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We derive the exact quantization of surface polarions on ionic crystals. We show there are two different
methods: �1� classical theory and �2� quantum theory. They give different results and both results are different
than what is used currently. We argue the quantum theory is the correct choice. We also derive the interaction
potential between a charged particle that interacts with these surface polaritons and also interacts with the bulk
polaritons.
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I. INTRODUCTION

Surface polaritons are excitations that are a mixture of
electromagnetic waves �photons� and polarization modes of
the crystal.1 Two common types are surface plasmons on a
metal and surface optical phonons on a polar insulator. The
latter are called Fuchs-Kliewer modes.2,3 Here we discuss the
quantization of the Fuchs-Kliewer surface polariton. There
are several methods in the literature.1,4 The classical method
is well known1 and is rederived in Sec. V. The derivation of
the quantum method is the subject of this paper. We show
that the classical and quantum methods are both plausible but
are in fact different. We argue that the quantum method is
correct. Using this distinct method of quantization, we are
able to derive the interaction between a charged particle and
these surface polaritons. There are several different terms in
the interaction. Most previous theories have included only
one term.

Previous theories of surface polaritons are classical and
derive that the surface polaritons are given by1

�2 =
�2

c2

����
���� + 1

, �1�

where ���� is the dielectric function of the material and �
= �kx ,ky ,0� is the wave vector along the surface. Recently we
derived and solved the quantum mechanical equations for the
Fuchs-Kliewer mode.5 We follow the method of Hopfield,6

who first quantized bulk polariton modes in 1958. He intro-
duced quantum operators for both the photon field, and the
phonon �or exciton� field, and solved the coupled oscillator
problem. He found for bulk polaritons the dispersion k2

= ��2 /c2����� which is also the equation found classically.
Here k= �kx ,ky ,kz� is the three-dimensional wave vector of
the polariton. One difference between the classical and quan-
tum derivations is that the classical derivation assumes the
dielectric function ��k ,�� is entirely local ���� and can be
applied at atomic distances. We do not make this assumption.

A charged particle outside of a solid surface interacts with
the surface polaritons of the solid. Our solution using quan-
tum mechanics has a different interaction than the one found
using classical physics.7–17 They use

H = �
�
�������C�

†C� +
1

2
� + M���ei�� ·��+�z�C� + C−�

† �� , �2�

where the charge is outside of the surface at ��� ,z�0�. The
raising and lowering operators are those of the surface polar-

iton. Completing the square gives the ground-state energy

H = �
�
�������C̃�

†C̃� +
1

2
� −

M���2

�����
e2�z� , �3�

C̃� = C� +
M

��
ei�� ·��+z�. �4�

By selecting

M2

�����
=

�e2

A�
�� − 1

� + 1
� , �5�

VI�z� = − �
�

M���2

�����
e2�z = −

e2

4z
�� − 1

� + 1
� �6�

which is the classical interaction energy for a charge e out-
side of a solid with dielectric constant �. The above theory is
the present standard which is widely used, even today.18–21

However, when we actually quantize the Hamiltonian for
surface polaritons, we do not get the above function for
M���. This is shown by the following derivation. Another
problem with the above theory is that the surface polariton
dispersion does not extend to zero wave vector. It begins at
the cut-off wave vector �i=�T /c, where �T is the transverse
optical phonon frequency and c is the speed of light. Using
this cut-off in the above integral gives

�
�i

	

d�e2�z =
e−2	z	�i

2	z	�i
. �7�

The potential decays exponentially, and cannot be the classi-
cal image potential. This point was first made by Ekardt.22

He showed that radiation modes also contribute to the image
potential.

II. QUANTUM THEORY OF SURFACE POLARITONS

Here we summarize our theory of surface polaritons.5

A. Hamiltonian

We start with a Hamiltonian that contains the photons, the
phonons, and the phonon-photon interaction, We employ the
Coulomb gauge.23
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H = H0t + H0n. �8�

The first term is the photon Hamiltonian H0t which is written
as a harmonic oscillator using the usual raising �ak


† � and
lowering �ak
� operators

H0t =
1

2�
k


��k
�−k
 + �k
2Ak
A−k
� , �9�

Ak
 =
 �

2�k
�ak
 + a−k


† �, �k = ck , �10�

�k
 = − i
��k

2
�ak
 − a−k


† � , �11�

1

c
A��r� =
4�


�
k


Ak
���k
�eik·r, �12�

where  is the volume of the system, and the three-
dimensional photon wave vector is k= ��� ,kz�.

