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Quantum coherent properties of electrons can be studied in Aharonov-Bohm �AB� interferometers. We
investigate both experimentally and theoretically the transmission phase evolution in a four-terminal quasi-
one-dimensional AlGaAs/GaAs-based waveguide AB ring. As main control parameter besides the magnetic
field, we tune the Fermi wave number along the pathways using a top-gate. Our experimental results and
theoretical calculations demonstrate the strong influence of the measurement configuration upon the AB-
resistance-oscillation phase in a four-terminal device. While the nonlocal setup displays continuous phase shifts
of the AB oscillations, the phase remains rigid in the local voltage-probe setup. Abrupt phase jumps are found
in all measurement configurations. We analyze the phase shifts as functions of the magnetic field and the Fermi
energy and provide a detailed theoretical model of the device. Scattering and reflections in the arms of the ring
are the source of abrupt phase jumps by �.
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I. INTRODUCTION

The magnitude and phase of electron-wave transmission
are of high interest for fundamental investigations in solid-
state quantum devices and circuits. AB interferometers have
been used as probes to study coherence properties of systems
embedded in one of the interferometer arms, such as a quan-
tum dot.1–10 These experiments showed unexpected features
like abrupt phase jumps by � raising the question how exact
such a phase determination can be.11–13 In quantum rings
fabricated from quasi-one-dimensional �1D� quantum
waveguides the impact of scattering and reflection of elec-
tron waves, e.g., at cross junctions and leads, on the magni-
tude and phase of transmission under realistic measurement
and circuitry conditions remain yet unresolved. Here, we
present a comprehensive investigation including the detailed
comparison of experimental results and realistic theoretical
modeling of a ring device which allows for the detection of
an intrinsic �electrostatic� transmission phase shift.

The AB effect allows one to detect interference of coher-
ent electrons in a two-path ring in the form of magnetoresis-
tance oscillations with a magnetic flux period of h /e.14,15 If
the lengths of the two paths s1 and s2 differ, an additional
wave-number-dependent phase occurs, given by ��=kF�s2
−s1�. Ideally, the transmission probability along the paths
becomes T�cos�e� /�+���, with magnetic flux �. The
wave number kF can be controlled by a perpendicular electric
field applied via a top-gate electrode, which might only
cover part of the device.16

The simple linear relation between wave number and
phase �� does not take into account time-reversal symmetry,
which enforces T���=T�−�� in two-terminal devices17–19

and thus no continuous phase shifts can be detected.1,20,21 In
order to break the phase rigidity, it is necessary to reduce the
device symmetry by attaching additional leads to the ring.19

The addition of leads increases scattering effects in the cross
junctions and requires to model the device in a two-
dimensional �2D� fashion.

In Sec. II, we describe our asymmetric four-terminal
quasi-1D waveguide interferometer with orthogonal cross
junctions and discuss the experimental results.

Section III contains the theoretical two-dimensional de-
vice model, which goes beyond effective 1D models.22–26

The theoretical calculations encompass a large range of
Fermi energies and are efficiently performed using the wave-
packet approach to mesoscopic transport.27,28 The inclusion
of nonzero bias voltages and temperature allows us to com-
pare experiments and theory on an unprecedented level of
detail.

In Sec. IV we relate the occurrence of abrupt phase
jumps, which have been observed in nearly all AB experi-
ments, to resonances forming due to multiple reflections
along the ring paths.

II. EXPERIMENTAL DATA

The asymmetric quantum ring is schematically depicted
in Fig. 4�a�. We realized a waveguide geometry which allows
for mode-controlled 1D transport via a global gate electrode
covering the entire ring and the adjacent 2D reservoirs.
A scanning electron micrograph of the device is shown in
Fig. 3, and details of the fabrication can be found in Ref. 29.
The interferometer was designed to facilitate a comparison
with theoretical calculations as shown in Fig. 1 �experiment�
and Fig. 2 �theory�, as well as to identify a transmission
phase shift experimentally: �i� the four-terminal ring is
strongly asymmetric in order to break transmission symme-
tries and allow for a transmission phase shift; �ii� the electron
waveguides defining the ring and the leads intersect orthogo-
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nally to minimize reflections at the leads; and �iii� the 2D-1D
junction connecting the 2D reservoirs and feeding the leads
is located far outside the quantum ring structure and does not
contribute to the four-terminal measurements.

