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The terahertz radiation-induced conductivity and dielectric polarization tensors as well as the Faraday and
Kerr rotation angles and the nonequilibrium spin textures are studied for two-dimensional electron gas with
strong spin-orbit coupling subjected to high magnetic field and to tunable periodic potential of a two-
dimensional gated superlattice. It is found that both real and imaginary parts of the frequency-dependent
induced conductivity approach maximum values with sharp and detectable peaks at frequencies corresponding
to the intersubband transitions between spin-split magnetic subbands. The observed properties of the conduc-
tivity tensor frequency dependence are applied for the description of the Kerr and Faraday rotation angles
which can be used as another experimental tool for describing the electron gas in periodic structures with
significant spin-orbit coupling. The formation of radiation-induced spin textures is predicted having both
in-plane and out-of-plane components with space distribution scale comparable to the superlattice cell size
which can be observed experimentally.
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I. INTRODUCTION

In recent years the spin-dependent properties of hetero-
structures with Rashba1 or Dresselhaus2 spin-orbit coupling
�SOC� have attracted considerable attention in both funda-
mental and applied areas of condensed-matter physics study-
ing the spin-related phenomena and known as spintronics.3–5

The interest in SOC-related effects in semiconductor physics
originates from a promising idea of the spin control without
an external magnetic field variations as it was proposed, for
example, by Datta and Das6 in their scheme of a spin field-
effect transistor. Besides the transport measurements and the
physics of the spin or charge transfer, the properties of semi-
conductor heterostructures with SOC caused by an external
electromagnetic radiation have also been the topic of an ex-
tensive research. The attention given to the radiation-induced
properties is natural since, on the one hand, the associated
experiments are the usual and reliable tool for determination
of various material parameters in condensed-matter physics,
and, on another hand, a proposal and observation of new
externally triggered effects in heterostructures is always of
interest for both fundamental problems of condensed-matter
physics and for the technological applications.3–5 These ef-
fects are very versatile in their nature and have different
measurable parameters, and here we shall focus mainly on
the radiation-induced conductivity tensor, on the dielectric
matrix, and on the associated Faraday and Kerr rotation
angles as well as on the excited nonequilibrium spin textures.
The major part of the research in this field considered the
metal-based or magnetic semiconductor structures where the
conductivity tensor and Kerr effect have been considered,7–20

although the magneto-optical properties of the molecular
semiconductors21 and for the systems in the quantum-Hall-
effect regime have also been studied.22 Similar effects in
nonmagnetic semiconductor structures have also been ex-
plored, including the Faraday14,23 and Kerr24,25 effects as
well as their properties in the presence of a significant SOC

in two-dimensional electron gas �2DEG� �Ref. 26� and the
field-induced nonequilibrium spin density.27–29,32

Among the various ways of constructing the heterostruc-
ture systems with novel properties of quantum states, trans-
port, dynamical, and spin-related effects the formation of
2DEG with lateral gated superlattice provides a flexible tool
also for the semiconductors with strong SOC. It is well
known that an external electromagnetic field can generate
novel effects including spin-current injection30,31 and spin
polarization5,32in systems with significant SOC. This has
been also demonstrated in SOC superlattices where the prop-
erties of quantum states, dynamical and transport properties
together with the radiation-induced spin textures have been
investigated in one-dimensional �1D� superlattices without
magnetic field,33 and the quantum states and quantization of
Hall conductance together with magneto-optical properties
were studied in 2D superlattices at high magnetic field,34,35

respectively. It was found that the gate control together with
the external dc electric or electromagnetic excitation can pro-
vide new possibilities of controllable manipulations of en-
ergy spectrum, charge and spin densities, and the Hall con-
ductivity. Thus, it is of interest to make a step further and to
consider the microwave conductance and dielectric matrices
together with the excited spin textures for 2DEG with SOC
subjected to a high magnetic field and to the tunable periodic
potential of a 2D gated superlattice. The properties of energy
spectrum and spinor wave functions for such system as well
as the dc Hall conductance34 and magneto-optical
absorption35 have already been studied in detail for both
Rashba and Dresselhaus contributions to SOC. The calcula-
tions of the magneto-optical conductivity and dielectric ten-
sors and the discussion of the associated Faraday and Kerr
effects together with the excited spin textures in such struc-
tures are the primary goals of the present paper. We shall
focus here on the parameters of the InGaAs/GaAs 2DEG
structure with dominating Rashba SOC and on the frequency
range of external electromagnetic radiation which may pro-
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vide the best characteristics of these effects for possible ex-
perimental observation and technological applications.

