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We determine the relevant spinor valued wave functions for a two-dimensional quantum ring in the presence
of Rashba-type spin-orbit interaction �SOI�. The case of constant SOI strength is considered first, then we
investigate the physical consequences of time-dependent �oscillating� SOI strength. Floquet’s method is ap-
plied to find time-dependent eigenspinors, and it is shown that the Floquet quasienergies and thus their
differences �the generalized Rabi frequencies� are determined by the radial boundary conditions. Time evolu-
tion of various initial states is calculated.
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I. INTRODUCTION

Quantum rings made of semiconducting materials exhib-
iting Rashba-type1 spin-orbit interaction2–5 �SOI� have at-
tracted considerable attention due to fundamental spin-
dependent quantum interference phenomena that are
observable in these systems. Since the strength of the SOI
can be tuned with external gate voltages,3 quantum rings, or
systems of them6–10 also have possible spintronic11 applica-
tions. An interesting point in this context is the question of
time-dependent SOI strength. Studies of transport related
problems with oscillating SOI have been initiated in Ref. 12
for a ring, and in Ref. 13 for a ring-dot system, mainly in the
context of spin currents. An analytical one-dimensional
model for this problem has been developed in Ref. 14. In the
current paper we consider a ring with finite width, calculate
the time-dependent eigenspinors, i.e., Floquet15,16 states of
the problem with oscillating SOI strength, and investigate the
dynamics of various initial states. Our method is based on
the solution of analytic equations leading to the exact spinor-
valued wave functions and providing the maximal possible
insight into the dynamical processes. This approach allows
us to see clearly the appearance of high harmonics of the
driving SOI oscillations in the Floquet states and conse-
quently also in the position and spin-resolved time evolution
of arbitrary initial states.

Considering different two-dimensional �2D� approaches,
magnetotransport in a finite-width ring with Rashba SOI has
been investigated using the scattering matrix method, by di-
viding the device into small stripes which were then con-
nected by scattering matrices.17 In Ref. 18 the single-electron
spin orbitals of a two-dimensional ring were found by diago-
nalization of the Hamiltonian in a basis of multicenter
Gaussian functions. The model of a two-dimensional hydro-
gen atom in the presence of Rashba SOI was used in Ref. 19
to describe electronic bound states around charged impurities
in two-dimensional systems. Persistent currents in semicon-
ductor ballistic rings with spin-orbit Rashba interaction were
also investigated by the multicomponent Tomonaga-
Luttinger liquid model.20 Luttinger model taking heavy- and
light-hole states into account has recently been applied for

the investigation of spin-related quantum phases.21 For the
theoretical description of transport properties of diametri-
cally connected finite-width rings with Rashba SOI, a tight-
binding model with concentric lattice of ring chains has been
used,22 while in Ref. 23 a spin-dependent recursive Green’s-
function technique was applied to the relevant 2D Hamil-
tonian. Magnetic field related effects in ring shaped objects
with finite width have also been investigated intensively.24–29

Our approach is similar to that of Ref. 30, where the features
of certain low-lying states as a function of the �constant�
Rashba SOI were investigated, and Refs. 31 and 32, where a
circular �not ring shaped� quantum dot was considered.

In Sec. II we recall the eigenstates of the Hamiltonian
with Rashba-type SOI term in an infinite 2D space �“bulk
2D” eigenspinors� then it is shown how the radial boundary
conditions lead to a discrete spectrum �Sec. III A�. We trans-
fer this method to the case of oscillating SOI strength in Sec.
III B, where we determine the Floquet quasienergy spectrum
as well as the corresponding Floquet states that satisfy the
radial boundary conditions. As applications, in Sec. IV spin
and charge density oscillations and the dynamics of wave
packets are calculated. Summary is given in Sec. V.