Magnetoresistance measurements were performed with
approximately 8–12 populated modes in small magnetic
fields �up to 20 mT�. Qualitatively similar results have been
found for a ring with 3–6 populated subbands.30

The AB ring was prepared from an AlGaAs/GaAs field-
effect heterostructure with a 2D electron gas 55 nm below
the surface �electron density ns=3.1�1011 cm−2, mobility
�=1�106 cm2 /V s, mean-free path le�9.5 �m�. The geo-
metric width of the etched waveguides amounts to 250 nm,
the distances between the intersection centers of the
waveguides are s1�3.3 �m along the bent and s2�2 �m
along the straight waveguide.

We measured the four-probe resistance Rij,kl= �Vk
−Vl� / Iij =Vkl / Iij in the local configuration, where the voltage
probes are placed along the current path, e.g., R41,32 in Fig.
3�b�, and in the nonlocal configuration, where the voltage
probes are separated from the current path, e.g., R43,12 in Fig.
3�a�. Measurements were performed with standard lock-in

technique in a dilution refrigerator at the base temperature of
Tbase	30 mK. The effective electron temperature is ap-
proximately 100–150 mK, as we have estimated from
temperature-dependent AB experiments in two different AB
rings in the same cryostat.30,31 By thermal noise measure-
ments, other groups have determined similar electron tem-
peratures �100–200 mK� in dilution refrigerators with similar
measurement setups.32,33 For a measurement of Rij,kl, we fed
an ac current of 12 nA rms at 73.3 Hz to terminal i whereas
terminal j was grounded. The current was realized by a volt-
age of 120 mV rms from a signal generator at a resistor of
10 M
 in series to the sample. The voltages at terminals k
and l were measured via a preamplifier with input resistances
of 100 M
.

In order to investigate the phase sensitivity of the asym-
metric quantum ring we measured the magnetoresistance as a
function of the top-gate voltage Vtg to detect the electrostatic
part of the AB effect. In Figs. 1�b� and 1�c�, the oscillatory
components of four-terminal resistance measurements are
shown in grayscale versus the magnetic field and the gate

(b)

(a)

(c)

FIG. 1. �Color online� Oscillatory part of four-terminal magne-
toresistance measurements. �a� Typical magnetoresistance for differ-
ent top-gate voltages Vtg extracted from �b� as indicated by the
dashed �red� and dotted �blue� lines. �b� and �c� Magnetoresistance
in grayscale from the nonlocal measurement R43,12 �b� and the local
measurement R41,32 �c� versus magnetic field and Vtg. The arrow
marks a typical �-phase jump. Magnetoresistance traces were re-
corded for succeeding gate voltages in steps of �Vtg=0.6 mV at
Tbase=23 mK. Ring radius Rexp=1 �m.
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FIG. 2. �Color online� Numerical simulation of ac lock-in mag-
netoresistance measurements. The effective electron temperature is
set to 150 mK and the ac peak current is 6 nA. The radii of the
rounded cross junctions are Rleft=75 nm for the left and Rright

=65 nm for the right junction. �a� Oscillatory component of the
nonlocal resistance for two different Fermi energies, corresponding
to the dashed, respectively, dotted lines in �b�. �b� and �c� Grayscale
plots of the oscillatory component of the nonlocal ��R43,12� �b� and
local ��R41,32� �c� resistance. The arrow marks a phase jump of �.
Ring radius Rth=0.5Rexp �details see Sec. IV�.
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voltage. Magnetoresistance measurements were recorded for
successive gate voltages at Tbase=23 mK, and the back-
ground resistance was subtracted. In Fig. 1�a�, we depict
two typical AB oscillations from Fig. 1�b� at gate voltages
Vtg=0.703 and 0.723 V. The measurements have been
smoothed and the background resistance has been subtracted.
The phase shift of �B /2=1.14 mT is clearly visible and
amounts to a phase of approximately �.