The paper is organized as follows: in Sec. II we briefly
describe the Hamiltonian and the quantum states in our sys-
tem, in Sec. III we calculate and discuss the radiation-
induced conductivity and dielectric matrices which are ap-
plied in Sec. IV for the calculation of Kerr and Faraday
rotation angles, in Sec. V we focus on the induced nonequi-
librium spin density forming the spin textures, and the con-
cluding remarks are given in Sec. VI.

II. HAMILTONIAN AND QUANTUM STATES

We consider the 2DEG in the �x ,y� plane in a InGaAs/
GaAs heterostructure with the In content of around 0.23,
where the electron effective mass and g-factor are m�

=0.05m0 and g=−4.0, respectively, and the SOC is domi-
nated by the Rashba term with a significant amplitude �
=2.5�10−9 eV cm.

The corresponding one-electron Hamiltonian has the fol-
lowing form:34

Ĥ =
1

2m�
�p̂ − eA/c�2Ê +

�

�
�z � �̂� · �p̂ −

e

c
A�

−
1

2
g�BH�̂z + V�x,y�Ê . �1�

Here p̂x,y are the momentum operator components, m� is the
electron effective mass, �̂i are the Pauli matrices, � is the
strength of Rashba SO coupling term, g is the Landè factor,

�B is the Bohr magneton, and Ê is the unit matrix. We use
the Landau gauge in which the vector potential of the static
magnetic field has the form A= �0,Hx ,0�, and consider a
simple form of the periodic superlattice potential V�x ,y�
=V0�cos 2�x /a+cos 2�y /a� with amplitude V0 and the su-
perlattice period a. The structure of the Hamiltonian matrix
as well as the matrix elements have been discussed in detail
in our previous papers.34,35 It was demonstrated that the SOC
mixes the states of pure Landau levels and results in a dou-
bling of the number of the magnetic subbands formed under
the fixed value p /q of magnetic flux quanta � /�0= p /q
= �e�Ha2 /2��c �p and q are prime integers� per unit cell. For
a given magnetic flux p /q the spectrum of Hamiltonian �2�
consists of magnetic subbands on the distance of the order V0
near the corresponding Landau levels, each being split by the
Zeeman and by the SOC terms.

As to the structure of the eigenstate of the Hamiltonian
�2�, one can express them as a set of two-component spinors
where each component satisfies the generalized Bloch-
Peierls conditions in the magnetic elementary cell which is
the initial superlattice cell multiplied by the factor of q in x
direction if the Landau gauge A= �0,Hx ,0� is chosen. Cor-
respondingly, the magnetic Brillouin zone is determined by
inequalities −� /qa�kx�� /qa, −� /a�ky �� /a, and a
two-component spinor wave function has the following
form:34,35

	k�r� =
1

La�q
	

l=−L/2

L/2

	
n=1

p

eikx�lqa+nqa/p�e2�iy�lp+n�/a

�eikyy
An�k��0� x − x0 − lqa − nqa/p
lH

��0

1
�

+ Bn�k�
1

�1 + D1
2� �0� x − x0 − lqa − nqa/p

lH
�

− D1�1� x − x0 − lqa − nqa/p
lH

� � .

�2�

Here, D1=��2 / �lH�E0
++�E0

+2+2�2 / lH
2 ��, �0,1�
� are the

simple harmonic oscillator functions, lH=c� / �e�H is the
magnetic length, E0

+=
��c

2 + 1
2g�BH and �c= �e�H /m�c is the

cyclotron frequency, 
�n= �x−x0−�qa−nqa / p� / lH, x0
=c�ky / �e�H, and L is the sample size in the y direction which
accounts for the wave function norm. The expansion coeffi-
cients An�k� and Bn�k� in Eq. �5� are defined together with
the energy eigenvalues during the standard diagonalization
procedure for the Schröedinger equation.

