

UM��M,�M� = � � cos �M sin �Me−i�M

sin �Mei�M − � cos �M
� . �14�

In the presence of partly polarized magnetic disorders, the
impurity-averaging technology should include the average
over the orientations of the local magnetic moments besides
the randomly positions of impurities.24 Hence, the self-
energy in the self-consistent Born approximation in spin ba-
sis is described by Fig. 2 with the form

�̌�,r,a�k� = �
q

 d�M

4
vT�k − q,�M,�M�Ǧ�,r,a�q�

� vT�k − q,�M,�M� . �15�

Here �M is the solid angle of the orientation of magnetic
moment and the total scattering potential vT�q ,�M,�M� is
written as

vT�q,�M,�M� = vN�q� + vM�q�UM��M,�M� �16�

with vN�q� and vM�q� being the Fourier transforms of vN�r�
and vM�r�, respectively. In the helix basis, the self-energies

��,r,a�k�=Uk
†�̌�,r,a�k�Uk are given by

��,r,a�k� = �
q

 d�M

4
Uk

†vT�k − q,�M,�M�Uq

� G�,r,a�q�Uq
†vT�k − q,�M,�M�Uk �17�

the expressions of which take complicated forms and are
presented in the Appendix A.

To simplify the relaxation term, we use the two-band gen-
eralized Kadanoff-Baym ansatz to express the two-time
Green’s function through the one-time matrix Wigner distri-
bution function.34 Further, we take the lowest gradient ex-
pansion and ignore the collisional broadening. Under the sta-
tionary condition, the � is independent of the time. To the
lowest order of impurity density and electric field, the solu-
tion of the kinetic equation can be written as a sum of two
terms, �I+�II. The first term, �I, is collision unrelated and
off-diagonal with the elements

�12
I �k� = �21

I �k� =
eE · �k
k

4	k
�nF��k1� − nF��k2�� . �18�

Here nF�x� is the Fermi-Dirac distribution function. This dis-
tribution, relating to the interband transition between two
unperturbed helix bands, makes no contribution to charge
transport for this system.12 The collision-related distribution
function �II is determined by the coupled equations

eE · �knF��k�� = �
q��

�����k,q�����
II �k� − �����

II �q��

� ���k� − �q��� , �19�

Σ̌(k) =
∫

dΩM

4π
Ǧ(q)

EMI

FIG. 2. �Color online� The self-energy in the spin basis in the
self-consistent Born approximation for the combined magnetic and
electric impurity. The blue dash line denotes the combined scatter-
ing potential vT�k−q ,�M,�M�.
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4	k Re �12
II �k� =  �

q���

�̄����k,q�����
II �k� − �����

II �q��

� ���k� − �q��� . �20�

The scattering-related quantities ���� and �̄��� are
expressed as

�����k,q� = vN
2 �k − q��1 + �− 1��+�� cos�
k − 
q��

+
1

3
vM

2 �k − q��2 + �2 − �− 1��+���2

�cos�
k − 
q�� , �21�

�̄����k,q� = �− 1���1

3
�3vN

2 �k − q� − �2vM
2 �k − q��

� sin�
k − 
q� . �22�

It is obvious that the above coupled Eqs. �19� and �20� agree
with the previous study in the absence of magnetic
impurities.12 It is important to note that, for this system in the
presence of partly polarized magnetic impurities, the solid
angle integral makes the cross terms of vN and vM vanishing

in the ���� and �̄���. Hence, the coherent scattering feature
does not occur for this XXZ model. In fact, if the XXZ
model is replaced by a general XYZ model for the magnetic
scattering, the coherent scattering also does not take place
after the average over orientations, which can be seen in
Appendix B. Accordingly, the coherent sum of scattering op-
erators may be a specialty for single-orientation model.

C. AMR

In the clean limit approximation, the off-diagonal ele-
ments of distribution �II�k� make no contribution to the drift
velocity for this in-plane configuration considered here.12 At
the same time, the off-diagonal elements of the velocity op-
erator play no role in the charge transport, in contrast to the
out-of-plane configuration.17 Therefore, the drift velocity vd
reads

vd =
1

N
�
k,�

vk����
II �k� �23�

with the group velocity vk�=�k�k�.
Further, we can divide the distribution ���

II into two parts,
���

II =���
x Ex+���

y Ey, with ���
i �i=x ,y� independent of the

electric field. Substituting ���
II into the equation of diagonal

distributions Eq. �19�, we arrive at

e
�nF��k��

�ki
= �

q��

�����k,q�����
i �k� − �����

i �q��

� ���k� − �q��� . �24�

Accordingly, the conductivity tensor

�ij = − e�
k,�

vk�
i ���

j �k� �25�

with the index j=x ,y, and vk�
i as the ith component of group

velocity vk�.