Similarly, the phonon Hamiltonian is

H0n =
1

2M
�
j�
�Pj� −

e

c
A��R j��2

+
M�0

2

2 �
j�

Qj�
2

+
e2

2 �
j j���

Qj�����R j − R j��Qj��, �13�

where ����R� is the instantaneous dipole-dipole interaction,
j denotes the lattice cite �at R j�, �� ,�� are vector compo-
nents, and �0 is the vibrational frequency of the optical pho-
non in the absence of photons. We convert the variables to a

slab geometry, where the two dimensional wave vector �
= �kx ,ky ,0� is in the plane of the slab. The integer l denotes
the layer, starting from the surface of the solid �l
=0,1 ,2 , . . .�. The phonon variables become Q�,l,� , P�,l,�.
There is also a variable for the photon field at the lattice site
and �i is the ion plasma frequency

D�,l,� =
a

L
�
kz,


���k
�Ak
eikzal, �14�

�i
2 =

4�e2

0M
. �15�

The volume of the system is =NxyLA0, where A0 is the area
per unit cell in the layer, Nxy is the number of molecules in
each layer, and L is the length in the z direction. We also
introduce the volume of a unit cell 0=A0a.

The lattice transform, in the layer geometry, of the instan-
taneous dipole-dipole interaction is

S�� = � l = l�
1

3
d��

l � l�
a

2�
e−�a	l−l�	�q�

−q�
−��l − l�� + q�

+q�
+��l� − l� ,�

�16�

d�� = ����1 − 3��z�, q�
� = i�� � ���z, �17�

where a is the lattice constant in the ẑ direction. The vector �
is in the �x ,y� plane, so that �� is nonzero whenever �
= �x ,y�. We also need the two-dimensional Fourier transform
of the retarded dipole-dipole interaction7

T����,l − l�� = � l = l�
1

3
d��

l � l�
a

2p
e−pa	l−l�	����

�2

c2 + ��
−��

−��l − l�� + ��
+��

+��l� − l���
p = 
�2 − �2/c2, ��

� = i�� � p��z. �18�

The two Fourier transforms are equal if c→	.
The phonon system has a transverse phonon ��T�, a lon-

gitudinal phonon ��L�, and a surface phonon ��S� given by

�T
2 = �0

2 −
1

3
�i

2, �L
2 = �0

2 +
2

3
�i

2, �S
2 = �0

2 +
1

6
�i

2. �19�

The dielectric function is

���� = 1 +
�i

2

�T
2 − �2 =

�L
2 − �2

�T
2 − �2 . �20�

Using this dielectric function in Eq. �1�, the classical theory
of the surface polariton has the dispersion

�2��� =
1

2
��L

2 + 2c2�2 − 
��L
2 + 2c2�2�2 − 8c2�2�S

2 . �21�

The classical and quantum solutions has an eigenfunction of
the form exp�−�al� where �=
�2−�2���� /c2. Using the
dispersion relation in Eq. �1�, one can show for surface po-
laritons

p2�2 = �4 −
�2

c2 ��2�� + 1� −
�2

c2 �� = �4, �22�

p� = �2 �23�

which is useful later.
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The above equations are solved using the equations of
motion. After some algebra,5 the eigenvalue equation for the
ion displacement

�2Q�,l,� = ��0
2 −

1

3
�i

2d���Q�,l,� − �i
2 �

ł��l,�

T���l − l��Q�,l�,�.

�24�

The only interaction between layers is the retarded interac-
tion T��, which is due to the photons.

B. Solutions

We summarize the solutions to Eq. �24�. Surface modes
have a dependence upon layer index of exp�−�la, where a
is a lattice constant, and � is a function of �� ,��. The theory
seems to have three possible choices of �: � , p ,�. Bulk
modes have an oscillatory layer dependence such as
sin�kzal+��. The five solutions are �1� the surface polariton
mode is also called the Fuchs-Kliewer mode2,3

Q�,l,� = QSP��
−e−�al. �25�

�2� The longitudinal surface mode has a frequency �=�L

Q�,l,� = QSL�q�
−e−�l − ��

−e−pal . �26�

�3� The bulk longitudinal mode also has a frequency �=�L

Qk,l,� = QBL�i�� sin�kzal�,kz cos�kzal� . �27�

�4� There are two bulk transverse modes. Both are solutions
to the equation c2k2=�2����. The first is