Figure 1�b� shows the nonlocal measurement �R43,12.
Here, an overall resistance-oscillation phase shift is visible as
indicated by the solid �green� diagonal line. The observed
electrostatically induced transmission phase shift is in good
agreement with a 2D estimate.30 Superimposed on the over-
all tendency of the transmission phase are regions of reduced
resolution �smaller AB amplitudes� �e.g., around Vtg
=0.697 V in Fig. 1�b��, higher harmonics �h /2e oscillations�
and abrupt phase jumps �e.g., around Vtg=0.734 V in Fig.
1�b��. The arrow marks the region of a typical sharp �-phase
jump. The occurrence of a reduced amplitude, higher har-
monics, and abrupt phase jumps might be related to impurity
scattering, electron-electron interactions, or electron wave
scattering and reflection in the waveguide cross junctions.
The latter possible cause would be a fundamental effect
dominated by the device geometry and will be investigated
in Sec. III.

Figure 1�c� shows the magnetoresistance grayscale plot in
the local four-terminal measurement configuration, �R41,32.
Here, continuous phase shifts are only occasionally visible
�e.g., around Vtg=0.655 and 0.692 V� and their slopes in the
gate voltage—magnetic field plane are different, even in
sign. After a short range of gate voltage, the shifts break up,
and in other gate-voltage ranges the phase does not change
with gate voltage �e.g., around Vtg=0.665 V�. A general ten-
dency of a phase evolution is not visible as expected in a
local measurement.34 In contrast to nonlocal measurements,
phase jumps occur more often and the phase seems to be
restrained to evolve continuously. This is a consequence of
device symmetries leading to R41,32�B�=R41,32�−B� as is ex-
plained in the following section.

III. THEORY

For a realistic model of the device, we have to incorporate
depletion effects along the arms of the ring and to accurately
model the effectively rounded cross junctions which reduce
diffraction effects.35 Such effects are absent in quasi-1D
approaches.22–26 The eigenmode energies of the quantum
wires are matched to the experimental values by using a
quadratic confinement potential, which yields a constant
mode separation. The electrons in the GaAs/AlGaAs hetero-
structure are described within the effective-mass approxima-
tion �m�=0.067me�, and for the small magnetic fields under
consideration the Zeeman splitting and spin effects are ne-
glected. The potential profile is schematically sketched in
Fig. 4�a�. According to the Landauer-Büttiker formalism,
current in lead i

Ii =
e

h
�

−�

�

dE �
j�i,ni,nj

�tini,jnj
�E��2�f i�E� − f j�E�� �1�

is related to the scattering matrix elements tini,jnj
. The Fermi

functions f�= �e�E−���/kBT+1�−1 characterize the macroscopic
contacts.

The numerical effort lies in the calculation of the scatter-
ing matrix where two major difficulties arise. First, we have
to compute the scattering matrix for a smooth potential with
nontrivial topology and second, we need tini,jnj