The AMR is defined as

AMR = 2
�� − ��

�� + ��

, �26�

where �� and �� are the longitudinal resistivities for current
parallel and perpendicular to the magnetization, respectively.
In this paper, we fix the direction of the magnetization �along
x axis�. In order to obtain the current parallel to the magne-
tization, one should adjust the electric field so that Jx
=�xxEx

� +�xyEy
� �0 and Jy =�yxEx

� +�yyEy
� =0 with Ji as the ith

component of current and E� = �Ex
� ,Ey

� ,0� denoting the corre-
sponding electric field. Therefore, the Jx is written as

Jx = ��xx�yy − �xy�yx�Ex
� /�yy . �27�

At the same time, the longitudinal resistivity for current par-
allel to the magnetization is expressed as

�� =
Ex

�

Jx
=

�yy

�xx�yy − �xy�yx
. �28�

On the other hand, the longitudinal resistivity for current
perpendicular to the magnetization is given by

�� =
�xx

�xx�yy − �xy�yx
. �29�

Hence, AMR is written as

AMR = − 2
�xx − �yy

�xx + �yy
. �30�

In the absence of magnetization, it is found that the x
component of the velocity v�

x �kx ,ky� becomes the y compo-
nent v�

y �ky ,kx� when we make the transformation kx↔ky.
Note that, for the sake of convenience, vk�

i have been rewrit-
ten as v�

i �kx ,ky�, so also do other quantities in the following
paragraphs. At the same time, cos 
k exchanges with sin 
k
under this transformation. From the fact that �����k ,q� de-
pends on 
k−
q through the cosine function, ���

x �kx ,ky� be-
comes ���

y �ky ,kx� under the transformation kx↔ky and
qx↔qy in Eq. �24�. Here we have assumed that the scattering
potentials vN and vM only rely on the magnitude of the mo-
mentum k−q. On the other hand, the exchange of the com-
ponents of momentum k does not change the integral, Eq.
�25�. As a result, �xx=�yy and AMR vanishes even in the
presence of magnetic disorders, which is modeled by XXZ
model. This result is different from the case when the mag-
netic impurities are fully polarized,11 where the polarized
impurities break the in-plane symmetry and the scattering
probability function may depend on 
k+
q through a cosine
or sine function. Hence ���

x �kx ,ky�����
y �ky ,kx�, resulting in

nonvanishing AMR in the absence of magnetization. For
XYZ model in the absence of magnetization, the AMR exists
due to the similar reason, which is presented in Appendix B.
In this case, though the relation v�

x �kx ,ky�=v�
y �ky ,kx� is still

satisfied, the symmetrical relation ���
x �kx ,ky�=���

y �ky ,kx� is
broken.

For another situation when the 2DEG is in the absence of
spin-orbit interaction ��=�=0�, thus 	k=� and 
k=− /2. It
is obvious that v�

x �kx ,ky�=v�
y �ky ,kx� and ���

x �kx ,ky�
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=���
y �ky ,kx�. Hence, AMR also vanishes for the system in

the absence of SOC. Note that this argument is valid even
when the magnetization is so large that only the lower band
is occupied and for the situation in the presence of magnetic
disorders.

Therefore, AMR is an effect which can also be induced by
the combination of the SOC and magnetization in addition to
the combination of SOC and polarized impurity. The com-
bined effect breaks the symmetrical relation v�

x �kx ,ky�
=v�

y �ky ,kx� or the other relation ���
x �kx ,ky�=���

y �ky ,kx�. For
the present work in the presence of both SOC and magneti-
zation, ���kx ,ky�����ky ,kx� and v�

x �kx ,ky��v�
y �ky ,kx�. Fur-

ther, �����kx ,ky ;qx ,qy�������ky ,kx ;qy ,qx�, leading to
���

x �kx ,ky�����
y �ky ,kx�. Therefore, AMR may exist even for

the nonmagnetic disorders.12,13 Nevertheless, for short-range
nonmagnetic disorders, the vertex part of the conductivity
cancels the nonvertex part completely, leading to vanishing
AMR, when both two bands are occupied.15 Note that this
cancellation is not valid when the Fermi energy only crosses
the lower helix band and AMR appears even for this
momentum-independent nonmagnetic scattering.15,33

III. NUMERICAL RESULTS

A. Pure electric impurities

To investigate the effect of electric disorders on the AMR,
we perform a numerical evaluation in the InAs-based quan-
tum well. We consider contribution from a mixture of the
remote and background impurities. The remote scattering is
due to ionized remote impurities distributing within a narrow
space charge layer with a concentration NI at a distance s
from the interface while the background charged disorders
distribute uniformly throughout InAs region with a volume
density nI. The scattering potential can be found in Ref. 35.
The material parameters used in this calculation are:36 the
low-frequency dielectric constant �=15.54, the depletion
layer charge number density Ndep=2�1010 cm−2. The elec-
tron effective mass at the band bottom and electron density
are the same as those in Fig. 1.

