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Parasitic pumping currents in an interacting quantum dot
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We analyze the charge and spin pumping in an interacting dot within the almost adiabatic limit. By using a
nonequilibrium Green’s-function technique within the time-dependent slave-boson approximation, we analyze
the pumped current in terms of the dynamical constraints in the infinite-U regime. The results show the
presence of parasitic pumping currents due to the additional phases of the constraints. The behavior of the
pumped current through the quantum dot is illustrated in the spin insensitive and in the spin-sensitive case

relevant for spintronics applications.
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I. INTRODUCTION

The quantum pumping proposed by Thouless' is a phase
coherence effect able to pump dc current by the out-of-phase
adiabatic modulation of (at least) two system parameters in
absence of a voltage bias. The phase difference ¢ of the
external signals produces a charge current proportional to
w sin(¢), w being the adiabatic pumping frequency. After the
Thouless theory, Brouwer? formulated a scattering approach
to the adiabatic quantum pumping showing that the dc
charge current produced by the pump is related to the para-
metric derivatives of the scattering matrix of the device.

Following the Brouwer formulation several studies, both
of experimental® and theoretical nature, have been per-
formed. The theory of quantum pumping for noninteracting
systems® has been developed in several directions. In case of
interacting electrons, the computation of the pumped charge
becomes rather involved and few works have addressed this
issue for different systems® and in specific regimes. As for
the case of interacting quantum dots (QDs), the pumped
charge in a period was calculated by Aono® by exploiting the
zero-temperature mapping of the Kondo problem within non-
equilibrium Green'’s function (NEGF) technique. A very gen-
eral formalism was developed in Ref. 7 based on the adia-
batic expansion of the self-energy in the average-time
approximation while a linear-response scheme was employed
in Ref. 8. Another interesting study’ was performed aiming
at generalizing Brouwer’s formula for interacting systems to
include inelastic scattering events. Alternatively to the NEGF
approach, a powerful diagrammatic technique to treat the
interacting quantum pumping is constituted by a generalized
master-equation method.'?

Very recently the idea that the presence of a hidden clas-
sical variable inside a scattering region can strongly affect
the dependence of the current pumped through the system
has been proposed. This effect is produced by the dynamics
of the classical variable which modifies the standard phase
relation introducing a dynamical phase shift'"!'> accompa-
nied by parasitic contributions to the pumping current.

In this paper, we develop a time-dependent mean-field
slave-boson theory for an interacting quantum dot following
a nonequilibrium formulation a la Keldysh. In particular, we
derive a time-dependent mean-field equation for the slave
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boson and the constraints which allows us to study the
strongly interacting regime of the pumping beyond the adia-
batic (i.e., zero frequency) limit. However, since the cost of
the analysis is growing with the degree of nonadiabaticity, in
this work we focus on the almost adiabatic limit (i.e., pump-
ing frequency small but finite). In particular, we focus on the
effect of the dynamical phase of the slave boson on the
pumped current, evidencing features not discussed before.
Furthermore, the proposal of a quantum pump able to pro-
duce spin current without polarized electrodes is also
discussed.

The organization of the paper is the following: in Sec. II,
we introduce the model Hamiltonian and derive the free-
fermions-like effective Hamiltonian by means of the slave-
boson treatment. In Sec. III, we derive the relevant Green’s
functions within the Keldysh approach and a formula for the
pumping current is derived within the single-photon approxi-
mation. In Sec. IV, we analyze the constraint equations and
propose an approximate solution suitable within the almost
adiabatic limit. In Sec. V, we discuss the results obtained
both in the case of a spin-independent quantum pump and in
the case of a spin-sensitive device able to generate spin
current. The conclusions are given in Sec. VL.

II. MODEL AND FORMALISM

We consider a QD-based pump coupled to noninteracting
leads. A particle flux is generated through the QD by means
of an almost-adiabatic modulation of two out-of-phase gate
voltages controlling the transparency of the tunneling barri-
ers.