�E� not only
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FIG. 3. �Color online� Scanning electron micrographs of the
experimentally investigated device before deposition of the Au top-
gate with corresponding grayscale plots for the �a� nonlocal �R43,12�
and �b� local �R41,32� resistance. The grayscale plots are evaluated in
the linear regime and the constant background has been subtracted.
�c� Probability density of scattering eigenstates for EF=9.55 meV,
respectively, EF=9.84 meV. The small arrows visualize the corre-
sponding flux densities whereas the larger arrows indicate the
integrated flux along the transverse direction of the quantum
waveguides. The flux is normalized to the total incoming flux.
The scattering behavior at the left crossing is detailed in the upper
two panels for zero magnetic field and in the lower ones for B
=4.4 mT��B /2. �B=8.75 mT denotes the h /e AB period.
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for different magnetic fields but also for a large Fermi-energy
range to study the influence of the top-gate voltage. Several
recently developed recursive Green’s-function methods prin-
cipally allow one to compute the transmission through AB
rings36,37 but yield the transmission matrices only for a single
Fermi energy. Time-dependent methods based on wave-
packet dynamics have been implemented for ring
structures38,39 but suffer the disadvantage that merely the
transmission of a certain pulse is detected. Here, we follow
another approach, which is based on the combination of
wave-packet methods with a Fourier analysis of the time-
dependent correlation of the overlap of the wave packets.27,28

The main advantage is that a single wave-packet run gives
the energy-resolved scattering-matrix elements for a large
energy range, which makes this approach very efficient and
well suited for the problem at hand.

In Fig. 4�b�, we illustrate intermode scattering from the
transversal ground state in lead 2 to the first excited state in
lead 1. The transmission probability is a strongly fluctuating
function with Fermi energy. The envelope is determined by
the scattering properties of the cross junction �Fig. 4�c�
shows the scattering of a wave packet which populated the

transverse ground state of lead 2 far away from the scattering
region� whereas the fast varying part originates from reso-
nances in the arms of the AB ring. Since electron waves can
be scattered repeatedly back and forth between the two cross
junctions, the system behaves like a Fabry-Perot interferom-
eter and gives rise to an oscillating transmission probability.
The resonance condition of maximal transmission in a
Fabry-Perot interferometer is given if the length of the arm s
is a multiple of the half of the wavelength,40

EF − En =
�2

2m
	�

s

2

i2, �2�

where EF denotes the Fermi energy, En is the transversal
energy to populate mode n, and i is an integer. Hence the
energy scale of the fluctuations depends on the geometry of
the AB ring and gets smaller with increasing radius R, see
Fig. 4�b�.

The sensitive dependency of the transmission probabili-
ties on the Fermi energy also leaves its mark on the AB
oscillations, which show a rich structure �see Fig. 3�. Nonlo-
cal and local resistance were evaluated in the linear regime
Rmn,kl=h /e2�TkmTln−TknTlm� /D with Tij =�ni,nj

�tini,jnj
�E��2

and constant D.41 For the considered energy range two
modes are populated. Both measurement setups show a com-
pletely different behavior. We obtain strict phase rigidity in
the local setup, where the phase of the AB oscillations is
locked either to 0 or � at zero magnetic field. Transitions
between these two values occur in form of several sharp
phase jumps. The local resistance is an even function in the
magnetic field, which is a direct consequence of underlying
symmetries. The scattering potential itself is mirror symmet-
ric, leading to T34�B�=T21�−B� and T31�B�=T24�−B�. This
symmetry is preserved by the special arrangement of voltage
and current probes in the local measurement and leads in
combination with time-reversal symmetry to R41,32�B�
=R41,32�−B�.

The voltage probes in the nonlocal configuration are not
arranged mirror symmetric, and thus the symmetry argument
given above does not apply. The overall tendency of the
phase follows from a simplified 1D interference model. Due
to the different path lengths s1 and s2 the AB oscillations
gain an additional phase ��=kF�s2−s1�, which depends on
the longitudinal momentum k and therefore on the longitudi-
nal energy EF−En. If there is more than one open mode,
AB oscillations with different phases superpose each other,
which can lead to abrupt phase changes as observed in
the numerical simulations. For the present geometry �R
=500 nm� and under the assumption that all modes contrib-
ute with equal and energy-independent weights there should
be exactly one phase jump at EF�10.0 meV within the con-
sidered energy range of Fig. 3�a�. However, the sequence of
jumps around EF=9.8 meV is not contained in the 1D pic-
ture and require to consider intermode scattering.