In Fig. 3, we plot the AMRs due to electric remote disor-
ders, background charged impurities, and the mixture of
these two types of impurities as functions of magnetization
for pure Rashba model. It is evident that for this momentum-
dependent electric scattering, all of the AMRs are nonvan-
ishing and these values are comparable. Notice that the cal-
culated AMR either due to remote collision or due to
background one is independent of the impurity density. The
total AMR is obtained by assuming equal conductivity con-
tributions from two nonmagnetic scattering mechanisms at
zero magnetization. Let nI=cNI�108 m−1 with c as a di-
mensionless constant. We numerically determine the constant
so that the conductivity contributions equal each other.
Hence the obtained total AMR is also irrelevant to the re-
mote disorder density NI. For comparison, we also compute
the AMR for � shape short-range collision by replacing the
potential vN�k−q� by the momentum-independent one v0,
which has been shown in the form of thin wine solid line.
For these four Rashba SOC constants �
=0.1,0.2,0.3,0.4 eV Å, it is found that Fermi energy, �F

=6.60,6.46,6.22,5.89 meV, and the singular magnetization,
�0=0.79,1.56,2.28,2.94 meV, respectively.

It is seen that there is a sudden step in the AMR around
�	�F both for short-range and long-range electric scattering.
AMR vanishes completely for this short-range electric scat-
tering when the Fermi energy crosses both two bands in con-
trast to the long-range case. The step is due to the van-Hove
singularity in the density of state �DOS�. The DOS for this
two bands model is defined as

D�E� = �
k�

��E − �k�� . �31�

In the inset of Fig. 3�c�, we show the magnetization depen-
dencies of total AMR and DOS at Fermi energy D��F�. The
position of the sudden step in AMR is in complete accord
with the one of DOS. At the band edge of the �=2 band,
��k� /�k	0, leading to this remarkable structure, which can
be confirmed from the schematic energy spectra Fig. 1�c�.
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FIG. 3. �Color online� Calculated magnetization dependencies
of AMRs in an InAs-based quantum well due to �a� electric remote
ionized dopants, �b� background charged impurities, and �c� the
mixture of these two types for different Rashba constants. The total
AMR due to the mixture is obtained by assuming equal conductiv-
ity contributions from both scattering mechanisms at zero magneti-
zation. The thin wine line is calculated for the short-range case with
�=0.4 eV Å. Inset of �c� shows the total AMR �red dash line� and
corresponding density of state at Fermi energy �orange solid line�
when the Rashba constant �=0.2 eV Å, where the horizontal coor-
dinate is � /�F. �d� AMR induced by remote impurity scattering
versus the normalized magnetization for different impurity dis-
tances when the Rashba parameter �=0.25 eV Å. Here the electron
density N=1.0�1011 cm−2.
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Due to the fact that when both bands are occupied, the Fermi
energy is almost independent of the magnetization, the DOS
at Fermi energy is nearly a constant at ���F. The DOS at
���F actually depends on the magnetization but the varia-
tion is so small that it is almost invisible. The AMR due to
the remote disorders is always positive even at ���F, in
vivid contrast against with the case of background disorders.
For background scattering, the AMR becomes negative at �
��F, and the AMRs at ���F and ���F are of the same
order of magnitude, leading to negative total AMR at �
��F.

When both two bands are occupied ����F�, except for
the small magnetization-dependent behavior near the regime
�=�0, AMR first increases, and then decreases with the in-
crement of the magnetization for remote collision, while the
AMR always increases for background electron-impurity
scattering. The magnitudes of all these AMRs enhance with
increasing the Rashba SOC strength. The value of the AMR
induced by remote collision is larger than the one of the
background scattering for ���F. The background collision
suppresses the magnitude of the total AMR but the behavior
of the total one is similar to the AMR due to remote colli-
sion. The small magnetization-dependent behavior near �0
arises from the degeneracy of Fermi contours when �=�0 and
�=−� or 2−�. Hence, strong interband transition occurs
at this point. One notes that the existence of the degenerate
point also leads to novel properties of current-induced spin
polarization.37 Near the degenerate point, all of the AMRs
first decreases slightly and then increases with the magneti-
zation.

Further, to demonstrate the impurity-distance-related fea-
ture of AMR for remote collision at ���F, we plot AMRs as
functions of normalized magnetization � /�0 for various im-
purity distances in Fig. 3�d�. It is seen obviously that the
distance of the remote dopants affects the magnitude of
AMR, strongly. With increasing the degree of smoothness of
potential, the maximum of AMR increases and a redshift of
the AMR peak occurs. At the same time, one also finds that
the increasing distance suppresses the small magnetization-
dependent behavior near the degenerate point. This is the
reason why we did not observe this small feature in our
previous study,12 where we chose a relative large impurity
distance.