The Hamiltonian of the quantum pump depicted in Fig. 1
can be written as follows:

H= E Skczaackoa + E ed:rrdo' + UnTnl

koa o
+ 2 [Viao(0)e)udy + Hee ], (1)
koa

where the operator sz creates an electron of momentum k
and spin o in the lead o while d" is the creation operator of
an electron state on the interacting quantum dot, € being the
energy of a single occupied electron state. The electron-
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FIG. 1. (Color online) The system described in the main text: a
quantum dot (dashed region) coupled to external leads via tunnel
barriers whose transparency can be modulated in time via top gates.

electron (e-e) interaction energy U, described by the third
term, has to be considered when the dot screening length A,
is bigger than the typical size of the quantum dot. The last
term describes the tunneling between the quantum dot and
the leads. In this work, we are interested in describing the
strongly interacting limit (U—).!3 In the intermediate U
regime the Hilbert space of the isolated QD has electron
states {|0),|0),|2)} (empty, single and doubly occupied)
which are created by application of the creation operator to
the empty state |0), i.e., |o)=d}|0), 2):|Tl):d$di|0> (notice
that the order is arbitrary but have to be fixed since |T])
=—[/71)). In the previous basis the relevant operators can be
written as'*

d', =o' X0| + o' |2)(&

El

dy=10)(0l + 0]3)(2

)

n,=|o)aol+[2)(2

i

. 2)

and the canonical anticommutation relations {dﬂ,di}zc‘)‘uy,
{d,.d,}=0, {d',di}=0 can be obtained. In case of strong
interaction (U— ), the occupation of the |2)(2| subspace
becomes strongly suppressed and thus the commutation
relations'>  become {dﬂ,di}=5ﬂ,,—uvd;d—, where  u,v
e{l,|}={+1,-1} and the effective completeness relation is
1=|0)0|+=,|/0){0o]|. Thus the electron operators, with the ex-
clusion of the doubly occupied state, take the form d,,
=|0)(a], d’=|0)0|. By introducing the reference state |ref)
and the operators b and f,, we define |0)=b'|ref) and |o?)
= fj,|ref) and thus the creation/annihilation operators can be
written in terms of bosonic (i.e., ) and quasifermionic (i.e.,
f.) operators'®!7 as: d,—b'f,, d’ — f'b. Within the slave-
boson representation, the Hamiltonian is
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Hy= H(d, — b'f i}, — fib) + x(b*b+ S fifa- 1),
(3)

where the single occupation constraint is included by the
Lagrange multiplier N which is fixed by the equation

W(Hsp)=0— 2 (fify+(b'b)=1=0 (4)

while the slave-boson operator b evolves in time according
to the equation of the motion ihd,b=[b,H], thus'

ihap=\b+ 2 Viao()Chyaf o (5)

koa

We treat the slave-boson operator b within the mean-field
approximation ((b)=B, (b")=B*) and the original problem
containing strong correlations is replaced by a constrained
free-fermions-like theory whose dynamics is completely de-
scribed by the following Hamiltonian:

HSBMF= Hleads + 2 [6+ )\(t)]f-;fa"" 2 [Vkaa(t)B*(t)CZO'(xfa'

koa

+He]+N0O(B@)-1), (6)

with the dynamical constraints

ihdB(1) = NOBO) + 2 Viao)choaf o) (7)
koa
X fify +1B@*-1=0. (8)

As shown in Eq. (6), the interaction produces a renormaliza-
tion of the QD energy level (e— €+\()) and a redefinition
of the tunneling amplitudes (V},,(f) — Vioo(£)B*(£)). This as-
pect is very important in the context of the quantum pump-
ing. In fact, since the time evolution of the slave-boson field
is governed by the Eq. (7), a dynamical phase shift with
respect to the phase of the external driving signals is ex-
pected. Within the adiabatic case, all the phases are rigidly
related to the external driving signals while at finite fre-
quency. this relation is lost and interesting contribution of
hidden phases can emerge.

