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We present a nonequilibrium many-body formulation of the coherent ultrafast nonlinear optical response of
doped semiconductors and systems with a strongly correlated ground state, such as the quantum Hall system
�QHS�. Our theory is based on a truncation of the density-matrix equations of motion in the absence of a small
interaction parameter, obtained by expanding in terms of the optical field and by using Hubbard operator
density matrices to describe the exact dynamics within a subspace of many-body states. We identify signatures
of noninstantaneous interactions between magnetoexcitons �X� and the incompressible two-dimensional elec-
tron gas �2DEG� during femtosecond and picosecond time scales by describing X coupling to inter-Landau-
level magnetoroton �MR� and magnetoplasmon excitations. We show that strong X coupling to X+MR con-
figurations changes the temporal evolution of the nonlinear optical spectra as compared to the random-phase
approximation �RPA�. We calculate the three-pulse four-wave mixing signal, whose dependence on frequency
and two time delays reflects the dephasing and relaxation of the strongly coupled X-2DEG system, and
demonstrate that the dynamics of the X-2DEG interaction process can be resolved with femtosecond optical
pulses. Our results shed light into unexplored subpicosecond and coherent dynamics of the QHS and may be
used to interpret and guide two-dimensional correlation spectroscopy experiments.
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I. INTRODUCTION

While the thermodynamic, linear response, and transport
properties of many condensed-matter systems do not depend
critically on the residual interactions among their elementary
excitations, these interactions dominate the nonlinear re-
sponse to external stimuli. The interactions among quasipar-
ticles lead to decoherence and dephasing but also create new
quantum coherences between many-body states.1–4 Under-
standing and manipulating coherent dynamics is essential for
building a new generation of controllable devices, whose
speed limits are governed by the time scales of fundamental
many-body processes. At the same time, a detailed under-
standing of the interaction processes leading to coherence
and decoherence is of primary importance in the fields of
macroscopic quantum phenomena, coherent control of mo-
lecular phenomena and femtochemistry, and for under-
standing the concepts underlying quantum information
technology.5

In undoped semiconductors, the interactions among exci-
ton quasiparticles determine the transient nonlinear optical
response during the femtosecond temporal regime following
photoexcitation,1,3,6 where well-established quasiequilibrium
concepts such as the free energy break down. To extract in-
formation from the experiments, nonequilibrium many-body
theories such as the semiconductor Bloch equations,4,7 dy-
namics controlled truncation scheme �DCTS�,2,8,9 correlation
expansion,3 Keldysh Green’s functions,4,7 and the canonical
transformation “dressed semiconductor” approach10 have
been used. The exciton-exciton �X-X� interactions dominate
the one-dimensional two-pulse four-wave mixing �FWM�

spectra for negative time delays, where the phase-space fill-
ing �Pauli blocking, PSF� nonlinearities do not contribute.1,6

The time-dependent Hartree-Fock treatment of the X-X
interactions4,7 predicts a negative time delay signal that de-
cays twice as fast as the positive time delay signal.1,6 In
undoped semiconductors, deviations from such an asymmet-
ric temporal profile were interpreted as a signature of corre-
lations and scattering among exciton quasiparticles.1,11

To interpret the nonlinear optical spectra of undoped
semiconductors, one need not take into account correlations
involving ground-state electrons. A rigid Hartree-Fock
ground state, with full valence band and empty conduction
band, suffices when Auger processes are negligible.12 The
lowest electronic excitations are then high-energy interband
transitions, which react instantaneously to the photoexcited
carriers. In doped semiconductors and metals, however, the
situation is different because low-energy electronic excita-
tions interact with the photoexcited carriers. The fundamen-
tal reaction time, the period of one oscillation of the lowest
excited state, can be long, in which case the system responds
unadiabatically to photoexcitation. The nonlinear response is
then strongly influenced by the quantum dynamics of the
entire system, including the ground-state electrons. The theo-
ries describing the nonlinear response of undoped semicon-
ductors must be extended when considering doped semicon-
ductors with strong e-h correlations10,13,14 or the quantum
Hall system �QHS�.15–19 For example, the DCTS truncates
the hierarchy of density matrices generated by the interac-
tions based on the assumption that all Coulomb interactions
occur between photoexcited e-h pairs and are thus dynami-
cally generated by the optical excitation. In the QHS how-
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ever, the standard diagrammatic expansions and DCTS fac-
torizations, which assume a Hartree-Fock reference state and
the absence of free ground-state carriers, break down. One
may expect that the strong ground-state correlations lead to
quantum dynamics triggered by photoexcitation.