An example of the energy spectrum considered for the
following calculations is shown in Fig. 1 for the magnetic
flux region with p /q=4 /1 corresponding to H�2.6 T and
for the superlattice potential amplitude V0=1 meV. Here the
periodic potential amplitude V0 and the SOC energy have the
same order, so the inequality �ESO�V0���c takes place,
and one can use a two-level approximation, where the higher
Landau levels do not provide a significant contribution to the
quantum states and the associated effects for two lowest Lan-
dau levels. Below we set p /q=4 /1 corresponding to the
magnetic field H�2.6 T in a superlattice with period a
=80 nm, and the Fermi level is located in the gap above the
lowest subband 1 marked by arrow in Fig. 1. One can see
that the photon energy for the intersubband transitions here is
of the order of 1 meV corresponding to the frequency 
�1012 s−1 which is the terahertz range being of high interest

FIG. 1. Energy spectrum versus the magnetic flux p /q for two
lowest Zeeman and Rashba SOC-split Landau levels the 2DEG in
InGaAs/AlGaAs 2D superlattice with Rashba SOC �=2.5
�10−9 eV cm. The electron effective mass m�=0.05 m0 and the
superlattice period and amplitude a=80 nm and V0=1 meV. Be-
low the effects for subbands at p /q=4 /1 corresponding to the mag-
netic field H�2.6 T are considered with the Fermi level located in
the gap above the lowest subband 1 marked by arrow.
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for the current research in magneto-optical properties of
semiconductor heterostructures. In a real semiconductor
structure with SOC superlattice such position of the Fermi
level corresponds to the concentrations of about
1010, . . . ,1011 cm−2. Of course, the manifestation of such
tiny and fragile miniband structure as on Fig. 1 in measur-
able experimental phenomena requires the preparation of
high-purity samples and low temperatures inside experimen-
tal setups which, as it is known, is still a conventional con-
dition for monitoring the SOC-related effects in GaAs-based
semiconductors where the SOC is relatively weak.

III. MICROWAVE CONDUCTIVITY AND DIELECTRIC
TENSORS

In this section we shall consider the microwave conduc-
tivity and dielectric tensors describing the effects of pertur-
bation caused by the external monochromatic and linearly
polarized electromagnetic field with vector potential A�

= �A� ,0 ,0�, where A�=A0 exp�i�k ·r−�t��. Under the dipole
approximation the amplitude of the photon wave vector is
negligible compared to the electron quasimomentum which
leads to the following form of the perturbation Hamiltonian

Ĥint in the presence of the Rashba SOC:

Ĥint = −
i�e��
m�c

A0e−i�t �

�x
−

�e�
c

�

�
A0e−i�t�̂y . �3�

The main distinguishable property of Eq. �6� compared to the
system without SOC is the presence of second term which is
spin dependent and linear in the Rashba SOC strength. The
SOC also introduces the spin-dependent term into the veloc-

ity operator v̂= �i /���Ĥ ,r� which components v̂x,y in the ba-
sis of the �̂z eigenstates have the following matrix form:

v̂x = �− i��x/m� i�/�
− i�/� − i��x/m� � , �4�

v̂y = �− i��y/m� − �cx �/�
�/� − i��y/m� − �cx

� . �5�

With the known eigenfunctions in Eq. �5� the matrix ele-
ments in Eqs. �7� and �8� can be expressed directly via the
wave function coefficients A�k� and B�k� as

vk�
x = 	

n,m=1

p
i

�1 + D1
2
�An

��k�Bm
��k���

− Bn
��k�Am

��k���D1�

m�
��p

q
−

�

�
� , �6�

vk�
y = 	

n,m=1

p
1

�1 + D1
2��

�
�An

��k�Bm
��k�+ Bn

��k�Am
��k��

+
i�D1

m�lH
�2

�An
��k�Bm

��k� − Bn
��k�Am

��k���
−

ky�

m�
�An

��k�Am
��k�+ Bn

��k�Bm
��k�� , �7�

which allows to calculate explicitly the components of the
conductivity tensor �ij��� for the frequency range 
�0.1, . . . ,1.0 THz corresponding to the transitions between
the magnetic subband 1 below the Fermi level and the sub-
bands above the Fermi level shown in Fig. 1. The expression
for �ij��� can be derived from the Kubo formula36 and is
applied for our calculations in the following form:7,11,18,36,37

�ij��� =
e2

8���
	

k,�,
vk�

i vk�
j fk��1 − fk���Ek − Ek� − ��� ,

�8�

where �per unit volume� at zero temperature the sum is taken
over all states with energy Ek� below and above the Fermi
level, respectively, by applying the Fermi distribution func-
tion fk. The expression �8� is written for the absence of
scattering, i.e., for the infinite lifetime of the extended Bloch
states.18 It can be verified that this approximation remains
qualitatively valid for finite lifetime also as long as the sub-
band broadening for the spectrum shown in Fig. 1 does not
exceed the intersubband spacing which can be achieved in
clean heterostructures at low temperatures, where the mani-
festation of the magnetic subband fine structure is visible.34

It should be mentioned also that the longitudinal part �xx of
Eq. �8� is real while the off-diagonal part �xy has both real
and imaginary parts which is a usual property of the
radiation-induced conductivity.