III. NEGF METHOD

In this section we employ the NEGF formalism'® to de-
rive the current flowing through the system when subject to
an almost adiabatic quantum pumping (small but finite
pumping frequency w) in which we modulate the tunneling
rates  I'g(t)=I"; +I' , sin(wt+¢,) defined by TI'g(s)
=27Tpa|VkFag(t) 2, where p, is the density of states at the
Fermi level k.

Due to the free-fermions-like form of the Hamiltonian the
retarded GF of the QD uncoupled from the external leads is
(fi=1),
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g@ihﬂ):—i@pmf—tﬁexp{—ijtdh(e+h0ﬂ)},(9)

being s,p € {1, |} the spin index. When the QD is coupled to
the leads, we must take into account the transition rate of an
electron through the system. The quantity encoding this in-
formation is the retarded self-energy which can be written
within the wideband limit as

r
2;];(1‘1,1‘2) == iéspé(tl - t2) 2 ﬁ|8(tl)|2’ (10)

a=l,r 2

and thus the retarded Green’s function of the QD coupled to
the leads takes the form

Gip(t,t’)=g§p(t,t’)exp{— f dt, 2, tl)IB( 1)|2}
t a=Lr
(11)

which depends on the renormalized quantities |B(¢)]> and
\(?). The corresponding advanced quantities, i.e., G* and 3¢,
are computed directly by using the general relation
B (t1,)=E,(t,,1))", E being G or X. Finally, the Lan-

greth rules?® can be employed to compute the lesser self-
energy as
2;(51’t2)=i5spf(t1—fz)z T8 ()|B() . (12)

a=lr

It is proportional to the Fourier transform f(¢,—f,) of the
Fermi function f(E) (notice that the chemical potential is the
same for both the leads).

In order to calculate the current ﬂowing through the QD,
we need to calculate the lesser GF G-, (tl,tz) of the QD ex-
ploiting the Keldysh equation®' and by using G"% and X<,
Together with the single-particle Green’s function, we need
yet to solve the constraint equation. Explicitly we can rewrite
Egs. (7) and (8) as

i0,B(1) = lx(;) + 2 G (1.1) Lol )150)
+2Jdtl HALE)B)T (1) f (1= 1), (13)

B()|>=1+i2 Gy (t.1). (14)

Let us note that the interaction effects are taken into account
by the constraints. This aspect becomes evident considering
the limiting case in which I' ;=" (spin insensitive tunneling).
Solving Egq. (14) for =,G;, and substituting into Eq. (13),
we obtain

i9,8(1) = [x(;) AU ]B( /- ’) ~Li8|2B@) +

(15)

in which the nonlinear term |B|?3 accounting for the inter-
acting nature of the problem appears. The obtained equations
are similar the one derived by Langreth ef al. in Ref. 22 even
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though in our time-dependent theory, we expect an easier
manipulation.

Nonequilibrium currents

Within the nonequilibrium theory, the spin-resolved cur-
rent pumped in the lead «a can be written in terms of the QD
Green’s function in the following form:

o 2e dEldEsz:; .
I2(t) = zzr Re{f W X expli(E; —

(EI’E2)2

Et]

X[G (EZ?ES)

ao’a’

(E1,E2)EZ, U/U.(EZ’E3)]} (16)

where the two-times Fourier transform?? of the GF have been
introduced. In this work, we are interested in deriving the
pumping current generated by an almost-adiabatic perturba-
tion and thus we expand all the relevant time-dependent
quantities by considering only one-photon contributions as
follows:

NOEDRY exp{- inwr},

n=0,%t1

INOE > Iy, exp{-inot},

n=0,%1

B(= > B,expi-inwt},

n=0,%1

C(ELE) =08, 2 EL(E)E -E+ o), (17)

17—0*1

A—lyp

where E is G or 2, while £ € {r,a,<}. Within the one-photon
approximation, the spin-resolved dc current 7‘; pumped in the

lead « takes the form I9= (Ze/h)E,FilRe[Agm] where we
defined the following quantity:

(2 )
(El)zag AE + nw)], (18)

which contains information about the pumping cycle and the
absorption/emission processes of one photon. Within the
single-photon approximation the behavior of the pumped
current with respect to the QD energy level is determined by
the two integrals,

Ag= | 550G (EDZ o (Ey + 70)

Ry"= f 2 EDHE)D(E),
A

d
RY7= J YD (EDY ) (19)
A ar

where
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DY(E) =[E + o — (e+\o) +i(7,/2)]"" (20)

while A represents the static part of the Lagrange multiplier
and v, is a renormalized linewidth depending on the slave-
boson field,

Yo= > [|30|2Fg;0 +2 Re{|BO|ZFg;1 + Fg’;O(BSBl + BB}

(21)

As shown in Eq. (21), the finite-frequency effects modify the
mean lifetime of the electron on the QD due to the interfer-
ence effects originated by the slave-boson field B. ;. Further-
more, since I'. | picks up a phase due to the external driv-
ing signals I'y. . = * i%exp{ligoa}, the GF of the problem
depends separately on ¢, and not via the phase difference
¢=¢@p—¢;. The last observation implies that the quantum
state of the dot is affected by the precise external phases
which couple the system and not only by the phase differ-
ence ¢ applied to the nanostructure. Moreover, since the
slave-boson  field is a complex quantity, B,
=|B.; glexplig, °}, interference terms, i.e., of the form
cos(¢, — ¢2) appears in D‘;(E). Also additional phases asso-
ciated to the constraint evolution appear. Thus beyond the
almost adiabatic limit, the existence of a great number of
dynamical phases (and the corresponding interference terms)
provides a decoherence source for the electron transport.

IV. CONSTRAINTS AND THEIR APPROXIMATE
SOLUTION

A. Constraints within the single-photon approximation

The expression of the current pumped through the system
can be calculated once the GF is determined. Since it de-
pends parametrically on {Ng,\+;;By,B+} one has first to
solve the constraint equations. By exploiting the Fourier ex-
pansions of Egs. (13) and (14) within the one-photon ap-
proximation, we get the following set of constraints:

)\OBO = (D(O;O)(E = O),

(Mo @B+ \By== X O #H(E=w),

u=0,1

()\0 + (.U)B_l + )\—IBO =- E Q(_”;l_'u)(E == (1)), (22)

p=0,1
and
dE
2=1- f G=.(E),
Bol*=1-2 | 75755 Go(E)
. . dE
BOBI-'_BOB_I:_EU:fi(zW)ZG:;_](E)’
dE
BiB_, + BB, =- >, f ——— G, (E), (23)
o J iQQm) "

where the auxiliary functions ®"(E) involving the GFs of
the QD are reported in the Appendix. In principle the finite-
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frequency problem gives us an infinite set of coupled con-
straints while within the one-photon approximation we ob-
tain a reduced number of equations. However, from the
numerical point of view, the solution of Eqgs. (22) and (23)
may be, in principle, a nontrivial task since there can be
numerical instabilities in the determination of the solution.
When an almost adiabatic regime is considered (retaining a
finite frequency w) one considers the static constraints as
perturbed by the remaining ones which on their turn can be
treated by using some suitable approximations to be checked
at the end of the computation.

B. Approximate solution of the constraints

In this section, an approximate solution of the constraints
shown in Egs. (22) and (23) is provided within the almost
adiabatic case. From the analysis of the parametric expres-
sion of the current pumped through the system, one can ob-
serve that the relevant quantities to be computed are: A\, A,
|By|%, and ByB, +ByB,. Since we are modulating the tunnel-
ing amplitudes via top gates the contribution to the current
coming from the modulation of A(¢) can be considered as a
parasitic pumping effect whose intensity is very weak when
N;—0. Thus we need only to produce an approximate ex-
pression of N and ByB,+B,B; to the first order in I',,;.
The constraints which need strictly to be valid are

d
== 3 o[ SEAERDHE).

dE
IBoP= 1= 2 |ByT o f ;Tf(E)IDg(E)IZ. (24)