The quantum well confinement along the z direction and
the magnetic field quasiconfinement within the x-y plane dis-
cretizes the eigenstates of the QHS into highly degenerate
discrete Landau levels �LLs�. In the ground state, these LLs
are partially filled with the correlated two-dimensional elec-
tron gas �2DEG�.20 The ratio of occupied states to LL degen-
eracy defines the filling factor �. The LL degeneracy in-
creases with magnetic field and above a threshold value, �
�2, the ground-state electrons only occupy the lowest LL
�LL0� states; all the higher LLs �LL1, . . .� are then empty in
the ground state. The coupling of the degenerate LL0 states
by the Coulomb interaction results in a strongly correlated
incompressible quantum liquid,21 whose neutral collective
charge excitations �magnetoplasmons �MPs� and magnetoro-
tons �MRs�,20,22–27 excitons of composite fermions,28–30 in-
terband quasiexcitons,31 etc.� depend on �. For �=1 /m,
where m is an integer, the exchange Coulomb interactions
can stabilize a ground state with polarized electron spins and
charge excitation gap, the quantum Hall ferromagnet.22,32–37

The interband optical properties of the QHS at fractional �
have mainly been studied so far with photoluminescence.38

The fundamental interband excitations correspond to exci-
tons and trions, i.e., charged excitons bound to a 2DEG elec-
tron, whose correlations and coupling with the 2DEG can be
controlled experimentally by changing the asymmetry �dop-
ing profile� and width of the quantum well that determine the
electron-hole separation.31,39–43

The study of the ultrafast nonlinear optical response of the
QHS transcends across the boundaries of two largely discon-
nected communities. The nonlinear optical response is deter-
mined by an ensemble of n-h many-body states describing n
photoexcited valence-band holes interacting with Ne+n
conduction-band electrons, where Ne is the number of elec-
trons in the ground state. In the absence of Auger processes,
the nonlinear response to �2�−1�th order in the optical field
only depends on few hole states, n��. One could draw an
analogy with the exciton+phonon states that determine the
nonlinear response in undoped semiconductors2,3 and con-
sider products of up to �e-h pairs with any number of 2DEG
excitations. However, there are some important differences.
In the QHS, both the X and 2DEG excitations are electronic
in nature and therefore subject to Pauli and Coulomb corre-
lations among each other. In contrast, in the undoped system,
the X operators commute with the phonon operators. Addi-
tionally, in the QHS, the conduction band is partly occupied
in the ground state with a correlated 2DEG while in the
undoped system it is empty. As a result, the optical response
of the QHS depends on the dynamics of an incompressible
quantum liquid �2DEG�, which responds to the photoexcited
X’s via the Coulomb interaction. Depending on �, this dy-
namics is governed by Laughlin21 and composite fermion29,30

correlations. Finally, the photoexcited X can bind with a
2DEG electron, forming trion states with binding energies of
a few millielectron volts that manifest themselves as extra
peaks in the optical spectra.31,39–43

When the characteristic Coulomb energy exceeds the LL
broadening due to disorder, the QHS ground state at �=1
corresponds to a ferromagnet with 100% spin polarization.37

Neglecting small effects from LL mixing, this state is a
single Slater determinant, represented exactly by Laughlin’s
wave function, with all LL0 spin-↑ states full and all spin-↓
states empty. For weak disorder, the ground state around �
=1 includes a small population ����−1�� of topologically
charged spin texture quasiparticles �skyrmions�.33–37 For
larger disorder, the ground state is maximally spin polarized,
however the empty states with respect to the �=1 ferromag-
netic state are populated by conventional Laughlin quasipar-
ticles. For strong disorder, the ferromagnetic order is
destroyed.37