Qk,l,� = QBT1t� sin�kzal + ��, t� = �ky,− kx,0� , �28�

tan��� =
kz

p
. �29�

�5� The other bulk transverse mode is

Qk,l,� = QBT2�i��kz sin�kzal + ��,− �2 cos�kzal + �� ,

�30�

� = � + tan−1� �2

kzp
�, tan��� =

pk2

kz�p2 − �2�
� 0. �31�

All five modes are mutually orthogonal except the two lon-
gitudinal modes. Since they have identical eigenvalues, they
do not have to be orthogonal. They can be made orthogonal
by the standard method.

III. QUANTIZATION OF MODES

We consider the quantization of these solutions. We need
to know the value of other quantum variables for these

modes: variables such as Ḋ�,l,�.

A. Longitudinal mode

The easiest case is the longitudinal mode, which is done
first. It has no mixing with photons.

Ḋ�,l,� = 0,
Ṗ�,l,�

M
= − �L

2Q�,l,�. �32�

This result is valid for the surface mode Q�,l,�. It is simple to
quantize. The surface longitudinal mode is expressed in
terms of boson raising �CSL,�

† � and lowering �CSL,�� operators

Q�,l,� =
 �

2M�L
�CSL,� + CSL,�

† ��,l,�
�SL� , �33�

��,l,�
�SL� = NSL����q�

−e−�al − ��
−e−pal , �34�

NSL��� =

2pa

	� − p	
, �35�

P�,l,� = − i
��LM

2
�CSL,� − CSL,�

† ��,l,�
�SL� . �36�

The longitudinal mode does not produce a field outside of
the surface and does not mix with photon. A similar proce-
dure can be done for the bulk longitudinal mode, Eq. �27�.

B. Quantization of surface polariton

The surface polariton mode has a dispersion given by Eq.
�25�. The first step is to define raising and lowering operators
similar to Eqs. �33� and �36�.

Q�,l,� = QSP
 �

2M�SP
�CSP,� + CSL,�

† ��,l,�
�SP� , �37�

Q̇�,l,� = − iQSP
��SP

2M
�CSP,� − CSP,�

† ��,l,�
�SP� . �38�

Here ��,l,�
�SP� is the normalized form of Eq. �25�

��,l,�
�SP� = NSP��

−e−�al, �39�

1 = �
l=0

	

	��,l,�
�SP� 	2, �40�

NSP =
 2�a

p2 + �2 . �41�

The other factor QSP must be determined by quantizing the
entire Hamiltonian.

Every term in the Hamiltonian can be reduced to one of
two forms. They each involve a summation over lattice

planes l of: �i� QQ or �ii� Q̇Q̇. For example, the ion kinetic-
energy term is
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1

2M
�

j
�P� j −

e

c
A� �Rj��2

=
1

2 �
�,l,�

�P�,l,�


M
− �iD�,l,���P−�,l,�


M
− �iD−�,l,�� =

M

2 �
�,l,�

Q̇�,l,�Q̇−�,l,�. �42�

Another example is the photon terms in Eq. �9�

1

2�
k


�k
2Ak
A−k,
 =

1

2
�i

2M �
�,l,l�

�
�,�

Q̇�,l,�H���l − l��Q̇�,l�,�,

�43�

H���l − l�� =
a

L
�
kz

c2k2

�c2k2 − �2�2���� −
k�k�

k2 �eikza�l−l��.

�44�

The other term in H0t is found in a similar way

1

2�
k


�k
�−k
 =
1

2
�i

2�4M �
�,l,l�

�
�,�

Q�,l,�N���l − l��Q�,l�,�,

�45�

N���l − l�� =
a

L
�
kz

1

�c2k2 − �2�2���� −
k�k�

k2 �eikza�l−l��.

�46�

Thus we can write the Hamiltonian as a summation over
modes ��� and wave vectors �

H =
1

4�
�,�

�����C�,� + C�,−�
† ��C�,� + C�,−�

† �T�
�+� − �C�,�

− C�,−�
† ��C�,� − C�,−�

† �T�
�−� �47�

where a proper theory of quantizations requires that

T�
�+� = T�

�−� � T = 1 �48�

so that

H = �
�,�

�������C�,�
† C�,� +

1

2
� . �49�

The surface polariton Hamiltonian is written in standard bo-
son form.