The previous equations come from the first equation of each
set of constraints given in Egs. (22) and (23). They have the
same structure as in the adiabatic case’ (not presented here),
even though, differently from that case, a hidden dependence
on B. is present in D{(E) and thus higher-order constraints
have to be considered in order to solve the problem. In par-
ticular, by considering the second equation in Eq. (23) it is
possible to formally solve it in the following form:

d .
=2 Byl T gy f fTDg(E)DEKE)ﬂ‘)(E)

o

d
1+ 2T f fTDS(E)Di‘T(E)ﬂ‘)(E)

(o

BSB] + B()Bil =

s

(25)

where the right-hand side (rhs) of the previous equation de-
pends on X, |By|>, and B., while we defined f*)(E)
=f(E = w). Expanding the rhs of Eq. (25) up to the first order
in I';.; and taking the limit w— 0, the dependence on B,
disappears and thus Egs. (24) and (25) can be solved inde-
pendently from the other equations. Following a similar pro-
cedure, considering the limit I'.o/Ng<<1, we obtain

N dE
A= ?02 |Bo|2F0;1f 2_|D(()T(E)|2f(E)|B+1HO' (26)
o ™ -
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~0.00002
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—~0.00006

(e=)/To

FIG. 2. (Color online) Total charge current I (dashed line) as a
function of (e—u)/T"y computed setting the remaining parameters
as follows: I'e5"®=1.5 T'&H%=0.05, @=0.05, ¢,=0, and @
=m/4. The lower curve represent the current induced by the modu-
lation of A, while the upper curve depends only on the modulation
of the tunneling amplitudes.

V. RESULTS
A. Spin-insensitive quantum pumping

In the following analysis, we measure the energy in unit
of I'y=10 eV while the current is normalized to the quan-
tity ip=—el’y/f (iy=2.56 nA). The zero-temperature limit is
assumed. In Fig. 2, we show the current pumped in the right
lead I as a function of the position of the bare level of the
dot € and by setting the remaining parameters as follows:
re®=15, T50%=0.05, ©=0.05, ¢,=0, @g=m/4. Since
we are in the spin-insensitive case each spin channel contrib-
utes the same quantity to the charge current I (Iz=1I3). The
lower curve in Fig. 2 represents the contribution to the cur-
rent induced by the modulation of the renormalization of the
energy level on the QD (i.e., \(¢)), the upper curve is the
current pumped by the modulation of the tunnel barriers
while the middle dashed curve represents the total current
which is sum of the previous terms. When > u the current
induced by \(7) is a vanishing quantity and the total current
is dominated by the modulation of the tunnel amplitudes; on
the other hand, when the energy level of the QD e is placed
below the Fermi energy w, the main contribution to the cur-
rent is given by the modulation of \(r). From the analysis
above, we observe a competition between the two different
pumping mechanisms which induces a change in sign of the
total current and presents maximum values in the picoam-
pere range. The behavior of the current shown in Fig. 2 can
be understood by analyzing the slave-boson parameters as a
function of (e—u)/Ty. Indeed in Fig. 3, we plot the |By|* vs

0.9}
0.8
0.7

1Bl 0-6¢
0.5
04t ¢

037

-5 0 5 10
(e-)/Ty

FIG. 3. (Color online) Holes density |Bo|?> as a function of (e
—u)/ Ty computed setting the remaining parameters as in Fig. 2.
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-5 0 5 10
(e-w)/Ty

FIG. 4. (Color online) A\ as a function of (e—u)/T"y computed
setting the remaining parameters as in Fig. 2.

(e—w)/Ty curve fixing the other parameters as in Fig. 2. As
expected the electron density on the QD, roughly propor-
tional to 1—|B,|?, becomes a vanishing quantity when the
energy level e is well above the Fermi energy. In this situa-
tion, a weak renormalization of the tunneling amplitudes is
observed while in presence of a nonvanishing electron den-
sity on the QD the tunneling processes are strongly renor-
malized. A similar effect is evident in Fig. 4 where we
present A, as a function of (e—u)/I'y. As can be seen the
effect of the constraints becomes more pronounced at de-
creasing (€—pu), i.e., when approaching the single occupied
state of the dot.