We now explore the effect of Dresselhaus SOC on AMR
in the presence of electric collision. In Fig. 4, we plot the
AMRs due to remote collision and the singular magnetiza-
tion �0 as functions of Rashba SOC strength for fixed
Dresselhaus SOC constant �=0.2 eV Å when the Fermi en-
ergy crosses two bands. In the presence of short-range elec-
tric scattering, AMR still vanishes completely for this com-
bined Rashba-Dresselhaus model. Nevertheless, AMR exists,
and significantly relies on the SOC parameters for
momentum-dependent remote collision. The sign of AMR
depends on the ratio � /� and AMR completely vanishes for
�=� even in the presence of long-range scattering. This is
similar to the single-orientation model,11 though here the
scattering is totally electric. For the situation ��=��,
���kx ,ky�=���ky ,kx�, v�

x �kx ,ky�=v�
y �ky ,kx�, and 
�kx ,ky�

=
�ky ,kx�. At the same time ���
x �kx ,ky� becomes ���

y �ky ,kx�
when we make the transformation kx↔ky. Hence, �xx=�yy.

It should be noted that this argument is also valid in the
regime when only one band is occupied and for magnetic
scattering. Therefore, AMR vanishes for �=� even when the
magnetization is very large. We mention again that for the
situation when both helix bands are occupied, the Fermi en-
ergy is nearly independent of the magnetizations.33 Hence,
the singular magnetization is irrelevant to the magnetization.
In the parameter regime, ��0.4 eV Å, it is found that the
singular magnetization �0�2 meV. Hence, near the regime
�0=1 meV, there exist small variations for AMR when the
magnetization �=1 meV. When �=0.4 eV Å, �0 is very
close to 2 meV. Therefore, AMR begins to decrease for �
	0.4 eV Å when the spontaneous magnetization �
=2 meV. Note that here the plotted AMR is in the regime
���F. We also calculate the AMR when only majority band
is occupied. It is found that, for fixed Dresselhaus SOC pa-
rameter, AMR increases monotonously with the Rashba con-
stant from negative to positive for remote scattering.

B. Pure magnetic impurities

Now we concentrate on the AMR due to pure magnetic
impurities by assuming momentum-independent scattering
strength, i.e., vM=v0. The calculated AMRs for pure Rashba
model, which is irrelevant to the scattering strength, are plot-
ted in Figs. 5 and 6.

It should be noted that the XXZ model does not break the
in-plane symmetry for the system in the absence of magne-
tization. Hence, the anisotropy in conductivity vanishes com-
pletely for vanishing magnetization. Actually, the distribution
���

i �k� for this pure Rashba model in the absence of magne-
tization can be obtained analytically from Eq. �24�
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FIG. 4. �Color online� Calculated AMRs due to remote impuri-
ties for different magnetizations and the singular magnetization �0

are shown as functions of Rashba SOC strength when ���F. The
thin wine lines are obtained for �-form short-range nonmagnetic
collision when the magnetization �=3 meV. Here the Dresselhaus
SOC constant �=0.2 eV Å. The other parameters are the same as
in Fig. 3.
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����
x �k�

���
y �k�

� =
e

v0
2

3

3�4 + 10�2 + 8

���2

m2k −
4�1 + �2�

m
��2 +

2�F

m
�

��cos �

sin �
����k� − �F� . �32�

Based on the fact that vk�
x �cos � and vk�

y �sin �, it is found
that �xx=�yy and AMR equals zero completely. Note that this
is invalid for a general XYZ model, which could be seen in
Appendix B. For XXZ model, in the presence of small mag-
netization ���0, AMR is so small that it is almost invisible,
the variation in which near the regime �	�0 is given in the
inset of Fig. 6�a�. Similarly, the current-induced spin polar-
ization is also tiny when the spontaneous magnetization is
smaller than a singular magnetization.37 We should note that
though we discuss the pure Rashba model, AMR also equals
zero in the absence of magnetization for the combined
Rashba and Dresselhaus model meanwhile it is tiny when �
��0. For the magnetization �0����F, AMR increases mo-

notonously, which could be seen in Fig. 5�a�. Near the re-
gime �	�F, the pronounced step structure is also observed
for magnetic disorders such as the electric ones. Then AMR
decreases gradually and becomes stable for large magnetiza-
tion when only the majority band is occupied. In Fig. 5�b�,
the AMRs of the pure Rashba model are shown as functions
of Rashba strength for variant magnetizations. Note that for
weak magnetization ���F, though the Fermi energy de-
creases with the SOC, the singular magnetization �0 still in-
creases with the increment of Rashba coupling. As a result,
AMR may increase first, then decrease, and even nearly van-
ish when ���0, such as �=2,3 meV. At the same time, in
Fig. 5�b� an abrupt increase in AMR with increasing the
coupling � for �=6 meV is seen. This feature can be under-
stood due to the fact that with increasing the �, the Fermi
energy descends, and when it equals the magnetization, the
sudden increase occurs. For large magnetization ����F�,
such as �=7,8 ,9 meV, AMR always enhances with ascend-
ing the �. For low spin-orbit splitting m�2 /��1 and not
very large anisotropic constant �2m�2 /��1, the AMR of
this single band case is obtained as

AMR = �1 +
3

4
�2�F + �

�
�m�2

�
. �33�

The derivation is very cumbersome and we give it in the
Appendix C. The above result shows that AMR decreases
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with the magnetization and increases with anisotropic cou-
pling, which agrees with our numerical results completely.