At fractional �, the e-e interaction removes the degen-
eracy of the noninteracting system, producing robust ground
states separated from the excited states by an energy gap.
This nonperturbative effect can be interpreted by considering
the formation of composite fermion quasiparticles, i.e., topo-
logical bound states of an electron and an even number of
magnetic-flux quantized vortices.29,30 The Coulomb interac-
tion transforms the strongly interacting electrons into weakly
interacting composite fermions. The partly filled lowest elec-
tron LL splits into several composite fermion LLs. Fractional
quantum Hall effects then occur for integer composite fer-
mion LL filling factors, when an integer number of compos-
ite fermion LLs are fully occupied.29,30

In this paper we present in full detail a microscopic many-
body formulation of the ultrafast nonlinear optical response
of a doped system with correlated ground state, which can be
used to obtain the three-pulse ultrafast nonlinear optical
spectra. The development of this theory was motivated by
FWM experiments16,18,44–49 demonstrating that, at low inten-
sities, the 2DEG interactions change the spectral and tempo-
ral profile of the FWM signal in a significant way45–47 as
compared to a similar undoped quantum well.50

Our goal here is twofold. In the first part of the paper we
obtain the third-order ultrafast nonlinear optical response for
any filling factor by considering a hierarchy of density-
matrix equations of motion. To truncate this hierarchy, we
note that, in the QHS system, there is no small interaction
parameter, except for the ratio of the Coulomb energy to the
cyclotron energy that separates LLs in the large magnetic
field limit �which however is comparable to 1 for magnetic
fields up to 10 T where FWM experiments are performed�. In
the absence of a small parameter, we obtain a closed system
of Hubbard operator density-matrix equations of motion that
describes the exact dynamics, within a subspace of 0-h, 1-h,
and 2-h many-body states, including relaxation. Hubbard op-
erator equations of motion have been used before to study
the dynamics of the Hubbard Hamiltonian,51 the spin excita-
tions in the manganites,52 X-X correlations in the nonlinear
response of undoped semiconductors,53 and the linear re-
sponse of quantum liquids.26,27,31,43,54

Our scheme proceeds in two steps. First we obtain the
linear interband coherent amplitudes �e.g., the optical polar-
ization�, by calculating the time evolution of the 1-h photo-
excited many-body state within an appropriate subspace of
1-h+ �Ne+1�-e states that include excited 2DEG configura-
tions �as, e.g., in Refs. 14 and 31�. This step treats the cor-
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relations of the photoexcited e-h pair with the ground state
2DEG, which lead, e.g., to the formation of trion bound
states, quasiexcitons, or a strong 2DEG perturbation due to
shake up of electronic excitations �dynamical 2DEG re-
sponse�. As a second step, we treat the nonlinear contribu-
tions to the intraband and interband density matrices by
adopting an expansion in terms of the optical field and noting
that, similar to the DCTS,2 there is a one to one correspon-
dence between number of valence holes and number of
emitted/absorbed photons. This correspondence allows us to
treat separately the dynamics within subspaces of many-body
states with fixed �small� number of holes. In the undoped
system, Ne=0 and the only carriers present in the system
come from e-h pairs generated by the optical excitation. As a
result, the 1-h and 2-h subspaces are spanned by X and X
+X states, which reduces the number of independent density
matrices as in the DCTS.2,8,9

Given the complexity of describing the full dynamics
within the 2-h+ �Ne+2�-e subspace and the need to include
incoherent effects due to relaxation,2,9 we introduce a decom-
position of the time-evolved many-body wave function into
correlated and uncorrelated parts, analogous to the cumulant
expansions of the DCTS, which however applies to systems
with a populated correlated ground state. This decomposition
allows us to separate the contributions to the interaction-
induced nonlinear density matrices that can be expressed as
products of interband coherent amplitudes �polarizations�
from fully correlated contributions, whose dynamics differs
due to multiparticle correlations among photoexcited carriers
leading to memory effects.1,9,11 Our formulation applies to
any strongly correlated system under the following general
conditions: �i� an expansion in terms of the optical field is
appropriate, �ii� the optical response is determined by elec-
tronic transitions between two or more “bands,” i.e., many-
body states consisting of different atomic orbitals, which are
disconnected to good approximation in the absence of pho-
toexcitation, and �iii� the optical transitions occur between a
band that is either completely filled or completely empty in
the unexcited system and a band that is partially filled.