Another effect of the renormalization of A, is shown in
Fig. 5 where the absolute value of the oscillation amplitude
of A(¢) is plotted as a function of the QD bare level. As
shown in that figure, below the Fermi energy (i.e., close to
e—u=-TI) |\;| becomes comparable to the oscillation am-
plitudes of the tunneling rates IS (which approach the value
~0.051"y) and thus the pump starts to feel the effect of the
modulation driven by the internal dynamics of the system.
Such effect is evident if we compare Figs. 2 and 5. Indeed
Fig. 2 shows that the N-induced current (lower curve) is en-
hanced when |\,| (see Fig. 5) is close to its maximum value
within the parameters range considered. In Fig. 6, we report
the dependence of the charge current on the pumping phase
g It exhibits a complicate behavior due to the presence of
phase differences, namely, ¢2’f and ¢>;f, induced by the
slave-boson field and by the modulation of A(z). Due to the
presence of these phases, the external phase difference ¢p
— ¢y is not the only relevant phase, differently from the non-
interacting case. Indeed, in the infinite-U limit terms of the
form sin(@, = (¢, — ;) appear in the charge current. The

0.04]%
0.03f %
I?t1|0_02 b
0.01}
0.00— ‘ ‘ i
-5 0 5 10
(e=w)/Ty

FIG. 5. (Color online) |\,| as a function of (e—u)/T"; computed
setting the remaining parameters as in Fig. 2.
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FIG. 6. (Color online) Charge current /; (upper panel) and I
(lower panel) as a function of the pumping phase ¢r computed
fixing the remaining parameters as follows: FZ;:OL/R=1.5, I‘f;;:uf/R
=0.05, @=0.05, and ¢; =0. For both the upper and lower panel, the
dashed curve is computed taking (e—pu)/T’y=1, the dashed-dotted
curve for (e—um)/T'y=—1 while the full line is adopted for (e
—w)/T=0.

interaction-induced terms are in general of the same order of
magnitude of the ones usually obtained in the free-electron
quantum pumping and thus strongly affect the usual sin(¢)
behavior. Although the charge current contains terms having
the usual form** C+A sin(@g—¢;)+B cos(@g—¢;), its gen-
eral aspect for the parameters range considered here is domi-
nated by a cosine-behavior typical of a rectification contri-
bution, i.e., of the form A+B cos(¢gg). The above result is
very similar to the one found in Ref. 25 where the nonadia-
batic noninteracting case has been considered. In the almost
adiabatic case treated here, the external ac signals drive the
system under nonequilibrium condition inducing an oscilla-
tion of the internal fields B(7) and A (). The latter situation
reproduces the external forcing pattern similar to the one
proposed in Ref. 25. The I, Vs ¢y curves present a cosine
dependence, i.e., a rectification contribution while the precise
shape of the curves depends on the energy € of the QD (see
the dashed, dotted-dashed and full line in Fig. 6). To render
the analysis more quantitative, while maintaining the struc-
ture of the equations simple, we explicitly report the expres-
sion of the current pumped in the lead « omitting the current
term related to the modulation of \,

e (o) S {E [Re(RY "} (roror + ta1ar)]

7= | «

+7 Im{Rgrl}(raLa' - r&“a)} + ( e )’ (27)

where a=Ld,z+RJ,; while the spin-dependent coefficients
r, and ¢, are defined as follows:
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I G1 IGZ
SF1 SF2

NM T QD T‘L NM

FIG. 7. (Color online) The spin-sensitive quantum pump de-
scribed in the main text obtained by connecting via spin-filter bar-
riers (SF) two nonmagnetic leads with an interacting QD. An ac
modulation of the barrier strength is allowed via top gates G1/G2.