We derive these expressions using

D�,l,� = i
�i

�2QSP
��

2
�CSP,� − CSP,−�

† ���,l,�, �50�

��,l,� = �
l��l

�T���l − l�� − S���l − l����,l�,�, �51�

P�,l,�


M
= − iQSP
��

2
�CSP,� − CSP,−�

† �U�,l,�, �52�

U�,l,� = ��,l,� +
�i

2

�2��,l,�. �53�

In terms of these variables, the desired functions are

T�
�+� =

�0
2

��
2 �

l,�
��,l,��−�,l,� −

�i
2

��
2 �

ll���

��,l,�S���l − l���−�,l�,�

+ �i
2��

2 �
ll���

��,l,�N���l − l���−�,l�,�

T�
�−� = �

l�

��,l,��−�,l,� + �i
2 �

ll���

��,l,�H���l − l���−�,l�,�.

�54�

The first term in T�−� is ��2=1. A similar result is found for
T�+�. In the definition of H�� write

�k
2

��k
2 − �2�2 =

1

�k
2 − �2 +

�2

��k
2 − �2�2 . �55�

The first term gives

G�� =
1

�2 �T�� − S�� �56�

and the second term gives �2N��

H�� = G�� + �2N��, �57�

�2N�� = H�� −
1

�2 �T�� − S�� . �58�

Put the last equation into the definition �54� of T�+�. The
terms with S�� cancel

T�
�+� =

�0
2

��
2 �

l,�
��,l,��−�,l,� −

�i
2

��
2 �

ll���

��,l,�T���l − l���−�,l�,�

+ �i
2 �

ll���

��,l,�H���l − l���−�,l�,�. �59�

The first two terms are just the eigenvalue Eq. �24� for the
surface polariton and give unity. Thus we have shown Eq.
�48� is valid, where

T = QSP
2 �1 + �T , �60�

QSP
2 �T = �i

2 �
ll���

��,l,�H���l − l���−�,l�,�. �61�

Since ultimately T=1 the definition of QSP is

QSP =
1


1 + �T
. �62�

Evaluating the integral in Eq. �44� gives

H���l − l�� =
a

4p3c2e−pa	l−l�	�A�� + pa	l − l�	B�� , �63�
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A�� = ��2 + p2���� − p2���z − ����, �64�

B�� = ��2 − p2���� + ��
−��

−, if l � l�, �65�

=��2 − p2���� + ��
+��

+, if l � l�. �66�

In doing the above summations in Eq. �61�

QSP
2 �T = − QSP

2 N�
2�

ll�

e−�a�l+l��−pa	l−l�	�
��

��
−�A��

+ pa	l − l�	B�����
+. �67�

The summations are

�
��

��
−A����

+ = − 2p2�2, �68�

�
��

��
−B����

+ = 0, �69�

�
ll�

e−�a�l+l��−pa	l−l�	 =
1

a2��� + p�
=

p

a2��p2 + �2�
, �70�

where we used p�=�2 to simplify the last expression. Col-
lecting all these terms gives

�T =
�i

2�2

c2�p2 + �2�2 =
�L

2 − �2

c2�p2 + �2�
. �71�

We use Eq. �62� to define a new normalization coefficient

Q�,l,� = ÑSP
 �

2M�
�CSP,� + CSP,−�

† ���
−e−�al, �72�

ÑSP =
NSP


1 + �T
= c
2�a

W
, �73�

W = c2�p2 + �2��1 + �T� = c2�p2 + �2� + �L
2 − �2, �74�

=��2c2�2 + �L
2�2 − 8c2�2�S

21/2. �75�

Note that the quantity W is identical to the square-root part of
the surface polariton dispersion in Eq. �21�. The quantization
of the surface polariton is now determined.