Further, to demonstrate the effect of anisotropic parameter
� on the AMR, AMRs for various � are plotted in Fig. 6�a�.
It is seen that the step near �	�F becomes remarkable with
enhancing the anisotropy �. For vanishing anisotropy, the
sudden increase of AMR almost cannot be observed. In Figs.
6�b� and 6�c�, the AMRs are plotted as functions of the an-
isotropic parameter for ���F and ���F, respectively. For
both two situations, the AMR increases with enhancing the
anisotropy, and finally saturates. However, the saturation
value and the corresponding anisotropy when AMR begin to
saturate are evidently different. Especially, when only one
band is occupied, the saturation value of AMR is nearly
100%.

For the combined Rashba and Dresselhaus model, the
sign of AMR also relies on the ratio � /� for the magnetic
disorders and vanishes when �=�, which can be seen in Fig.
7. For low magnetization ��=1 meV�, the AMR is very
small and almost invisible. Note that this value is smaller
than the one for electric long-range scattering. Hence, in or-
der to obtain observable AMR, one has to apply relative
large magnetization. Also an abrupt increase of AMR near
the regime �	�F is observed for �=5,6 meV. When �
��F, the AMR ascends with SOC and descends with mag-
netization, monotonously.

C. Combined electric and magnetic impurities

We now investigate the AMR when the electrons are scat-
tered by the EMIs. The calculated results are summarized in
Figs. 8–10. In Fig. 8 we plotted the AMR induced by the
combined electric and magnetic disorders as functions of
magnetizations. Here the magnetic scattering is taken to be
isotropic, i.e., �=1. The considered electric scattering is due
to �a� remote disorders and �b� momentum-independent
short-range one. In the calculation, we have assumed the
equal contributions of longitudinal conductivity in the ab-
sence of magnetization due to electric or magnetic scattering,

i.e., 	=�N /�M=1. Here �N and �M are the longitudinal con-
ductivities induced by the pure electric and magnetic disor-
ders for vanishing magnetization. It is seen evidently that the
AMR is always positive even in the presence of this com-
bined disorders and its magnitude is not very large. For �
��0, the long-ranged electric part of the scattering potential,
unlike the short-range one, plays a significant role on the
AMR, bringing about the nonzero AMR. Near the regime �
	�F, a sudden increase occurs in the presence of remote
electric scattering part, while a sudden decrease emerges for
short-range one. This can be understood from the fact that
when ���F the magnetic scattering dominates in the AMR
induced by combined remote electric and magnetic impuri-
ties. However, AMRs due to short-range pure electric and
magnetic disorders are of the same order of magnitude.
Hence, a competition occurs, leading to different behavior.
For ���F, it is seen that the total AMR descends with mag-
netization when the electric part of scattering is remote, un-
like the short-ranged one. Note that the step near �	�F is
very small for the weak SOC case when the electric part of
scattering is remote.

It is noted that, for single-orientation model, the AMR
may becomes 200% when the ratio between the electric and
magnetic parts of the potential equals one.11 To investigate
this ratio-dependent feature for our case, we plot the AMRs
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as functions of ratio 	 in Fig. 9. It is evident that the AMRs
are not very large, which is different from the case when the
impurities are fully polarized. For magnetization ���0,
AMR is tiny when 	�1 owing to the larger contribution
from the magnetic scattering part. With enlarging the 	, the

contribution from the remote electric scattering becomes im-
portant, leading to the increment in AMR, and AMR finally
saturates for very large 	. For middle magnetization �0��
��F, the AMR shows a complicate behavior. The contribu-
tion from the magnetic �electric� scattering plays the leading
role in the AMR for small �large� 	. For middle 	 �10−2

�	�102�, the contributions from the electric and magnetic
parts to the AMR are comparable and an obvious competi-
tion occurs. With increasing the 	, the AMR first increases,
then decreases, and enhances again. There is a peak of AMR
at the position 0.1�	�1. In order to study the character of
this peak, the AMRs are shown functions of 	 for various
anisotropic � at fixed magnetization in Fig. 9�d�. It is seen
clearly that the peak value ascends with anisotropic param-
eter but the position of the peak is almost unaffected. For
large magnetization ���F, the AMR due to pure magnetic
scattering is larger than the one due to pure remote electric
scattering. Hence, with increasing the 	, the AMR drops.