. Fg"w BO|2 a
re=sin(e) ~ 0+ T BollBi| S cos(df - 4.
n==*
I‘zt';w BO|2

Ly =0S(@g) +T20Bol|By| 2 7 sin(¢f — #)).

=%

(28)

As explicitly shown, the charge current contains all the phase
differences (i.e., internal or external phase differences) inside
the scattering region. Thus in the strongly interacting case,
the presence of additional phase differences is the main
modification compared to the free-fermion theory.

B. Spin-selective quantum pumping

In this section, we study the quantum pumping through
the system shown in Fig. 7. It consists of a strongly interact-
ing QD connected to two nonmagnetic leads via thin mag-
netic tunnel barriers. The magnetic barriers work as a spin-
filter (SF) whose effect is controlled by the polarization p,
€[0,1] of the ath tunnel barrier. Thus, the spin and charge
currents generated by the quantum pumping procedure are
strongly affected by relative orientation (parallel or antipar-
allel) of the SF barriers. Similar to Refs. 26 and 27, we take
the tunneling amplitudes of the following form: I'5()
=I"“(¢)(1+p,0), where the polarization p,, is assumed to be a
time-independent quantity while the tunneling amplitude
I'“(z) is taken,

re j
Mexp(iwt) +cc.|. (29

I'“(t)=T5+
@) 0 2i

In the presence of the ac modulations of the gates G1/G2 and
thanks to the spin-selective properties of the SF, a spin cur-
rent /=2 0l, is generated other than a charge current /.
=2 _I,. The proposed mechanism which produces a spin-
polarized current by only using the filtering properties of the
magnetic barriers and avoiding the injection of spin-
polarized electrons by ferromagnetic leads, is very similar to
the one proposed in Ref. 28 within the dc case. In Fig. 8, we
study the charge (full line) and spin (dashed-dotted line) cur-
rents as a function of the bare energy level e of the QD
setting the remaining parameters as in the figure caption.
For nonvanishing polarizations (i.e., p,=pgr=0.4) of the
SF barriers a sizable spin current is observed. Furthermore
when e=~ u—5I" the charge current takes negligible values
and the pump works as a pure spin-current injector. A rel-
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FIG. 8. (Color online) Charge current /. (full line) and spin
current I (dashed-dotted line) pumped in the right lead as a func-
tion of (e—u)/T'y by setting the remaining parameters as follows:
rot=15, T§R=13, T"*=03, 0=0.05, ¢;=0, pg=7/4, and
pL=pr=04.

evant observation is that the pure spin current obtained here
is not related to the Zeeman energy of the QD (not present
here) but is originated by the spin filtering properties of the
magnetic barriers connecting the QD to the external unpolar-
ized leads. Since the only relevant parameters are the polar-
izations p;,, induced by the SF barriers, in Fig. 9 we study
the charge current as a function of the relative orientations of
pr and pp by setting the remaining parameters as follows:
rgt=1.5,r§r=1.5, 1% =03, ©=0.05, ¢, =0, gg=7/4,
and (e—u)/T"y=0. The analysis of Fig. 9 shows the charge
current vs the polarization of the SF barriers. It presents high
values of the current within the parallel configuration while a
suppression of the current is observed for the antiparallel
case. This behavior is explained by observing that for paral-
lel polarizations of the SF barriers only one spin channel is
perturbed by the scattering off the magnetic barrier while for
the antiparallel case both the spin channel are perturbed lead-
ing to a less intense current. The analysis of the spin current
I, performed in Fig. 10 shows that the relation /;=Ap,
+Bpg with A=0.94 X 1073 and B~3.3 X 1073 is obeyed for
the considered parameters. The latter observation implies
that an intense spin current is obtained within the parallel
configuration (positive or negative, depending of the specific
sign of the polarizations p,) while for the antiparallel case

0.6 .06 ’