Resonances in the arms of the ring lead to fluctuations in
the transmission probabilities, which induce fluctuations in
the amplitudes of the nonlocal AB oscillations with Fermi
energy. Additionally, these resonances affect the scattering
behavior in a more drastic way resulting in phase jumps.
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FIG. 4. �Color online� �a� Geometric construction of the poten-
tial landscape. The AB ring of radius R and the four leads are given
by harmonically confined waveguides with common frequency .
The arms s1 and s2 form the ring and are connected to the
asymptotic leads via orthogonal cross junctions. Left and right cross
junction are rounded with radius Rleft, respectively, Rright. The
smooth potential of the right junction is illustrated in the three-
dimensional plot. �b� Fermi energy dependency of the transmission
probability for intermode scattering from the transversal ground
state in lead 2 to the first exited state in lead 1 �B=0�. The level
spacing of the harmonic confinement is set to �=5 meV, and the
cross-junction radii are Rleft=Rright=70 nm. �c� Scattering at the left
cross junction of an incoming wave packet originating from lead 2
in the transverse ground state.
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This is illustrated in Fig. 3�c� where we plot the probability
density of scattering eigenstates in the proximity of the left
cross junction for energies EF=9.55 meV and EF
=9.84 meV, which enclose a phase jump in the nonlocal
setup around 9.75 meV. In the time-dependent picture, the
shown scattering eigenstates correspond to incoming elec-
tron waves in lead 4 populating the first exited mode. Scat-
tering at the right cross junction splits the waves into parts
traveling along path s1, respectively, path s2. Both parts in-
terfere at the left cross junction. The thin �red� arrows indi-
cate the flux density and the big �black� arrows illustrate the
integrated flux along the transversal direction of the
waveguides. The latter is normalized to the total incoming
flux. For zero magnetic field and EF=9.55 meV, the right
cross junction distributes the incoming flux equally to lead 1
and lead 2 whereas for EF=9.84 meV transport to lead 1
dominates. If we increase the magnetic field to B=4.4 mT,
which corresponds approximately to half of the h /e period
��B=8.75 mT� we find the reversed situation. Now trans-
port to lead 2 is blocked for EF=9.55 meV but enhanced for
EF=9.84 meV. We obtain a phase shift of � in the magnetic
field dependency between these two Fermi energies. The
opening and blocking of transport is less prominent for EF
=9.84 meV and the AB amplitude is reduced compared to
EF=9.55 meV. Note that phase jumps originating from this
effect occur on the same energy scale as the resonances and
can therefore appear in sequences, see Fig. 3�a� �EF
�9.8 meV�.

IV. COMPARISON OF THEORETICAL CALCULATIONS
AND EXPERIMENTAL DATA

Scattering at the cross junctions and thus the AB oscilla-
tion depends strongly on the transversal profile of the incom-
ing electron waves. Whenever several modes contribute to
the transport, single-mode effects superpose each other re-
sulting in an average behavior. This is confirmed experimen-
tally where measurements with 3–6 open modes30 are quali-
tatively similar to experiments with 8–12 populated modes
�see Fig. 1�. Hence single-mode effects are already averaged
out with three open modes and simulations in this range are
sufficient to reproduce the experimental observations of Sec.
II. To reduce the computational effort, we reduce the numeri-
cal grid size and set the radius of the AB ring to 500 nm,
which corresponds to approximately half of the experimental
size. The reduced size influences the interference in two
ways. First, the period of the AB oscillation increases to
�B=8.75 mT compared to �B�2.5 mT observed in the
experiment and second, the energy scale of resonances in the
arms of the ring changes, and fluctuations in the transmission
amplitude occur on a larger energy scale, see Fig. 4�b�. How-
ever, fundamental observations, like overall phase behavior
with variation in the Fermi energy and the occurrence of
phase jumps, are not affected by halving the device size.