In the second part of the paper, we apply the above theory
to identify the main qualitative temporal and spectral fea-
tures of the three-pulse FWM signal arising from X coupling
to LL0→LL1 inter-LL magnetoroton excitations. This par-
ticular calculation was motivated by the experiments of
Chemla and co-workers,16,18,44–49 who observed an unusual
FWM spectral and temporal profile for ��2 when exciting
close to LL1 and looking at LL0 energies. Since the photo-
excitation of the LL0 resonance did not produce any unusual
behavior for the mobilities of their symmetrically doped
quantum wells, we suppress any trion effects here by using
the ideal 2D system Hamiltonian at �=1 and assume a small
ratio of Coulomb-to-cyclotron energy to highlight light-
induced dynamical inter-LL coupling nonlinear effects in the
presence of an incompressible 2DEG.

Some aspects of our theory may be found in Refs. 15–19,
which focused on the initial coherent temporal regime.
There, a qualitative understanding of the main experimental
features45–47 was obtained by solving a simple average po-
larization model. This model was derived from the theory of
Ref. 15 by using a Lanczos basis of three many-body states,

with interaction parameters obtained by fitting the experi-
ment. Here we derive the exact third-order nonlinear optical
response, including nonlinearities neglected in our earlier
work, and also address the incoherent temporal regime fol-
lowing the decay of the interband polarization, ignored in
our earlier works. In addition to describing microscopically
the coherent temporal oscillations and their interaction-
induced decay, we identify a FWM signal that rises on a
picosecond time scale and reflects the gradual buildup of
populations of X+MP and X+MR configurations, as a result
of X-2DEG interactions. Our quantum kinetic calculation
uses a continuum basis of many-body states, unlike for our
average polarization model.18,19 They allow us to identify, in
the simplest possible way, experimental signatures due to
magnetoroton 2DEG excitations, which result from many-
body corrections to the local field of an incompressible quan-
tum liquid. These excitations are missed by the random-
phase approximation �RPA� treatment of the 2DEG
interactions, which only gives MPs.25–27

The outline of this paper is as follows. In Sec. II we
discuss the many-body Hamiltonian and the collective opera-
tors that create the electronic excitations. In Sec. III we dis-
cuss the interaction effects that present the main challenge
for describing the optical dynamics. In Sec. IV we present an
exact formulation of the QHS linear absorption valid for any
�. In Sec. V we obtain the second-order intraband density
matrices that describe photoexcited populations and intra-
band coherences. In Sec. VI we obtain the third-order inter-
band density matrices and describe the different interaction-
induced contributions to the nonlinear polarization that gives
the transient nonlinear optical spectra. In Sec. VII we use the
above formulation to calculate the linear absorption and the
three-pulse transient FWM spectra at �=1, as function of
frequency and two time delays. We end with our conclusions.
Some technical details are presented in four appendices.

II. HAMILTONIAN AND COLLECTIVE
EXCITATIONS

The general second-quantization Hamiltonian describing
the system in the absence of optical fields reads

H = �
�

�Eg + ��
c �ê�

† ê� + �
�

��
v ĥ�

† ĥ� + Hint, �1�

where ê�
† �ĥ�

†� create a conduction �valence� electron �hole�
state in a state labeled by a composite index � that contains
all relevant single-particle quantum numbers, ��

e,h are the dis-
crete LL energies, and Eg is the semiconductor band gap. Hint
describes the e-e, e-h, and h-h Coulomb interactions,

Hint =
1

2 �
�1�2�3�4

�v�1�2,�3�4

ee ê�3

† ê�1

† ê�2
ê�4

+ v�1�2,�3�4

hh ĥ�3

† ĥ�1

† ĥ�2
ĥ�4

− v�1�2,�3�4

eh ĥ�3

† ê�1

† ê�2
ĥ�4

− v�1�2,�3�4

he ê�3

† ĥ�1

† ĥ�2
ê�4

� . �2�

By treating the coupling of the optical field E�t� within the
dipole approximation,7 the total Hamiltonian reads
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H�t� = H − �d�t�X̂† + H.c.� , �3�

where d�t�=�E�t� is the Rabi energy, � is the interband tran-

sition matrix element, and X̂† is the interband transition op-
erator, expressed as a linear combination of e-h creation op-