II. SPIN-DEPENDENT EIGENVALUE PROBLEM IN 2D

The Hamiltonian for an electron moving in the x-y plane
in the presence of Rashba spin-orbit interaction, can be writ-
ten as

H =
�2

2m��Pr
2 +

1

r2Lz
2� + 2��1

r
SrLz − S�Pr� = H0 + HSO

�1�

using cylindrical coordinates. Here m� is the effective mass
of the electron, � is the Rashba coupling strength, H0 is the
spin-independent part, and HSO contains the spin-orbit inter-
action term. The radial and azimuthal spin operators, Sr and
S�, are dimensionless here �their true dimension comes from
with the factor ��. We have also introduced the notation
Pr=−i� /�r and Lz=−i� /�� for the radial component of the
momentum and z component of the dimensionless orbital
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angular momentum, respectively. Nanoscale quantum rings,
for which the Hamiltonian above is relevant, can be fabri-
cated from, e.g., InAlAs/InGaAs-based heterostructures33 or
HgTe/HgCdTe quantum wells.5 Let us note that the confining
potential does not appear explicitly in the Hamiltonian
above. We are going to consider hard wall boundary condi-
tions that will be taken into account in Sec. III. Although soft
wall confinement is definitely more realistic �see, e.g., Ref.
34�, we expect that our analytic approach can capture the
most important physical phenomena appearing in rings of
finite width.

The Hamiltonian of Eq. �1� commutes with

K = Lz + Sz �2�

the z component of the total angular momentum as obviously
�H0 ,K�=0 while in

�HSO,K� = 2��1

r
SrLz − S�Pr,Lz + Sz� �3�

we obtain for the nonzero commutators �Sr ,Lz�= iS�,
�Sr ,Sz�=−iS�, �S� ,Lz�=−iSr, and �S� ,Sz�= iSr. This can also
be expected from the fact that H comes from the Dirac
Hamiltonian that conserves total angular momentum. Note
that Lz and Sz alone are not constants of motion.

Looking at the form of K, one sees that its eigenvalues �
are doubly degenerete because an eigenvalue m of Lz and 1/2

of Sz leads to �=m+1 /2, which gives the same result as
eigenvalues m+1 and −1 /2 of the respective operators. This
is similar to the one-dimensional case, where the eigenvec-
tors of the Hamiltonian in the subspace corresponding to a
given value of � are linear combinations of the eigenstates
eim�	↑ 
 and ei�m+1��	↓ 
.31,32,35 Note that in the eigenbasis of
the spin oparator Sz we have 	↑ 
= � 1

0 � and 	↓ 
= � 0
1 �.

Guided by the cylindrical symmetry of the system, in the
two-dimensional case we are led to look for the solution of
the eigenvalue equation of H0+HSO in the subspace corre-
sponding to a given value of � in the form of a linear com-
bination of basis states �m	↑ 
 and �m+1	↓ 
, where
�m=Zm�kr�eim� are the eigenfunctions of the free Hamil-
tonian H0=− �2

2m� �r� corresponding to an eigenvalue �2

2m� k2

and written here in terms of cylindrical coordinates.31 As it is
well known, the cylindrical wave functions Zm�kr� obey the
Bessel equation

�−
�2

�r2 −
1

r

�

�r
+

m2

r2 �Zm = k2Zm, �4�

where k is a positive real number, while in the case of a
closed ring, m must be an integer. Accordingly we look for
the eigenfunctions of the Hamiltonian as a linear combina-
tion �=a��m	↑ 
+b��m+1	↓ 
, which leads to the following
equation for the eigenspinors:

� − �r� 	e−i�� �

�r
− i

1

r

�

��
�

	ei��−
�

�r
− i

1

r

�

��
� − �r�

�� a��m

b��m+1
� =

2m�

�2 E� a��m

b��m+1
� , �5�

where 	=2m�� /�2. Due to the recurrence relations valid for
Bessel functions36,37 one has

e−i�� �

�r
− i

1

r

�

��
�Zm+1ei�m+1�� = kZmeim�,

ei��−
�

�r
− i

1

r

�

��
�Zmeim� = kZm+1ei�m+1�� �6�

thus

HSO�m	↑
 = 	k�m+1	↓
 , �7�

HSO�m+1	↓
 = 	k�m	↑
 �8�

and Eq. �5� results in

�2

2m�� k2 	k

	k k2 ��a�

b�
� = E�a�

b�
� , �9�

where the � · � brackets denote that we have written the eigen-
value equation in the 
�m	↑ 
 ,�m+1	↓ 
� basis. This yields the
following two eigenvalues