Further, to demonstrate whether the AMR for �0����F
can be large when two contributions are comparable, we also
compute the peak value of AMR near the regime 0.1�	
�1 versus the anisotropic constant � in Fig. 10. Unfortu-
nately, the AMR is not very large even for large anisotropy,
unlike the single-orientation model. The AMR may even de-
creases with the � and saturates at large one. We know that
the XXZ model is the special case of XYZ model when the
anisotropy is along the z direction. However, the study of
AMR when the anisotropy is along the other direction shows
that the AMR is also not very large and a similar behavior of
AMR is obtained. Hence, when the magnetic impurities in
magnetic materials are partly polarized, the large AMR
�	200%� cannot be observed.

IV. CONCLUSIONS

We have proposed a kinetic equation approach to study
the AMR in 2DEG with a combined Rashba and Dresselhaus
SOC and an in-plane magnetization. Our model describes the
case where the doped magnetic impurities are polarized par-
tially in InAs quantum well, which is different from the pre-
vious fully polarized case. At the lowest order, these mag-
netic disorders give rise to a spontaneous magnetization. The
remaining effect of magnetic impurities is included by con-
sidering the scattering between electron and impurity, mod-
eled by XXZ or XYZ model. The microscopic mechanism of
this AMR arises from the combined effect of SOC and po-
larized bands due to magnetization. This is different from the
previous theoretical studies, where the polarized impurities
instead of the polarized bands are responsible for the exis-
tence of AMR.

It is found that the Fermi contours of this single-particle
Hamiltonian have a degenerate point for certain magnetiza-
tion and direction of momentum, leading to novel property
of AMR for both electric and magnetic scatterings. After
averaging over the orientations of the local magnetic mo-
ments, the coherent superposition of electric and magnetic
scattering amplitudes disappears in the scattering integral,
which is valid even for the general XYZ model. The general
argument could be made for the occurrence of AMR from the
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kinetic equations. The destruction of the relation v�
x �kx ,ky�

=v�
y �ky ,kx� or ���

x �kx ,ky�=���
y �ky ,kx� may lead to the AMR.

In the presence of combination of SOC and magnetization, it
is obtained that both v�

x �kx ,ky��v�
y �ky ,kx� and ���

x �kx ,ky�
����

y �ky ,kx�, resulting in the nonvanishing AMR even for
electric collision. Nevertheless, the nonvertex and vertex
parts of conductivities cancel each other for short-range
one,15 leading to disappearance of AMR. For identical cou-
pling constants ��=��, AMR vanishes completely for any
scattering potential.

For electric collision, we consider both remote and back-
ground long-range potentials. The results show that the mag-
nitude of AMR due to remote scattering is larger than back-
ground charged one. A sudden step of AMR appears near the
regime �	�F, which may reverse the sign of AMR. A small
structure of AMR, which could be smoothed by the large
distance of impurities, occurs near �	�0. Both the magni-
tude and the sign of AMR could be tuned by adjusting the
relative strength of two SOCs. In the presence of magnetic
scattering, the AMR equals zero at vanishing magnetization
for arbitrary magnitude of anisotropy � for XXZ model. Fur-
ther, if the magnetization is smaller than the singular magne-
tization, the magnitude of AMR is tiny. A remarkable step
structure also emerges while the sign of the AMR is always
positive. The magnitude of AMR saturates at large aniso-
tropic constant, especially, the maximum value of AMR
could reach up to nearly 100% when the Fermi energy only
crosses the majority band. In the presence of EMI scattering,
the sign of the AMR is still positive even for ���F. At the
same time, we adjust two scattering contributions and find
that the magnitude of AMR is not very large, which is dif-
ferent from the single-orientation model. This is due to the
vanishing of the coherent sum of two scattering parts when
the magnetic impurities are partly polarized.
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APPENDIX A: SELF-ENERGY

In this appendix, we give the expression of the self-energy
in the helix basis in Eq. �17�. Performing the integral of the
solid angle �M, the elements of the self-energy � are written
as

�11�k� = �
q

�a1G11�q� + a2G22�q� + id�G12�q� − G21�q�� ,

�A1�

�12�k� = �21
� �k�

= �
q

�id�G11�q� − G22�q�� + b1G12�q� + b2G21�q� ,

�A2�

�11�k� = �
q

�a2G11�q� + a1G22�q� − id�G12�q� − G21�q�� .

�A3�

For shortness, here, the superscripts �� ,r ,a� of self-energy
and Green’s function have been dropped. a�, b�, and d are
factors depending on the scattering potentials

a� =
1

6
vM

2 �k − q��2 + �2 + �− 1���2 cos�
k − 
q��

+
1

2
vN

2 �k − q��1 − �− 1��cos�
k − 
q�� , �A4�

b� = −
1

6
vM

2 �k − q��2 − �2 − �− 1���2 cos�
k − 
q��

+
1

2
vN

2 �k − q��1 − �− 1��cos�
k − 
q�� , �A5�

d =
1

6
��2vM

2 �k − q� − 3vN
2 �k − q��sin�
k − 
q� . �A6�

It is found that each element of the self-energy contains all
the elements of the Green’s function. However, the crossed
term of two scattering strengths does not take place in these
expressions.