erators ê�
† ĥ�

† .
To demonstrate the generic qualitative features due to the

nonequilibrium correlations, one can adopt a simple two-
band Hamiltonian H describing two-dimensional electrons
and holes subject to a perpendicular magnetic field.4,7 We
also consider for simplicity right-circularly �	+� polarized
light, which gives a single LL0 absorption peak via a single
interband transition that creates spin-↓ electrons, and simpli-
fies the interpretation of the experiments.47 In the Landau
gauge, �= �k ,n ,	�, where k is proportional to the cyclotron
orbit center x coordinate, n is the LL index, and s denotes the
spin. ��

e,h=
c
e,h�n+1 /2�, where 
c

e,h=eB /me,h are the electron
and hole cyclotron energies ��=1�. The interaction matrix
elements are given in Appendix A. Although the discrete
energy LLs resemble an atomic system, they have a macro-
scopic degeneracy N=L2 /2��2, where L is the system size
and l is the magnetic length. We introduce the LL filling
factor �=Ne /N=2��2ne, where Ne �ne� denotes the number
�density� of electrons in the ground state.

Some particularities of the realistic system, such as finite
quantum well height and width, doping and confining poten-
tial profile, spin-orbit interaction, disorder effects, etc., are
important for comparing to experiment.43 For example, the
optical selection rules resulting from invariance under mag-
netic translations �geometric symmetry�,55 particle-hole sym-
metry between conduction electrons and valence holes �hid-
den symmetry�,39,56,57 and the absence of disorder in the
ideal 2D system are partially lifted in the realistic system.
The formalism developed in the first part of this paper also
applies to the realistic system.

The optical dynamics is determined by interband and in-
traband excitations of the ground state �G�. In the undoped
system, the following operators create �1-LLn-e+1-LLm-h	
excitons with total momentum q:

X̂qnm
† =

1

N

�
k

eikqx�2
êk+qy/2n↓

† ĥ−k+qy/2m↓
† . �4�

In the ideal system, the selection rules allow the direct pho-

toexcitation of q=0, m=n e-h pairs, created by X̂n
†= X̂q=0nn

† .
The Pauli exchange effects between such X’s are described
by the deviation of their commutator from bosonic behavior,

�X̂n,X̂m
† � = nm�1 − �̂nm� , �5�

where �̂nm= �̂nm
e + �̂nm

h . The operators

�̂nm
h =

1

N
�

k

ĥ−kn↓
† ĥ−km↓, �̂nm

e =
1

N
�

k

êkn↓
† êkm↓ �6�

describe the LLn filling factors �n=m�, due to ground state
or photoexcited carriers, and create inter-LL excitations �n
�m�. For the intraband excitations, we introduce the collec-
tive electron and hole excitation operators analogous to the
magnetoexciton operators, Eq. �4�,

�̂qnm	
e =

1

N

�
k

eiqxk�2
êk+qy/2n	

† êk−qy/2m	 �7�

and

�̂qnm	
h =

1

N

�
k

eiqxk�2
ĥ−k+qy/2n	

† ĥ−k−qy/2m	. �8�

Similar to the collective excitations of quantum liquids,54

the states �̂qn�n	
e �G� have been used as a basis to describe the

neutral excitations of the Laughlin state at certain � �single-
mode approximation�.20,22,27,28 Within this approximation,
the neutral collective charge excitations of the 2DEG corre-
spond to MP modes created by �̂qnm	

e .20,22,27,28 In contrast to
phonons,2 MP-MP and X-MP Pauli exchange effects are im-
portant and are described by the commutators in Appendix
B. A LLm→LLn MP can be considered as an “exciton”
formed by a LLn electron and a hole in the LLm 2DEG.
However, such excitons couple to the 2DEG electrons. Com-
parisons to small system exact diagonalizations showed that
the single-mode approximation describes well the excitation
energy dispersion for �=1 / �2m+1�, where m is an integer, at
small and intermediate wave vectors q close to the roton
minimum. However, it does not work well for other � or for
large q. In this case, one can consider composite fermion
quasielectron-quasihole excitations.28,31 The collective
2DEG excitations at �=n / �2mn+1�, where n is an integer,
are then described by acting with the operators �Eq. �7�� on
the Slater determinant of n filled LLs, multiplying by the
Jastrow factor, and then projecting to the lowest LL.28 For
�=1 / �2m+1�, the two above approaches produce the same
results for small q while for other � they differ for all q.