0.41 3 ,,..; S 7002

0.2}
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~0.2[ %4

~0.4}

—0.67 ~~~~~~ n 0023 L L |
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FIG. 9. (Color online) Contourplot of charge current /. as a
function of the polarizations p;,z by setting the remaining param-
eters as follows: TEr=1.5, TeR=1.5, T*R=0.3, ©=0.05, ¢,
=0, gp=/4, and (e—u)/T'(=0.
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FIG. 10. (Color online) Contourplot of spin current I as a func-
tion of the polarizations p; r by setting the remaining parameters as
follows: T¢t=1.5, To*=1.5, T*"R=03, ©=0.05, ¢,=0, ¢z
=m/4, and (e—u)/T'y=0. Notice that the relation I,=Ap;+Bpg
with A=~0.94 X 1073 and B~3.3X 1073 is obeyed.

the spin currents takes less intense values. Very interestingly
the spin current can become negligible also for finite values
of pyr- Indeed, the above analysis of /; shows that when the
relation p; =—3.5pp is fulfilled the spin current goes to zero.
In particular when the parameters are varied the spin current
presents negligible values when p;=—kpg, where we have
checked that the coefficient « depends on the position of
energy level e of the QD. Varying it one can rotate the line
pL=—kpg within the (p;,pg) plane. This property shows an
all-electrical control of the spin current, potentially useful in
spintronics devices.

VI. CONCLUSIONS

We studied the charge and spin current pumped in an
interacting quantum dot connected to two external leads via
tunnel barriers whose transparencies are periodically modu-
lated in time via the top gates G1/G2. The current has been
calculated by a nonequilibrium GF method based on a time-
dependent slave-boson approach. In particular, we derived an
equation of motion of the slave-boson field B(z) in terms of
an infinite series of constraints, generalizing the adiabatic
case. By using a finite set of constraints (single-photon ap-
proximation), the expressions of the relevant Green’s func-
tions and of the current have been derived. We showed the
numerical results of the pumped current for two different
situations: the spin-insensitive and the spin-dependent case.
In the latter case, the spin-selective properties of the system
are determined by the presence of two magnetic tunnel bar-
riers. In the spin-insensitive case the system pumps a charge
current that contains beyond a term related to the modulation
of the out-of-phase external parameters an additional term
due to the internal dynamics of the Lagrange multiplier and
the slave-boson field. This term is identified by us as a para-
sitic pumping current. Its presence is due to the phase differ-
ences inside the scattering region and is a consequence of
strong correlations effects. In fact, the charge current, which
for a free-fermions model depends only on the phase differ-
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ence between the two external parameters, ¢r—¢;, in the
strongly interacting limit depends separately on ¢; . The
additional pumping contributions are originated by the phase
difference of the external parameter phase (for instance ¢;)
and the phase of an internal degree of freedom (i.e., the slave
boson field or the Lagrange multiplier). This mechanism not
only works in the interacting quantum-dot case but can op-
erate in the presence of any internal dynamics, as pointed out
in Refs. 11 and 12. Concerning the spin-sensitive case, the
current preserves the above characteristics while the appear-
ance of a nonvanishing spin current is shown. The spin cur-
rent is of the form I;=~Ap;+Bpg, where the parameters A
and B depend on the electronic configuration of the QD and
Pr.Pr are the polarizations of the magnetic tunnel barriers.
By considering specific values of the polarization of the bar-
riers, a change in sign of the spin current can be obtained by
tuning the energy level € of the QD. This produces a rotation
of the line I (p,,pg)=0 in the (p,,pgr) plane. Furthermore,
acting on the energy level of the QD the system can be
driven towards a working point in which the pump works as
a pure spin-current injector. These two mechanisms show the
possibility of all-electrical control of the spin current

PHYSICAL REVIEW B 82, 165321 (2010)

pumped through the system relevant in spintronics devices.

APPENDIX: DEFINITION OF ®"7(E)

The definition of the function ®™7(E) in terms of the
GFs of the quantum dot region takes the following form:

() =S f (dEz o

X {f(Ez -nw)G,. (E+E, - no)

—G:m(E+E2—nw)], (A1)
where the function Wff) is defined as follows:
W((;L=O) = FU;OBO’
WY=D =T 4By +T g1 By (A2)
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