C. Quantization of bulk transverse modes

�1� The bulk transverse mode t� sin�kzal+�� has

Ḋk,l,� = − 
M
�i

���� − 1
Qk,l,�, �76�

Ṗk,l,�

M
= − �T

2Qk,l,�. �77�

We quantize it using

Qk,l,� = QBT1
 �

2M��k�
�Ck,BT1 + C−k,BT1

† ��k,l,�
�BT1�, �78�

�k,l,�
�BT1� = Nk,1t� sin�kzal + �� , �79�

Nk,1 =
 2

�2�N + �1�
, �1 =

sin�kza − 2��
sin�kza�

. �80�

Using this form, the expression for �T1 in Eq. �61� is

�T1 =
�i

2k2

c2�p2 + kz
2�2 , �81�

Ñk,1 =
 2

�2�Nz + �1��1 + �T1�
. �82�

�2� The other bulk transverse mode has

Qk,l,� = QBT2
 �

2M��k�
�Ck,BT2 + C−k,BT2

† ��k,l,�
�BT2�, �83�

�k,l,�
�BT2� = Nk,2�kzi�� sin�kzal + ��,− �2 cos�kzal + �� ,

�84�

Ḋk,l,� = − 
M�i� Qk,l,�

���� − 1
+

QBT2�

2
cos���q�

−e−�al� ,

�85�

Ṗk,l,�

M
= − �T

2Qk,l,� − �i
2QBT2�

2
cos���q�

−e−�al. �86�

Use a form similar to Eq. �78� and find

Ñk,2 =
1

k�

 2

�Nz + �2��1 + �T2�
, �87�

�T2 =
�i

2��4 + kz
4�

c2k2�p2 + kz
2�2 . �88�

IV. POTENTIAL FIELDS OUTSIDE OF THE SURFACE

The modes of the crystal may generate electrostatic po-
tentials outside of the crystal surface �z�0�.

A. Scalar potential

��r� = �
j

ejQ� j · �� j
1

	R j − r	
, �89�

=�
�

2�e

A0�
N�

ei�� ·��+�zL , �90�

L = − �
l,�

Q�,l,�q�
+e−�al. �91�

This expression is useful once we determine Q�,l,�.

1. Surface polaritons

For the surface polariton, the result is
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��r� = −
�ic

A

�
�


 ��p

����W���
�CSP,� + CSP,−�

† �ei�� ·��+�z,

�92�

where z�0. Note that this exact result does not resemble the
matrix element M��� in Eq. �5�.

2. Bulk transverse phonon

In this case the summation over L gives

L = − �
l,�

�k,l,�
�BT2�q�

+e−�al, �93�

=Ñk,2�2cos���
a

= − Ñk,2
�2kz�

2

a
p2c4k4 + kz
2�4

. �94�

In this case the matrix element M�k� in Eq. �3� is

M�k� =
q�i cos���

k


 ��

��1 + �T2�
�95�

and the image potential �z�0�

VBT2�z� = − q2��i
2� d3k

�2��3

e2�z

k2�1 + �T2�
kz

2�2

kz
2�4 + p2c4k4 .

�96�

At first it appears this integral diverges as k→0, However,
the product k2�T2 goes to a constant in this limit, so the
integrand does not converge. Since the image potential at
large 	z	 is determined by the integrand for small values of
wave vector, the factor �T2 provides a major contribution to
the long-range image potential. It is rather easy to evaluate
the above integral in the limit that 	z	→	 and to show that it
goes to a constant divided by 	z	. The above integral, which
is the contribution from the transverse acoustic bulk
phonons, is an important contribution to the image potential
at long range.

In the limit that k→0 then ��k�2→c2k2 /R where R
=�L

2 /�T
2 =��0��1. At large 	z	 the image potential from the

bulk transverse phonons is

lim
	z	→	

VBT2�z� = −
q2�i

2

2�
�

0

	

dk�
0

�0

d� sin���e−2k	z	sin���

�
cos2���

c2k2 + �i
2f�cos ��

R

cos2��� − R + R2 sin2���
,

�97�

sin��0� =
1


R
, f��� = �1 − 2�2 + 2�4�� R

R − 1
�2

. �98�

The first denominator is from c2k2�1+�T2� and the second is
from cos2���. Set k2=0 in the denominator and the integral
over dk becomes trivial. One is left with an angular integral

lim
	z	→	

VBT2�z�

= −
q2

4�	z	�0

�0

d�
cos2���
f�cos ��

R

cos2��� − R + R2 sin2���
.

�99�

The value of the integral depends upon R, which is ��0�. The
above integral is slightly less than 50%. About half of the
image potential at long range is supplied by the bulk-
transverse optical phonons. The rest is provided by the radia-
tion modes.22 They exist partly in the vacuum outside of the
solid surface and have a dispersion relation �2=c2k2. None
of the long-range image potential is provided by the surface
polaritons, which has been the traditional theory. Ekardt22

provided a theory of the image potential from bulk and ra-
diation modes. However, he took a continuum model of the
solid, which ignored local-field effects and our theory is dif-
ferent than his.