Analogous to the above “2DEG exciton” states, we intro-
duce the zero-momentum interband exciton states �Xn�
= X̂q=0nn

† �G�. The difference from undoped semiconductors is

that X̂n
† act on the strongly correlated ground state �G� of the

Hamiltonian H with Ne electrons. Using Eq. �5�, we obtain
the orthogonality relation

�Xn�Xm� = �1 − �n�nm, �9�

where �n= �G��̂nn
e �G� is the ground-state filling factor of the

LLn electron states. At �=1, excitons and quasiexcitons co-
incide. At fractional �, exact diagonalization calculations at
�=1 /3 �Ref. 31� showed that the zero-momentum exciton
and quasiexciton states give equivalent results when used to
approximate the q=0 eigenstates.

III. INTERACTION EFFECTS

In this section we obtain equations of motion for the non-
linear polarization, in a form that establishes the connection
with undoped semiconductor and atomic systems. We also
use the ideal 2D system Hamiltonian to discuss the interac-
tion effects in a system with hidden symmetry, which sim-
plifies the optical response.56

We start by expanding the interband transition operator X̂,
which describes the coupling of the optical field in the
Hamiltonian H�t�, in terms of e-h pair creation operators:
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X̂†=
N�nX̂n
†. In the ideal 2D system, where X̂†=�nkêkn

† ĥ−kn
† , a

natural choice are the zero-momentum LL exciton operators

X̂q=0nn
† due to the hidden symmetry.56 However, in our dis-

cussion below X̂n
† can be any combination of e-h creation

operators ê�
† ĥ�

† .
Within the dipole approximation, the optical response is

described by the polarization �e-h coherence�4,6

P�t� = ��
n

Pn�t�, Pn�t� =
�X̂n�

N

, �10�

whose equation of motion is obtained from Eq. �B1�. In the
doped system, this equation of motion depends on the inter-
actions between the e-h pair Xn and the 2DEG thermal car-
riers, which can lead to a strong perturbation of the
2DEG.14,31 Such Xn-2DEG interactions couple Xn with the
X+2DEG� states �Yn� �2DEG� denotes from now on an ex-
cited 2DEG configuration� defined by15

H�Xn� = �n�Xn� − �1 − �n� �
m�n

Vmn�Xm� + �Yn� �11�

with the orthogonality requirement �Xm �Yn�=0. The latter
condition, together with Eq. �9�, gives

�n =
�Xn�H�Xn�
�Xn�Xn�

, Vnn� = −
�Xn�H�Xn��

�1 − �n��1 − �n��
�12�

for any strongly correlated ground state. It is then useful to
introduce the operator

Ŷn = �X̂n,H� − �nX̂n + �1 − �n� �
n��n

Vnn�X̂n� �13�

and obtain the equation of motion

i�tPn�t� − �nPn�t� + �1 − �n� �
n��n

Vnn�Pn��t� = − d�t��1

− nn�t�� +
�Ŷn�

N

. �14�

Equation �11� subtracts the static and noninteracting contri-
butions on the light-hand side of Eq. �14� and also defines
the first step in a Lanczos computational approach to the
time-dependent problem of the nonlinear optical response,15

whose advantages have been discussed in the context of
quantum chemistry.58 The first term on the right-hand side
�rhs� of Eq. �14� describes the PSF effects, determined by the
time-dependent LLn filling factor

nn�t� = ��̂nn�, �̂nn = �̂nn
e + �̂nn

h , �15�

which describes the LLn ground state and photoexcited elec-
tron and hole populations �see Eq. �6��.