E
 =
�2

2m�
�k2 
 	k� �10�

and the corresponding ratios of the coefficients are

�a�

b�
�


= 
 1. �11�

The actual values of the coefficients can be determined by an
additional normalization procedure to be given below. The
result above is valid for arbitrary positive, zero, or negative
integer m.
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III. BOUNDARY CONDITIONS

The geometry shown in Fig. 1 requires to specify the
solution of the spin-dependent eigenvalue problem presented
in the previous section with appropriate boundary conditions.
In the following we consider hard wall potentials that confine
the electrons into the ring shaped region. We assume that the
spinor-valued wave functions � vanish at the radial coordi-
nates r0 and r1

��kr0� = ��kr1� = �0

0
� . �12�

From now on, we use dimensionless quantities. With the no-
tation �= �

2m�r1
2 energy is to be measured in units of �� while

the strength of the Rashba spin-orbit interaction is character-

ized by the dimensionless ratio � /�=2m��r1 /�2=	r1.

A. Constant SOI

Results of Sec. II show that a certain energy 
 can result
from two positive k values, which are given by the solutions
of Eq. �10�

k+ = −
�

2�r1
+

1

r1
�� �

2�
�2

+ 
 ,

k− =
�

2�r1
+

1

r1
�� �

2�
�2

+ 
 , �13�

where 
=E /��. For a given value of �=m+1 /2, we obtain
four linearly independent spinors31,32

	�1
 = � Jm�k+r�eim�

Jm+1�k+r�ei�m+1�� � ,

	�2
 = � Nm�k+r�eim�

Nm+1�k+r�ei�m+1�� � ,

	�3
 = � − Jm�k−r�eim�

Jm+1�k−r�ei�m+1�� � ,

	�4
 = � − Nm�k−r�eim�

Nm+1�k−r�ei�m+1�� � �14�

the superpositions of which correspond to the energy 
.
However, when we take the boundary conditions into ac-
count, generally we find that they cannot be satisfied for an
arbitrary energy. Equation �12� for �=�cn	�n
 mean a set of
four linear equations for the expansion coefficients cn and
nontrivial solution exists only if the determinant

D�
,
�

�
� = �

Jm�k+r0� Nm�k+r0� − Jm�k−r0� − Nm�k−r0�
Jm+1�k+r0� Nm+1�k+r0� Jm+1�k−r0� Nm+1�k−r0�
Jm�k+r1� Nm�k+r1� − Jm�k−r1� − Nm�k−r1�

Jm+1�k+r1� Nm+1�k+r1� Jm+1�k−r1� Nm+1�k−r1�
� �15�

vanishes. �Note that energy and SOI dependence of D results
from that of the wave numbers k
.� For a certain �constant�
SOI strength, by sweeping the energy, we can look for zeros
of D�
�, to find a discrete spectrum determined by the
boundary conditions, as demonstrated in Fig. 2. Different
double “curves” �that are close to parabolas� represent differ-
ent radial modes: the ones with the lowest energy correspond
to states with no node between r0 and r1 while for states with
energies n step higher there are n circles between r0 and r1
where both spinor components are zero �see Fig. 3�. The two
states corresponding to the same radial mode and value of �

are orthogonal if we take the spin degree of freedom also
into account. The eigenenergies and states can be labeled as

n�


 , 	�n�

 
, respectively, with � and n referring to the spatial

degrees of freedom �azimuthal and radial coordinates� while
+ and − distinguish the two spin directions.

In this way we can obtain a complete solution of the ei-
genvalue problem related to the Hamiltonian �1� with the
boundary conditions described by Eq. �12� for any fixed SOI
strength. This allows us to calculate the time evolution of
any initial state 	��0�
=�n��n�

+ 	�n�
+ 
+�n�

− 	�n�
− 
 simply as

r

r1

r0
ϕ

FIG. 1. Two-dimensional quantum ring and the relevant
coordinates.
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	����
 = �
n�

�n�
+ 	�n�

+ 
e−i
n�
+ � + �n�

− 	�n�
− 
e−i
n�

− �. �16�

We use here the dimensionless time variable �=�t /2�, and
the expansion coefficients are given by the inner product

�n�

 = ���n�


 	��0�

 = �
r0

r1 �
0

2�

��n�

��r,���	��r,�,0�
rd�dr ,

�17�

where � . 	 . 
 denotes the usual spin inner product. Note that
the eigenstates are normalized in the sense of Eq. �17�, i.e.,
���n�

+ 	�n�
+ 

= ���n�

− 	�n�
− 

=1.