The knowledge of the conductivity tensor in Eq. �8� al-
lows us to calculate directly the components of the
frequency-dependent dielectric tensor �ij��� via a conven-
tional relation

�ij��� = �ij +
4�i

�
�ij��� . �9�

In Fig. 2 we show the frequency dependence of real and
imaginary parts of �a� �xx, �xy and �b� �xx, �xy which are the
only non-vanishing components for the incident radiation
linearly polarized along x axis and propagating perpendicular
to the 2DEG. The bulk dimension of �ij in s−1 corresponds to
our understanding of the system as having a finite layer
thickness parameter which enters below in the corresponding
expressions for the Faraday and Kerr rotation angles which
typically include such a characteristic of the system as the
traveling distance or thickness. By analyzing Fig. 2 one can
see that the components of both the conductivity and the
dielectric tensors reach their local maximum values at fre-
quencies corresponding to the distance between centers of
the magnetic subbands shown in Fig. 1. One can see that the
induced off-diagonal component �xy��� of the dielectric ten-
sor at certain frequencies can be quite significant and reach
the magnitude of the order of 0.5 which is a sizable off-
diagonal contribution to the static dielectric constant which
is about 12.5.38 The detailed structure of the conductivity
plots in Fig. 2�a� near =0.28 THz, where some of the con-
ductivity components change their sign is marked by rect-
angle and will be discussed below. The practical value of the
results shown in Fig. 2 is well known: since the measure-
ments of the radiation-induced conductivity are among the
most popular experimental tools for determining the param-
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eters of heterostructures, our calculations provide a useful
prediction of experimentally measurable quantities suitable
for description of actually used structures with strong SOC.

The detailed structure of the photon energy dependence of
the conductivity and dielectric tensor components shown in
Fig. 2 can be clarified to some extent if we consider it to-
gether with the energy dispersion relations in those subband
pairs which are relevant for the given part of the photon
frequency range. In Fig. 3 we show the kx-dependence of the
energy difference E13�kx ,ky�=E1�kx ,ky�−E3�kx ,ky� between

the subbands 1 and 3 corresponding to the frequency range
on the inset in Fig. 2. The whole energy range is covered by
running the ky component over half on the Brillouin zone
range 0�ky �� /a, and the kx component in Fig. 3 varies
between 0 and � /qa �here q=1� since the subband energy
spectrum Em�kx ,ky� in the square lattice with Rashba SOC is
invariant under the transformations kx,y→−kx,y.

34 By com-
paring the energy dispersion on the left side of Fig. 3 with
the conductivity frequency dependence on the right side plot-
ted on the same energy scale one can connect some specific
points of the conductivity plots with the properties of the
energy difference dispersion relation. In particular, the points
where the imaginary part of �xy component responsible for
the direction of Kerr angle changes its sign clearly corre-
sponds to the areas in the plot for the energy difference func-
tion E13=E3−E1 for the subbands 1 and 3, respectively,
where the second-order derivatives, i.e., the curvature of the
E13�kx ,ky� function changes its sign. Such connections be-
tween the conductivity and the dispersion relations are not
uncommon33,34 since the former is determined in Eq. �8� via
the matrix elements of the velocity operators which, in turn,
depend on the shape of the dispersion relation Em�kx ,ky� in
the particular mth miniband. The example shown in Fig. 3
once again demonstrates the importance of the conductivity
tensor calculations since its experimental measurement is
possible and may provide us with certain information about
the topological structure of the energy subbands of such non-
trivial system as the 2D superlattice with Rashba SOC in the
magnetic field considered here.