The open transport window of transmission amplitudes,
which contribute to the current in the Landauer formula, Eq.
�1�, is determined by the difference of Fermi functions and
thus depends on temperature and applied voltages. The ex-
perimental currents are of the order of 12 nA leading to bias

voltages of 0.03–0.1 mV. The effective electron temperature
was estimated to be between 100 and 150 mK, which gives
rise to a thermal broadening of 4kBT�0.05 meV. Since both
energy scales are comparable with fluctuations in the trans-
mission probabilities, the linear regime is not applicable and
we solve the system of nonlinear equations according to Eq.
�1�.

With increasing temperature and current the amplitude of
the AB oscillations decreases and finer structures in the
Fermi-energy dependency smear out. Remarkably, finite cur-
rents qualitatively change the phase behavior of the AB os-
cillations, which becomes especially visible in the local re-
gime where phase rigidity gets slightly lifted. For certain
energy ranges, the phase evolves continuously to lower or
higher magnetic fields. The tendency depends on the direc-
tion of the applied current and hence the experimental ac
lock-in technique, where the measured signal is an average
over negative as well as positive currents, is taken into ac-
count in our simulations. Additionally, we find that also de-
tails of the experimental measurement setup influence the
AB oscillations. A symmetric voltage drop between the two
current probes �push-pull configuration� leads, for example,
to different results than the situation where one contact is
biased and the other remains at a fixed Fermi energy.

The resistance Rij,kl is evaluated by applying an ac current
Ii�t�= Imax cos t and measuring the voltage Vkl�t�= ��k�t�
−�l�t�� /e. The contacts k and l are perfect voltage probes,
forcing the currents Ik and Il to vanish. The chemical poten-
tial of the contact j is fixed to � j =EF. We divide the ac
oscillation period into discrete time steps. For each step, we
solve a nonlinear system of equations, whose solution gives
the chemical potentials of all contacts. The ac lock-in ampli-
fier detects the integrated �rms� signal,

Vkl,rms =


�2�
�

0

2�/

Vkl�Iij�t��cos tdt �3�

which determines the resistance Rij,kl=Vkl,rms / Irms �Irms
= Imax /�2�.

In Fig. 5, we show the numerical results for the oscillatory
components of the nonlocal and local resistance versus
Fermi energy with the constant background subtracted.
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FIG. 5. Grayscale plots of the oscillatory components of the
magnetoresistance obtained from simulations of ac lock-in mea-
surements. We set the effective electron temperature to 150 mK and
the ac-peak current to 6 nA. �a� and �b� Nonlocal �R43,12� �a� and
local �R41,32� �b� resistance for a symmetric device geometry with
Rleft=Rright=70 nm.
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Based on Shubnikov-de Haas measurements of the electron
density in the ring,30 we estimate that the experimental data
illustrated in Fig. 1 cover an energy range of 1.6 meV which
is comparable to the simulated range of 2.5 meV.

The nonlocal setup, Fig. 5�a�, shows a continuous phase
shift toward higher magnetic fields. This general tendency is
interrupted by phase jumps of �, for example at 12.5 meV.
Compared to the linear regime, finer structures in the gray-
scale plot are thermally smeared out. The situation for the
local setup, illustrated in Fig. 5�b� is different. Here the sym-
metry of the device results in phase rigidity. However, in
contrast to the linear regime �Fig. 3�b��, strict phase rigidity
is slightly lifted because of the applied finite current. For
example, we obtain a continuous phase change in a small
region around 13.2 meV. Areas of reduced resolution alter-
nate with regions of higher AB amplitudes. This is a conse-
quence of the energy dependency of the scattering behavior
of the orthogonal cross junctions. The phase jumps, which
appear on a faster energy scale are due to resonances in the
arms of the ring, as discussed above.