The spinor valued eigenfunctions are visualized in Fig. 3,
where the spin-independent probability density

�
�r,�� = ��n�

 �r,��	�n�


 �r,��
 �18�

is shown for n=1, . . . ,4 as well as the position-dependent
expectation values �Sx
, �Sy
, and �Sz
, where, e.g.,

�Sz
�r,�� = ��n�
+ �r,��	Sz	�n�

+ �r,��
 . �19�

B. Oscillating SOI strength

When the strength of the SOI is not constant, the dimen-
sionless Hamiltonian still can be transformed into an alge-
braic matrix using the basis states �m	↑ 
 and �m+1	↓ 
, lead-
ing to

H��� = � k2 k
����

�

k
����

�
k2 � , �20�

where units of 1 /r1 have been used for the wave number k.
In the following we consider the case of oscillating SOI
strength, i.e.,

����
�

= A cos���� = A cos�2��

T � . �21�

According to Floquet’s theorem, there is a time-dependent
basis

FIG. 2. Level scheme for two-dimensional rings with different
parameters. �a� r0 /r1=0.6,� /�=0.1; �b� r0 /r1=0.6,� /�=4.0; �c�
r0 /r1=0.8,� /�=0.1, and �d� r0 /r1=0.8,� /�=4.0. Energy is mea-
sured in units of ��= �2

2m�r1
2 . The vertical line in panel �b� corre-

sponds to �=9 /2, which is the value for which the wave functions
are plotted in Fig. 3.

x z

−1/2

n=4

n=3

n=2

n=1

yb)

a)

E

n=4

n=3
n=2

n=1

r

1/20

FIG. 3. �Color online� Wave functions for �=9 /2,r0 /r1

=0.6,� /�=4.0 �See the vertical line in Fig. 2�b��. Probability den-
sities in Eq. �18�—that do not depend on � in the current cases—are
shown in panel �a� while the position-dependent expectation value
of Sx ,Sy and Sz for the states indicated by the arrows can be seen in
panel �b�.
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	�r���
 = 	ur���
e−i�r�, 	ur�� + T�
 = 	ur���
 ,

�u1���	u2���
 = 0, �ur���	ur���
 = 1, �22�

where T=2� /�. Unlike the Floquet states 	ur���
, the ele-
ments of this basis themselves are not T-periodic functions.
Let us recall that if �r is a Floquet quasienergy and the cor-
responding state is 	�r���
, then the same holds for �r+n�
and 	�r���
�exp�in��� for any integer n. However, these
states are equivalent from the dynamical point of view, thus
it is sufficient to focus on only two nonequivalent quasien-
ergies.

The determination of the two relevant elements of the
basis in Eq. �22� and the corresponding Floquet quasiener-
gies for a given value of k can be done numerically essen-
tially by the Fourier expansion of the eigenvalue equation. In
the current case, however, an exact analytical result can also
be found �see Appendix�

	�+���
 = e−ik2��1

1
� e−iAk/� sin ��

�2
,

	�−���
 = e−ik2��− 1

1
� eiAk/� sin ��

�2
, �23�

that is, the quasienergies k2 are doubly degenerate. Using the
basis elements we can construct a determinant similar to that
of the previous section

D2�k� = �
Jm�kr0� Nm�kr0� − Jm�kr0� − Nm�kr0�

Jm+1�kr0� Nm+1�kr0� Jm+1�kr0� Nm+1�kr0�
Jm�kr1� Nm�kr1� − Jm�kr1� − Nm�kr1�

Jm+1�kr1� Nm+1�kr1� Jm+1�kr1� Nm+1�kr1�
�
�24�

the zero value of which means that boundary conditions
given by Eq. �12� are satisfied �see second part of the Ap-
pendix�. Similarly to the case of constant SOI, the resulting
quasienergies k2�n ,m ,
�=�n�


 �and states 	�n�

 
� can be dis-

tinguished by specifying the radial �n�, the angular momen-
tum ���, and the spin �
 � quantum numbers. A representa-
tive example of the set of the quasienergies is shown in
Fig. 4.