APPENDIX B: KINETIC EQUATION FOR
XYZ INTERACTION

Considering the general XYZ model for magnetic impu-
rity scattering, the potential uM�r� takes the form

uM�r� = �
�Rj,�Mj,�Mj

J�r − R j���xsxSx�R j,�Mj,�Mj�

+ �ysySy�R j,�Mj,�Mj� + �zszSz�R j,�Mj,�Mj�� .

�B1�

Here �x ,�y ,�z are the anisotropic constants. Hence, we get

uM�r� = �
�Rj,�Mj,�Mj

vM�r − R j�UM
XYZ��Mj,�Mj� �B2�

with the scattering strength vM�r−R j�=J�r−R j�S�R j� /2 and
the matrix UM

XYZ��Mj ,�Mj�

UM
XYZ��M,�M� = ��z cos �M t��M,�M�

t���M,�M� − �z cos �M
� . �B3�

Here t��M,�M�=sin �M��x cos �M− i�y sin �M�. We would
like to point out that for �x=�y =1, the 2�2 matrix
UM

XYZ��M,�M� becomes UM��M,�M�. After applying the pro-
cedure of the average over the positions and the orientations
of the local magnetic moments, the self-energy could be ob-
tained. Finally, we get the kinetic equations. The kinetic
equations are similar to Eqs. �19� and �20�, only the

�����k ,q� and �̄����k ,q� are replaced by ����
XYZ�k ,q� and

�̄���
XYZ�k ,q�. The ����

XYZ�k ,q� and �̄���
XYZ�k ,q� have the form
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����
XYZ�k,q� = vN

2 �k − q��1 + �− 1��+��cos�
k − 
q��

+
1

3
vM

2 �k − q���x
2�1 − �− 1��+��cos�
k + 
q��

+ �y
2�1 + �− 1��+��cos�
k + 
q��

+ �z
2�1 − �− 1��+��cos�
k − 
q�� , �B4�

�̄���
XYZ�k,q� = �− 1���1

3
�3vN

2 �k − q�sin�
k − 
q� − vM
2 �k − q�

���x
2 sin�
k + 
q� − �y

2 sin�
k + 
q�

+ �z
2 sin�
k − 
q�� . �B5�

For this general XYZ model, these quantities depend on both

k+
q and 
k−
q through a cosine or sine function. How-
ever the coherent sum between electric and magnetic scatter-
ing potentials still does not exist.

The scattering-related quantities ����
XYZ�k ,q� depend on


k+
q hence AMR may exist for pure magnetic scattering in
the absence of magnetization. For pure Rashba model and
short-range scattering, vM

2 �k−q�=v0
2, the analytical solution

of kinetic equation could be obtained as

���
x �k� = −

e

mv0
2

3

��x
2 + �y

2 + �z
2��3�x

2 + �y
2 + 3�z

2�

� ��− 1�����x
2 − �y

2 + �z
2� + �3�x

2 + �y
2 + 3�z

2�

���2 +
2�F

m
�cos ����k� − �F� , �B6�

���
y �k� = −

e

mv0
2

3

��x
2 + �y

2 + �z
2���x

2 + 3�y
2 + 3�z

2�

� ��− 1�����y
2 − �x

2 + �z
2� + ��x

2 + 3�y
2 + 3�z

2�

���2 +
2�F

m
�sin ����k� − �F� . �B7�

Thus the longitudinal conductivities take the form

�xx =
3e2

mv0
2� �F

�x
2 + �y

2 + �z
2 +

m�2

3�x
2 + �y

2 + 3�z
2� , �B8�

�yy =
3e2

mv0
2� �F

�x
2 + �y

2 + �z
2 +

m�2

�x
2 + 3�y

2 + 3�z
2� . �B9�

Hence, the resultant AMR is directly given by

AMR =
2m�2��x

2 − �y
2���x

2 + �y
2 + �z

2�
�FF1 + m�2F2

�B10�

here F1= �3�x
2+�y

2+3�z
2���x

2+3�y
2+3�z

2� and F2= ��x
2+�y

2

+�z
2��2�x

2+2�y
2+3�z

2�. AMR is nonzero for general XYZ
model in the absence of magnetization. Nevertheless, it van-
ishes for XXZ model or for the spin-degenerate system. The
XYZ model when �x��y breaks the in-plane symmetry of

the scattering potential, which may lead to anisotropic elec-
tron lifetimes. Hence, AMR occurs in the absence of in-plane
magnetization. When all the moments of magnetic impurities
align along x �y� direction, i.e., �M= /2, �M=0, ��M
= /2,�M= /2�, the resultant AMR is consistent with the
previous study.11 On the other hand, if the orientations of
local magnetic moments are still random, but only one in-
plane coupling strength is nonzero, i.e., �x=1, �y =�z=0 or
�y =1, �x=�z=0, the obtained AMR is still different from
the one of the single-orientation model. For example, for
�x=1, �y =�z=0, the longitudinal conductivities are written
as