B. Vector potentials

A current of particles outside of the surface can also in-
teract with the substrate through the vector potential. The
electric field contains the time derivative of the vector poten-
tial, which in our notation is proportional to �k
. Our solu-
tion gives for this quantity

�k
 = −
�i�

2

c2k2 − �2���

aM

L
�̂�k
���

l

Q� �,le
ikzz�

�100�

In order to discuss the electric field from a surface wave
with wave vector �� , we construct a function such as5

Ḋ�,��z� =
a

L
�
kz,


���k
��k
e−ikzz. �101�

This function is Ḋ�,l,� when z= la. However, now our inter-
est is outside the surface where z�0. Insert Eq. �100� into
Eq. �101� and evaluate the summation over kz

Ḋ�,��z� = − �i�
2
M�

l,�
G���z − al�Q�,l,�, �102�

=− �i

M�

l,�
�T���al − z� − S���al − z�Q�,l,�. �103�

The electric field has the vector potential term, and a scalar
potential term. Both terms contain the factor of S�� and can-
cel. One is left with only the retarded interaction

E�,��z� = �i
4�M

0
epz�

l,�
T���al�Q�,l,�. �104�

This interaction agrees with the classical answer. It is zero
for the surface polariton at the longitudinal frequency.

For the surface polariton, the electric field outside of the
surface is

�
l,�

T���al���
−e−�al = −

p

p + �
��

+ = −
p2

p2 + �2��
+ , �105�
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��
� = �i��, �

�2

p
� �106�

which gives an electric field

E�,� = −
4�e

0

p2

p2 + �2��
+epzÑ�
 �

2����M
�CSP,� + CSP,−�

† � .

�107�

We also need the electric field at a lattice within a layer. It
is given by the script symbol

E��r� =
1


Nxy
�
�

ei�� ·��E�,l,�, �108�

E�,l,� =
4�e

0
�
l�,�

T���l − l��Q�,l�,�. �109�

In the classical theory, the z component of the electric field is
discontinuous at the surface since �Ez

�in�=Ez
�out�. In our theory

the discontinuity is due to the term in T���l− l�� which has
l= l�. For the surface layer and all interior layers, this term is
included. Outside the surface it is not included. This causes a
discontinuity in the normal component of the electric field.

The interaction between a charged particle and the surface
polariton is also through the p-dot-A interaction

V = −
e

mc
� d3r��†�r�p��r� · A�r� , �110�

e

c
A��r� = M�i

2�
�

ei�� ·���
l�

G���z − al�Q̇�,l,�, �111�

MQ̇�,l,� = − iÑ���
−e−�al�CSP,� + CSP,−�

† �
�����M
2

.

�112�

The resulting interaction contains

�
l�

G���z − al���
−e−�al =

1

�2���� p

2�
q�

+e�z −
p2

p2 + �2��
+epz� .

�113�

A charge outside of the surface of a polar crystal interacts
with the surface polaritons through two interactions: �1� the
scalar potential and �2� the p-dot-A interaction.

V. CLASSICAL THEORY OF SURFACE POLARITONS

Here we provide the standard theory1 of surface polaritons
and then quantize the classical Hamiltonian. We solve Max-
well’s equations at a surface

�� � B�r,t� =
1

c

�

�t
�E�r,t� , �114�

�� � E�r,t� = −
1

c

�

�t
B�r,t� . �115�

Assume the surface is the plane z=0, where z�0 is vacuum,
and z�0 is a solid with a dielectric constant ����. The above
six equations group into two sets of three. One set describe
transverse magnetic modes �TM� while the other set de-
scribes transverse electric modes. Only TM modes describe
surface plasmons.