Now the problem of the time evolution governed by the
Hamiltonian �20� can be solved for any given initial state
	�0
 using the Floquet basis: one simply needs to expand 	�0

in this basis at �=0 and use the time dependence of the basis
elements to compute the dynamics.

Let us note that the results above can be adapted
to the case when the SOI strength—besides the oscillating
part discussed above—has a constant shift, i.e., when ����

�
=B+A cos����. As it is pointed out in the Appendix, we only
have to replace i Ak

� sin �� by −iB�+ i Ak
� sin �� everywhere in

the exponents.

IV. TIME EVOLUTION: HIGH HARMONICS AND WAVE-
PACKET MOTION

The time dependence of the Floquet states given by Eq.
�23� implies that for “allowed” values of k �when the bound-
ary conditions are satisfied� the time evolution of measurable
quantities shall contain harmonics of the driving frequency �.
More explicitly, by using a relevant form of the Jacobi-Anger
identity,37 we can write

e
iAk/� sin �� = �
�=−�

�

J��Ak

�
�e
i���. �25�

This implies, that for SOI oscillations with large enough am-
plitudes A, several multiples of � can appear in the time
evolution.

As an example, we consider doublet states with well-
defined z component of the total angular momentum. The
time evolution of these states can be of interest because con-
servation of the angular momentum may provide a method
for preparing them. Absorption of circularly polarized pho-
tons, e.g., can excite these states. �Interaction of short light
pulses with the electrons confined in a ring has been dis-
cussed in Refs. 38–40.� Spin oscillations could be detected,
e.g., by Faraday rotation experiments.41 Taking a superposi-
tion of two states with the same quantum numbers � and n,
the resulting spin oscillations are shown in Fig. 5 �where, in
order to focus on the appearance of the harmonics, rapid
oscillations resulting from the difference of the quasienergies
have been averaged out.� Note the qualitatively different be-
havior for small and large amplitude SOI oscillations. The
amplitude of the spin oscillation shown in Fig. 5 is position
dependent but the frequencies that appear in the time evolu-
tion are determined by the amplitude of the SOI variation:
larger amplitude A means that we can see more harmonics of
�.

Observable charge-density oscillations appear when the
initial state is a superposition of spinors corresponding to
different radial modes. With realistic parameters, in this case
the difference of the quasienergies is larger than routinely
achievable driving frequencies. �For a ring with
r1=250 nm, r0=0.6r1 made of InGaAs, the frequency corre-
sponding to the ground—first excited radial mode transition
is in the terahertz range.� Fig. 6 illustrates the broadening of
the frequency distribution due the SOI oscillations. The
weight of the various frequency components in the Fourier
expansion of the probability density corresponding to the

FIG. 4. Floquet quasienergies k2 �measured in units of ��� for a
ring with r0 /r1=0.6.
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equal weight superposition of Floquet states with �=15 /2
and n=1,2 is shown in this figure. For small amplitude SOI
oscillations, the frequency distribution is narrow, it contains
essentially only the difference of the quasienergies, k1

2−k2
2.

However, larger, but still realistic SOI oscillation amplitudes
induce harmonics of the order of a few tens to appear with

non-negligible weight, resulting in a considerable widening
of the frequency distribution.

Now we consider the time evolution of a localized wave
packet where the width of the frequency distribution also
plays a prominent role. Starting with a narrow, spin-polarized
initial state, one expects it to spread so that the spin direction
changes locally during the process. However, the boundary
conditions imply that when “bouncing back” from the walls,
as well as when the “tail” and “head” of the spreading wave-
packet overlap, we observe interference phenomena. This
leads to rather complex dynamics, which, however, is peri-
odic in the following sense: the discrete nature of the spec-
trum �which is a consequence of the boundary conditions and
the geometry� may cause the initial phases to be restored
after a certain “revival time.” In other words, we expect pe-
riodic “collapse and revival” phenomena: the initially local-
ized wave packet becomes delocalized along the ring but
later it reassembles again.