�xx =
3e2

mv0
2�N

m
−

2m�2

3
� , �B11�

�yy =
3e2N

m2v0
2 . �B12�

They are three times as large as the results of single-
orientation model.11 This is due to the randomicity of the
orientations of impurity spins, which can be seen from the
expression of the ����

XYZ�k ,q�. The similar result can be ob-
tained for the case �y =1, �x=�z=0. Therefore, our model
is significantly different from the single-orientation model
and they are relevant to different physical systems.

APPENDIX C: ANALYTICAL RESULT OF AMR FOR PURE
MAGNETIC SCATTERING WHEN ONLY THE

MAJORITY BAND IS OCCUPIED

For this one band model ����F�, one only needs the dis-
tribution function �11

i �k�. In order to determine this distribu-
tion, we assume the solution of Eq. �24� at zero temperature
has the form �11

i �k�= f i������k1−�F�. Here f i��� only relies
on the polar angle of momentum. As a result, all the corre-
sponding physical quantities should be calculated at the
Fermi surface. Further, the weak SOC is assumed. To first
order in m�2 /�, the magnitude of angle-dependent Fermi
momentum, k1���, is expressed as

k1��� = �2m�� + �F� − m� sin � + �m

2
�3/2

�
� + � cos2 � + 2�F cos2 �

��� + �F

�2. �C1�

At the same time, two components of the group velocity at
the Fermi surface for weak spin-orbit splitting are written as

vk11
x =�2�� + �F�

m
cos � −

1

2
� sin 2� +

1

16�
�2� 2m

� + �F

��− �9� + 10�F�cos � + �� + 2�F�cos 3�� , �C2�
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vk11
y =�2�� + �F�

m
sin � +

1

2
��1 + cos 2��

+
1

16�
�2� 2m

� + �F
��5� + 2�F�sin � + �� + 2�F�sin 3�� .

�C3�

It is found that the components of velocity at Fermi surface
depend not only on � but also on 2� and 3�, through not only
a cosine function but also a sine function. Meanwhile, to the
first order in m�2 /� and �2m�2 /�, the quantity �11�k ,q� at
the Fermi surface can also be obtained. However, its expres-
sion is too lengthy and we don’t write it down here. Further,
we assume f i���= f0

i ���+�f1
i ���+�2f2

i ���. Considering the
fact that both the left hand side and the right-hand side of Eq.
�24� are periodic functions of �, the f�

i ��� ��=0,1 ,2� should
have the form

f�
i ��� = A�

i �0� + �
n=1

�

A�
i �n�cos n� + �

n=1

�

B�
i �n�sin n� .

�C4�

The coefficients of the Fourier series are determined by Eq.
�24�. One finds that only the following coefficients are non-
zero:

A0
x�1� = B0

y�1� =
− 6e

�2mv0
2

�� + �F

m
, �C5�

B1
x�2� = − A1

y�2� =
3e

2mv0
2 , �C6�

A2
x�1� =

3e

8�2v0
2

18�2�� + �F�2 + ��17� + 18�F�
�2�m�� + �F�

, �C7�

B2
y�1� =

9e

8�2v0
2

2�2�� + �F�2 + ��� + 2�F�
�2�m�� + �F�

, �C8�

A2
x�3� = B2

y�3� =
3e

8�2v0
2

2�2�� + �F�2 − ��� + 2�F�
�2�m�� + �F�

.

�C9�

Actually, the coefficients A2
x�3� and B2

y�3� are not necessary
for the calculation of conductivities to the first order in
m�2 /� due to the vanishing integrations of angle, such as
�0

2d� cos � cos 3�. Finally, we obtain the longitudinal con-
ductivities for weak SOC

�xx =
3e2�� + �F�

2
� −

3e2m�2�

16�2

� �9�2�� + �F�2 + 4��� + 2�F�� , �C10�

�yy =
3e2�� + �F�

2
� −

3e2m�2�

16�2 � �3�2�� + �F�2 − 4�2� .

�C11�

Here the relaxation time � is defined as �=1 / �mv0
2�. Obvi-

ously, �yy ��xx and both of them are quadratically related to
the spin-orbit interaction for fixed Fermi energy. With in-
creasing the coupling strength �, the �xx decreases, while the
�yy may increases. For vanishing SOC, �xx=�yy =3e2��
+�F�� /2, which differs from the Drude conductivity. We
should note that the above conductivities cannot be reduced
to the nonmagnetic case since the XXZ model for magnetic
disorder is not reducible to that for nonmagnetic one. Finally,
we get the AMR Eq. �33� for m�2 /��1 and �2m�2 /��1.
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