A. TM modes

In the plane of the surface, all fields have the phase factor
of exp�i��� ·�� ��t�, so that derivatives with respect to t give
�i� /c, derivatives with respect to x give i�x, and derivatives
with respect to y give i�y. Introduce an unknown amplitude
B���. The transverse magnetic field is

B�r,t� = i�
�

B���ei�� ·���x̂�y − ŷ�x��a�e−i�t + a−�
† ei�t��B��� ,z� ,

�116�

�B��� ,z� = �e−�z z � 0

epz z � 0
� , �117�

�2 = �2 −
�2

c2 ����, p2 = �2 −
�2

c2 , �118�

where �a� ,a�
†� are the raising and lowering operators for sur-

face polaritons. The prefactor of i in B�r , t� makes the mag-
netic field Hermitian. The electric field, and vector potential,
associated with this magnetic field, are

E�r,t� = i�
�

B���ei�� ·�� cp

�
�a�e−i�t − a−�

† ei�t��� A��� ,z� ,

�119�

A�r,t� = �
�

B���ei�� ·�� c2p

�2 �a�e−i�t + a−�
† ei�t��� A��� ,z� ,

�120�

�A,���� ,z� = ���
−e−�z z � 0

��
+epz z � 0

� , �121�

��
− = �i��,− p�, ��

+ = �i��,�� . �122�

All fields are Hermitian. The components of the electric and
magnetic field that are parallel to the surface are conserved at
z=0. The normal component of the electric field has a com-
ponent equation −p�=�, which is one way to express the
dispersion relation for surface polaritons.

B. Quantization

The next step is to calculate the energy density in these
fields. Evaluate the space integrals
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EB =� d3r

8�
B�r,t�2

=
A

16�
�
�

B���2�a + a†��a + a†�� 1

�
+

1

p
��2, �123�

EE =� d3r

8�
�E�r,t�2 = −

A

16�
�
�

B���2�a − a†��a − a†�
p2c2

�2

� ���p2 + �2�
�

+
�2 + �2

p
� . �124�

The terms in EB can be simplified to

�2� 1

�
+

1

p
� =

�2

p�
�p + �� = p + � =

1

p
�p2 + �2� . �125�

In the expression for EE, the �2 terms cancel using �=
−� / p, and the other two terms are simplified using �=�2 / p

���p2 + �2�
�

+
�2 + �2

p
� =

�2 − p2

p
, �126�

=
�4 − p4

p3 =
��2 − p2���2 + p2�

p3 =
�2

c2

�2 + p2

p3 . �127�

Both factors in the two energy densities are the same. So we
can set

A

16�
B���2�2 + p2

p
=

1

4
����� , �128�

B��� =
4������p
A��2 + p2�

. �129�

This form for B��� has the advantage that it is valid for very
dielectric function ����. The total energy in the system is

EB + EE = �
�

������a�
†a� +

1

2
� . �130�

The final result for the electric field outside the surface is

E�,��z� = icp
 4��p

A0��p2 + �2�
�a� − a−�

† �ei�� ·��+zp��
− .

�131�

This classical result should be compared with the quantum
result in Eq. �107� which we try to write in a similar way
using CSP,�= ia�

E�,��z� = i
�icp�

p2 + �2
 4��p

A0W�
�a� − a−�

† �ei�� ·��+zp��
− .

�132�

The two results, from classical and quantum physics, are
obviously different. They differ for all wave vectors.

VI. DISCUSSION

We have solved the quantum mechanical problem of cou-
pling between photon fields and phonon fields, near the sur-
face of a polar dielectric. We show how to quantize each of
the modes. We also repeated the standard classical quantiza-
tion and showed that it is different. We also derived the
eigenfunctions for the bulk optical phonons for the layered
geometry. We also showed how to quantize these modes.

We also discussed in detail the interaction of a charged
particle, outside of the surface, with the surface and bulk
polaritons. There are two interaction terms. One is the scalar
potential and the other is by a vector potential. Both expres-
sions are new. They replace Eq. �2� by the proper quantum
expressions.

The classical derivation of the Fuchs-Kliewer mode gives
only a vector potential. That theory has no scalar potential
and cannot actually have an expression such as Eq. �2�. The
form of Eq. �2� is from a scalar potential. Our theory shows
that surface polaritons generate both a scalar potential and a
vector potential, which both act on a charged particle outside
of a surface.

We also used our version of the scalar potential to calcu-
late the image potential. For the surface polariton it decayed
exponentially away from the surface, because of the cut-off
�i. The Fuchs-Kliewer mode does not explain the classical
image potential far from the surface. The actual source of the
image potential is a volume transverse phonon-polaritons
and also the radiation modes. We presented the image poten-
tial from the transverse phonon-polariton and showed that it
gave less than half of the classical value at long distance. The
rest is from radiation modes. Ekardt22 came to similar con-
clusions. However, our derivations differ since he took the
solid to be continuous media and omitted local field correc-
tions. As a result, our matrix elements are different.
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