Having determined the distribution of the frequencies that
appear in a time evolution allows for the estimation of the
revival time Tr. For a single-peaked distribution with numer-
ous frequencies involved, the width �� of the envelope is
the most important quantity, we have Tr�2� /��. In our
case, similarly to the predictions of the one-dimensional
model,14 the internal structure inside a peak also plays a role
leading to a longer revival time as the one that can be de-
duced from ��. However, for initial wave packets narrow
enough in the radial direction, several radial modes are ex-
cited, leading to rapid phase oscillations. In view of this, we
cannot expect perfect revivals, but as the example of Fig. 7
shows, the characteristic features of the collapse and revival
phenomena are generally present also in the two-dimensional
model. The difference between the dynamics in the radial
and azimuthal direction is emphasized by Figs. 7�b�–7�d�:
superpositions of wave packets localized at different spatial

τν
/2

π

a) b)

1/4

−1/4

0

1/2

−1/2

τν
/2

π

c)

a), b)

c)
r/r0

rr/ 0

FIG. 5. �Color online� Spin oscillations in a ring with
r0 /r1=0.6,�=0.01 as a function of time and coordinates r and �.
The amplitude of the SOI oscillations is A=0.1 for panel �a�, where
�Sy
��� is shown, and A=3.0 for panel �b�, where we can see the
time evolution of �Sx
���. The initial state is ��1,15/2

+ +�1,15/2
− � /�2 in

both cases and rapid oscillations due to the difference of the
quasienergies have been removed by averaging in time domain.
Panel �c� corresponds to the same parameters and expectation value
as �a� but it shows a circular section. �See the schematic rings on the
right hand side that illustrate what slices are plotted in the different
panels.�

FIG. 6. Normalized magnitudes of the frequency amplitudes in
the Fourier series expansion of the probability density correspond-
ing to ��1,15/2

+ +�2,15/2
+ � /�2 at r=0.75,�=0. Note that frequency is

measured in units 1 /��.

τ=

τ=3T /4r τ=Tr

rT /30τ=0

b)a)

c) d)

FIG. 7. �Color online� Collapse and revival phenomenon in a
ring with constant SOI �� /�=3.0,r0 /r=0.6.� The initial state is a

Gaussian wave packet, being multiplied by sin
��r−r0�
r1−r0

to satisfy the
boundary conditions.
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positions �Schrödinger-cat states� appear rapidly in the radial
direction compared to the formation of similar states in the
azimuthal direction and approximate revival of the initial
wave packet �involving azimuthal coordinates as well� takes
also considerably more time. �In fact, Schrödinger-cat states
in the azimuthal direction appear at integer fractions of Tr.�
The appearance of “radial Schrödinger-cat states” is obvi-
ously an interesting two-dimensional feature.

Note that the results of the current paper can be consid-
ered as an important step toward the solution of the transport
problem through a two-dimensional ring with oscillating SOI
strength, which can be of experimental importance. If the
leads connecting the ring to the electrodes are narrow
enough, we expect the energy levels to be modified only
slightly, thus our results can provide a good approximation
inside the ring. Considering transport phenomena, besides
the usual transversal-mode-related quantization �seen as dif-
ferent parabolas in Figs. 2 and 4� of the conductance, strong
SOI oscillations can lead to multiple “sideband currents.”14,42

That is, qualitatively, the appearance of high harmonics of
the driving frequency in the energy spectrum of the transmit-
ted electrons is expected also in the case when wide wires
strongly modify the energy spectrum of the ring. In principle,
the spin oscillations coupled to coherent propagation could
be detected also in a closed ring of finite width by an experi-
ment similar to the pump-probe method applied in Ref. 41.