So far the general phase behavior and the presence of
phase jumps are reproduced from numerical simulations. The
remaining question concerns the experimentally observed
continuous phase shift for certain gate-voltage ranges in the
local setup which cannot be explained by the presence of a
finite current alone. Note that Fig. 5�b� still shows large re-
gions where the phase is locked. Phase rigidity is a funda-
mental property incorporated in the symmetry of the device.
If this symmetry is broken, phase rigidity is not expected to
be present anymore. In the experimental setup there are sev-
eral possible sources which can break symmetry, such as
disorder, impurities, or asymmetries due to fabrication pro-
cesses of the device.

In the following, we assume a small asymmetry between
the two orthogonal cross junctions, and we choose different
radii for the rounded junctions. The radius for the left junc-
tion was set to Rleft=75 nm whereas we used Rright=65 nm
for the right crossing. The corresponding results for the non-
local and local setup are illustrated in Fig. 2. The phase of
the nonlocal measurement �Fig. 2�b�� shows qualitatively the
same behavior as the one of the symmetric device �Rleft
=Rright�. It shifts continuously and is interrupted by phase
jumps, e.g., at EF�13.9 meV as indicated by the arrow.
Figure 2�a� shows the oscillatory components for the nonlo-
cal resistance for two different Fermi energies, which corre-
spond to the dashed �red� and dotted �blue� lines in the gray-
scale plot. Between EF=14.31 meV and EF=14.64 meV,
the phase of the AB oscillation undergoes a continuous shift
of �.

For the local setup, the phase evolution for the asymmet-
ric case is shown in Fig. 2�c�. Comparing Fig. 4�b� for the
symmetric junctions in the linear regime, Fig. 5�b� �symmet-
ric junctions at finite bias�, and Fig. 2�c�, we find that both
effects �finite bias and device asymmetries� have to be in-
cluded in our model to obtain regions of phase drifts, visible
in the experiment �Fig. 1�c��. In contrast to the nonlocal
setup, no preferred direction of the phase shift exists.

The simulated AB amplitudes �Fig. 2� are larger than the
ones in Fig. 1, and the experimentally measured amplitude is
well below the theoretical prediction. There are several
mechanisms which can explain the experimentally reduced
AB oscillations. Besides thermal averaging, coupling to a
thermal environment �electron-phonon interaction� gives rise
to decoherence and is another source of temperature-induced
dephasing which was not included in the simulations. Inco-
herent electrons contribute to the background of the AB sig-
nal and thus reduce the amplitude of the oscillatory signal
but do not affect the phase of the oscillations. Recent theo-
retical investigations42–45 also propose that electron-electron
interactions reduce the measured AB signals. A more detailed
discussion can be found in Ref. 30.

V. SUMMARY

We have investigated the electron transmission phase and
the origin of irregular phase jumps in a four-terminal AB
interferometer in combined experimental and theoretical ap-
proaches. Our waveguide ring design allows for a transmis-
sion phase shift via the Fermi wave number. The realistic
theoretical model takes into account experimental conditions
as the confinement potential and the ac lock-in measurement
circuitry. Both experimental and theoretical results show that
phase rigidity remains largely intact in the local measure-
ment configuration but is interrupted in some regions with
continuous phase shifts due to the ac measurement technique
and asymmetries in the cross junctions arising from small
imperfections in the fabrication process. In contrast, the
phase evolves continuously in the nonlocal measurement due
to the broken symmetry. Irregular phase jumps by � occur in
both measurement configurations in the experimental as well
as the theoretical approach. The investigation of Fermi-
energy-dependent scattering probabilities reveals that �
jumps are caused by the strong scattering resonances within
the junctions which redirect the current flow and lead to mul-
tiple reflections in the arms of the ring. Consequently, an
AB-interferometer-based phase detector requires minimized
scattering and a symmetry-breaking measurement setup. In
our waveguide AB ring scattering is reduced by the imple-
mentation of orthogonal waveguide cross junctions.

We find that single-mode effects are mostly washed out
when several �8–12� modes are populated. Thus a further
investigation calls for single-mode transport to get an insight
into single-mode interference properties in electron wave-
guide ring structures.
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