IV. FARADAY AND KERR ROTATION ANGLES

The knowledge of the radiation-induced conductivity ten-
sor �ij��� can be applied for determination of �depending on
the setup� the Kerr or Faraday rotation angles which are of-
ten used for experimental characterization of various
heterostructures.7–13,15–19 Since the most straightforward
manifestation of the Faraday or Kerr rotation is the rotation
of the polarization plane on a specific angle, we consider in
our manuscript the linearly polarized incident radiation in-

FIG. 2. Frequency dependence of �a� �xx, real and imaginary
parts of �xy and �b� the same for �xx, �xy for the incident radiation
linearly polarized along x axis and propagating perpendicular to the
2DEG. The components of both the conductivity and the dielectric
tensors have their maxima at frequencies corresponding to the dis-
tance between centers of the magnetic subbands shown in Fig. 1.
The detailed structure near =0.28 THz marked by rectangle is
discussed below.

FIG. 3. �Left� The kx dependence of the energy difference
E13�kx ,ky�=E3�kx ,ky�−E1�kx ,ky� between the subbands 1 and 3 for
to the frequency range on the inset in Fig. 2 and �right� the corre-
sponding photon energy dependence of the conductivity tensor
components. The points where the Im �xy component changes its
sign correspond to the areas in E13 plot where the curvature of the
E13�kx ,ky� function changes its sign.
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coming perpendicular to the 2DEG plane �xy� with the elec-
tric field vector parallel to the x axis, E= �Ex ,0 ,0�. The in-
teraction of external field with the media may generate the y
component of the electric field which corresponds to the ro-
tation angle � described simply as22 tan���=Ey /Ex. It is clear
that although this rotation angle arises due to the application
of the external field, its magnitude is not directly related to
the strength of the field components Ex,y due to the expres-
sion with a fraction where the common field amplitude is
cancelled and thus can be measurable even for moderated
excitation amplitudes. It is known that the rotation angle can
be defined as the rotation per unit distance traveled by the
incident wave without taking into account a specific thick-
ness of the structure.23 In this paper we apply the term
“2DEG;” however, one should keep in mind that it is essen-
tially contained in a triangular InGaAs/GaAs quantum well
with finite thickness d which value affects the actual rotation
angle as the travel distance. In the following calculations we
use a typical value d=100 nm and we apply an expression
for the Faraday rotation angle derived for a thin film with
thickness d �here d��, where � is the incoming wavelength�
deposited on a GaAs substrate with the index of refraction
ns�3.5 �Ref. 38� which has the following form:17,22,23

�F �
Re��xy�

�xx
�1 +

1

Z+�xx
�−1

, �10�

where Z�=d / �c�ns�1��. The Faraday effect involves the
transmission of the incident radiation and one has the real
part of the off-diagonal conductivity present in Eq. �10�. It is
clear that in the limit of a very thin 2DEG layer d→0 or in
frequency intervals where the longitudinal conductivity �xx
drops, the Faraday angle is determined solely by the off-
diagonal part of the conductivity tensor

�F��xx → 0� � Re��xy�
d

c

1

�ns + 1�
�11�

in accordance with what has been shown earlier.22,23 Then,
under the same approximations one can apply also the rela-
tion for Kerr angle �K which reads as17

�K �
Im��xy�

�xx
2 �−

2c

d
���1 +

1

Z+�xx
��1 +

1

Z−�xx
��−1

�12�

and is determined by the reflection, i.e., imaginary part of the
off-diagonal component of the conductivity tensor.

It is clear that here both Faraday and Kerr angles are
determined by the conductivity tensor components only, and
thus the frequency dependence of �ij��� discussed above and
shown in Fig. 2 can be directly applied for the calculation of
the frequency dependencies of the Faraday and Kerr angles
which are shown in Fig. 4. A detailed comparison of Figs. 2
and 4 leads to the conclusion that the peaks of the Faraday or
Kerr rotation angle correspond mainly to the intervals where
at the same frequency the longitudinal conductivity �xx��� is
small and the off-diagonal part �xy��� is finite, i.e., for the
samples in the insulator regime where only the transverse
current is induced by the external radiation. The opposite
sign of the Kerr angle compared to the Faraday angle which

can be observed on the dominating part of the frequency
range in Fig. 4 can be explained by drawing the attention to
the opposite signs in the expressions �10� and �12� reflecting
the additional phase rotation during the reflection for the
Kerr effect compared to the absorption for the Faraday ef-
fect, and the observation that both Re �xy and Im �xy have
mainly constant signs in the frequency regions when they are
both significantly nonzero with relatively small exceptions
such as the region in Fig. 3 discussed in detail above. It
should be noted that the magnitude of both Faraday and Kerr
angles shown Fig. 4 is rather small compared, for example
with the ones for the interband transitions in ferromagnets or
metal-doped semiconductors17,18,20 while being comparable
to the Faraday angle for strained GaAs or InGaAs nonmag-
netic semiconductor structures,14 to the Kerr angle in some
layered metal structures19 or organic molecular
semiconductors.21 Nevertheless, it should be stressed that the
frequency dependence of Faraday or Kerr rotation angles
provide a quantitative experimental tool for investigation of
such fragile and sophisticated spectrum as the miniband
structure of a superlattice with SOC in high magnetic field.