V. SUMMARY AND CONCLUSIONS

In the current paper we used a wave function picture to
describe the dynamics of electrons confined into a two-
dimensional ring-shaped region, in the presence of oscillat-
ing Rashba-type spin-orbit interaction strength. Our ap-
proach is analytic until the point when evaluation of special
functions is necessary, it provides the most possible physical
insight into the problem. We show that radial boundary con-
ditions are responsible for the discreteness of the Floquet
quasienergy spectrum, and determine the corresponding
time-dependent eigenspinors. Using this basis it was demon-
strated that high harmonics of the SOI oscillation frequency
appear in the spectrum of spin and charge density oscilla-
tions, already with experimentally achievable SOI oscillation
amplitudes. We also determined the time evolution of local-
ized wave packets, collapse and revival phenomena, as well
as both radial and azimuthal Schrödinger-cat states were
shown to appear.
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APPENDIX

1. Floquet states

The operator given by Eq. �20� commutes with itself at
any two time instants �1 and �2. Therefore the time evolution
operator can be written as

U��� = U�0,�� = e−i�0
�H����d��. �A1�

As H���=k21+�xkA cos����, by evaluating the integral we
find

U��� = e−ik2��
n
� iAk sin ��

�
�n�x

n

n!
. �A2�

Note that in the more general case, when
����

� =B+A cos����, all the steps described below still can be
followed, the single modification is that we have to add −iB�
to the scalar term in the sum above. �That is, i Ak

� sin ��
should be replaced by −iB�+ i Ak

� sin ��.�
Since even powers of �x are equal to the 2�2 unit ma-

trix while the odd ones give �x again, finally we have

U��� = e−ik2�� cos�Ak

�
sin ��� − i sin�Ak

�
sin ���

− i sin�Ak

�
sin ��� cos�Ak

�
sin ��� � .

�A3�

The eigenvalues of this matrix are e−ik2��iAk/� sin ��, and the
corresponding eigenvectors 1

�2
� 
1

1 � do not depend on time.
Comparing the result with Eq. �22�, we obtain the Floquet
states given by Eq. �23�.

2. Boundary conditions in the time-dependent case

D2�k� given by Eq. �24� is obtained by arranging the Flo-
quet states with both possible radial functions �evaluated at
the boundaries� in a determinant form. The corresponding
linear equation, is, however, time dependent. Its matrix, M,
can be obtained from D2 by multiplying the first two col-
umns by exp�−ik2�− i Ak

� sin ��� while the third and the fourth
one by exp�−ik2�+ i Ak

� sin ���. �The rows of M should in
principle also be obtained from that of D2 using the appro-
priate �-dependent factors but this means only the multipli-
cation of the equations by exp�im�� or exp�i�m+1���.� Con-
sidering only the signs of the coefficients in the matrices/
determinants, we write symbolically

D2�k� = �
+ + − −

+ + + +

+ + − −

+ + + +
� . �A4�

Using the same notations and omitting irrelevant common
multiplicative factors, the matrix of the homogeneous equa-
tion that requires the boundary conditions to be satisfied at
any time instant reads

M = cos�Ak

�
sin ���M+ − i sin�Ak

�
sin ���M− �A5�

with
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M
 =�
+ + � �

+ + 
 


+ + � �

+ + 
 

� . �A6�

The determinant corresponding to the linear equations de-
scribed by M
 is still D2, thus when it vanishes, both equa-
tions have a nontrivial solution vector. Choosing one of
them, we have e.g., M+�=0. Obviously, changing the sign of
the third and fourth components of �, we obtain a solution �̃
for which M−�̃=0. Finally the spinor valued wave functions
satisfying the boundary conditions in the time-dependent
case are obtained by using, e.g., the first two rows of M�r�
�r0 is being replaced by r in M�

��1

�2
� = cos�Ak

�
sin ����

n
� �M+�r��1n�neim�

�M+�r��2n�nei�m+1�� �
− i sin�Ak

�
sin ����

n
� �M−�r��1n�̃neim�

�M−�r��2n�̃nei�m+1�� �
= e−iAk/�sin ���

n
� �M+�r��1n�neim�

�M+�r��2n�nei�m+1�� � . �A7�

According to Floquet’s theorem, these states �that correspond
to the zeros of D2�k�� multiplied by e−ik2� can be called the
time-dependent eigenstates of the problem.
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