V. INDUCED SPIN TEXTURES

In systems with SOC the response to the external electro-
magnetic radiation can be seen not only in charge but also in
spin degrees of freedom. The arising nonequilibrium distri-
butions of local spin density hereafter called the spin
textures33 are promising for further applications in spintron-
ics and we believe that they can be probed, as any other
induced magnetic polarization, by microscopic magnetiza-
tion detectors3–5 as the areas of local magnetization with spa-
tially varying direction, by the Faraday rotation
measurements14 or Kerr microscopy.16 Staying in the frame-
work of the linear response theory36 one can obtain the ex-
cited spin density in the same fashion as the charge conduc-
tivity in Eq. �8�, namely,

FIG. 4. Frequency dependence of the Faraday �dashed curve�
and Kerr �solid curve� rotation angles for the 2DEG with Rashba
SOC described by the conductivity tensor with components shown
in Fig. 2. The peaks of both Faraday and Kerr rotation angle corre-
spond to the intervals, where at the same frequency the longitudinal
conductivity �xx��� is small and the off-diagonal part �xy��� is
finite, i.e., for the samples in the insulator regime where only the
transverse current is induced by the external radiation.
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Si
j�x,y,�� =

eE0

8�m��
	

k,�,
sk�

i �x,y�vk�
j fk��1 − fk�

���Ek − Ek� − ��� , �13�

where E0 is the electric field amplitude in the incident wave
and the function s�

i �x ,y� does not include the integration
over space, and thus cannot be referred as a matrix element
of the spin operator but instead can be described as the
position-dependent interband spin density function reading
as

sk�
i �x,y� = �k�

† �x,y��̂i�k�x,y� . �14�

The quantity Si
j�x ,y ,�� has the meaning of the local spin

density created in the given point �x ,y� of the superlattice by
the external electromagnetic radiation with frequency � with
polarization j which is fixed in our problem as j=x, and
therefore this index is omitted below. The results for induced
spin texture components corresponding to two peaks of the
conductivity �Fig. 2� or rotation angle �Fig. 4� frequency
dependencies for =0.43 THz and =0.64 THz are shown
below in Figs. 5 and 6, respectively, in one superlattice cell
−a /2�x�y��a /2 normalized on the superlattice unit-cell
area a2, i.e., the magnetic moment being actually measured
by the probe with area dS can be obtained after multiplying
the spin density by a factor dS /a2. The spin textures are
shown in units for the degree of carrier polarization �i.e., in
units of Bohr magneton per carrier� for the incident power of
1.0 mW /cm2 which is accessible in modern experiments
with nanostructures. It can be seen that all components of the
induced spin density are excited on a comparable scale
shown in figures �a�–�c�, correspondingly which makes these
predicted space distributions promising for the experimental
observations.

The explanation of the rich spin texture structure can be
drawn if we take into account the presence of static magnetic
field along z direction together with the Rashba SOC in the
�xy� plane which, in combinations with the linearly polarized
radiation along x axis may indeed create the excited spin
textures with all spin components being nonzero. As to the
dominating space scale of the spin texture shape which can
be observed in Figs. 5 and 6, one can see that it is compa-
rable with the superlattice size which is the lateral size of the
figure being also the scale of the corresponding wave-
functions shape.34 The integration of the spin-density com-
ponents in Eq. �13� over the superlattice cell indicates that all
mean values for spin texture components in Figs. 5 and 6 are
very close to zero. This result means that the external radia-
tion which is treated as a perturbation provides no significant
gross change in the magnetization over the whole sample but
it indeed can alter the local magnetization in different parts
of the structure.

The transitions corresponding to the higher frequency 
=0.64 THz with spin textures in Fig. 6 occur between the
lowest occupied subband 1 in Fig. 1 and higher subbands
compared to the transitions with textures in Fig. 5, i.e., they
are located to the right along the energy axis at the line
p /q=4 /1 in Fig. 1. The calculation of induced spin textures
at different excitation frequencies is also important for pos-

sible further applications of the observed effects at variable
parameters. The results for excitation frequency 
=0.64 THz are shown in Fig. 6 where again �a� Sx, �b� Sy,
and �c� Sz spin-density components, respectively, are shown
on separate plots in one square superlattice cell.

If one compares the induced spin textures in Figs. 5 and 6
for different excitation frequencies, both common and dis-
tinct features can be found. The common features are the
comparable space period and global shape of the excited tex-
tures for all spin components on both figures. This common-
alty is stipulated by the common structure of initial and final
quantum states for both examples including the space distri-
bution of charge and spin density. Besides, for any excitation
frequency the resulting excited spin textures is formed, in
principal, by all allowed transitions between many states be-
low and above the Fermi level, and thus one may expect

FIG. 5. Radiation-induced spin textures shown in units for the
degree of carrier polarization for the incident power of
1.0 mW /cm2: �a� Sx�x ,y�, �b� Sy�x ,y�, and �c� Sz�x ,y� plotted in
one superlattice cell −a /2�x�y��a /2 and normalized on the su-
perlattice unit cell area. The presence of static magnetic field along
z direction together with the Rashba SOC in the �xy� plane creates
the excited spin textures with all spin components being of a com-
parable order. The dominating space scale of the spin texture shape
is comparable with the superlattice size which is the lateral size of
the figure.
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certain degree of commonalty between them.
As to the difference between the spin textures at different

excitation frequencies in Figs. 5 and 6, one can observe the
following. First, for the lower frequency =0.43 THz in Fig.
5 all three excited spin components have a higher magnitude.
The explanation can be obtained by taking into account the
higher position in energy of the final quantum states for the
induced textures in Fig. 6 which are characterized by more
complicated and faster oscillating wave functions,34,35 which,
in turn, reduce the magnitude of the corresponding matrix
elements and create the spin density with lower magnitude in
Fig. 6 compared to Fig. 5. The same physical mechanism is
responsible for the, in general, more curved shape of the spin
textures in Fig. 6 compared to the ones in Fig. 5, i.e., the
transitions to the quantum states with higher energy leads to
the richer space shape of the excited spin textures.

It should be mentioned again that in Eq. �13� the resulting
excited spin textures are formed by all allowed transitions
and by many states below, and above the Fermi level and

thus have an integral and pretty universal nature. First of all,
this circumstance makes them robust to some extent against
the possible corrections to our model, i.e., the finite sample
size, the finite temperatures, the scattering on defects and
phonons, and the presence of other small terms absent in our
Hamiltonian. Then, these spin textures can be viewed as
measurable quantities which can be obtained by a probe at a
given point �x ,y� and thus can be considered as a promising
degree of freedom for further applications such as informa-
tion processing and storage in spintronics. It is interesting to
note that the features of the excited spin density discussed
here were also observed in qualitatively the same manifesta-
tion and with the same space shape in a different system with
2DEG and SOC subjected to periodic potential of 1D super-
lattice without the static magnetic field but either under scat-
tering or under radiative �with various polarizations� or dc
electric current excitation,33 which allows to consider them
as an intrinsic characteristic of low-dimensional systems
with strong SOC and nonuniform periodic potential.

VI. CONCLUSIONS

We have studied the terahertz radiation-induced conduc-
tivity and dielectric polarization tensors, the Kerr and Fara-
day rotation angles, and the excited spin textures for two-
dimensional electron gas with strong spin-orbit coupling
subjected to high magnetic field and to tunable periodic po-
tential of a two-dimensional gated superlattice. It was found
that both real and imaginary parts of the frequency-
dependent conductivity approach maximum values with
sharp and detectable peaks at frequencies corresponding to
the intersubband transitions between spin-split magnetic sub-
bands. The observed properties of the conductivity tensor
frequency dependence were applied for the description of the
Kerr and Faraday rotation angles which can be used as an-
other experimental tool for describing the electron gas in
periodic structures with significant spin-orbit coupling. The
formation of radiation-induced spin textures is predicted hav-
ing both in-plane and out-of-plane components with space
distribution scale comparable to the superlattice cell size
which can be promising in further experimental and techno-
logical applications.
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FIG. 6. The same as in Fig. 5 but for the spin textures excited by
the incident radiation with the higher frequency =0.64 THz and
all other parameters remaining as in Fig. 5.
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