In the absence of interactions, Ŷn=0 and Eq. �14� reduces
to optical Bloch equations of an atomiclike system of dis-

crete LLs. In the undoped system, �Ŷn� describes the interac-
tions between Xn and the photoexcited carriers.59 The under-
standing of the effect of the 2DEG and incompressible

quantum liquid on �Ŷn� is the main goal of this paper. To

elucidate this interaction-induced contribution, we consider
the ideal 2D system and obtain after straightforward algebra
by using Eqs. �C1� and �12�,

Ŷn =
1

2��2
N
�
qm

vq�̂q��nm�− q�X̂qmn − �n ↔ m��

− �
m
� X̂m

1 − �m
 dq

�2��2vq�mn�q��G��̂−q�̂qmn↓
e �G�

−
X̂n

1 − �n
 dq

�2��2vq�nm�q��G��̂−q�̂qnm↓
e �G�� , �16�

where we introduced the operator

�̂q = �
n�m�	

��m�n��q��̂qm�n�	
e − �n�m��q��̂qm�n�	

h � . �17�

The second term on the rhs of Eq. �16� subtracts the
noninteracting/static 2DEG contribution to the X energies
and couplings, Eq. �12�, determined by the ground-state
static structure factor.20,22 We note from Eq. �16� that, due to

the hidden symmetry,56,57 Ŷn vanishes if we project to states
in a given LL, n=m. Therefore, in the absence of LL mixing,
the optical response of the ideal 2D system resembles that of
an atomiclike system and Xn is approximately decoupled
from the 2DEG.

In the general system, �Ŷn� can be expanded in terms of

density matrices of the form �ê†êêĥ� and �ĥ†ĥêĥ�, which de-
scribe the interaction of an e-h pair with an additional carrier.
The factorization of such density matrices gives the semicon-
ductor Bloch equations.4,7,59 However, this Hartree-Fock ap-
proximation misses biexciton, trion, and X-2DEG inelastic
scattering effects by assuming a static 2DEG. In the undoped
system, where the conduction band is empty and the valence

band is full, Ŷn
†�G�=0 and Eq. �16� describes interactions

among photoexcited carriers only. These can be treated simi-
lar to the DCTS by projecting to a subspace of X and X+X
states.60 In the QHS, Eq. �16� describes, in addition, X-2DEG
interactions and the resulting dynamical 2DEG response.

Such effects are described by considering the action of Ŷn
†, or

more generally operators of the form ê†ê†ĥ†ê, on the sub-
space of 0-h+Ne-e states. For example, in the general system

the state Ŷn
†�G� is a linear combination of e-h pair+2DEG

excitation states. Recalling that the operators �̂qnm	
e create/

annihilate the MPs, one can interpret �Yn�, Eq. �16�, as a
linear combination of the continuum of X+MP configura-
tions that couple to Xn via the X-2DEG interaction. In the
limit Ne=1, relevant for ��1, �Yn� describes one hole and
two electrons in excited states unoccupied in the ground
state, i.e., trion configurations, while in �Xn� one of the two
electrons remains in its ground-state configuration. In the
doped system, the strong interaction between a finite mo-
mentum exciton and the 2DEG can bind a 2DEG electron
and form a trion state analogous to the Ne=1 case, which is
correlated with a 2DEG hole. This is the case when the sym-
metry of the ideal 2D system is broken.43 At fractional �, the
above trion effects occur between composite fermions, lead-
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ing to quasiexcitons.31 It is clear that, when calculating the

optical response, given by �X̂n�, in the doped system, the

coupling to the density matrices �Ŷn� in Eq. �14� must be
treated nonperturbatively.

We now turn to the populations nn, Eq. �15�, which are

obtained from the equation of motion for ��X̂n , X̂n
†�� and Eq.

�5�. Calculating the commutator �H , �X̂n , X̂n
†�� from Eq. �13�

by using the property �A , �B ,C��+ �C , �A ,B��+ �B , �C ,A��
=0 we obtain

�tnn�t� = 2 Im�2d��t�Pn�t� + ��Ŷn,X̂n
†���� �18�

with initial condition given by the ground-state filling factor
�n. The first term on the rhs describes the photoexcitation

process while the density matrix ��Ŷn , X̂n
†�� describes the in-

teraction effects on the population quantum kinetics, i.e., the
redistribution of the photoexcited carriers among the LLs
and the intraband coherences among the photoexcited many-
body states. The corresponding physical processes become
more clear by calculating the above commutator in the ideal
2D system using Eq. �16�,

��Ŷn,X̂n
†�� =

1

2�l2N
�

qm�n�

vq���n�n�q�X̂qn�n
† − �nn��q�X̂qnn�

† �

���m�n
� �q�X̂qm�n − �nm�

� �q�X̂qnm���

−
1

2�l2N
�

q,m��n

vq��nm��q����̂−q�̂qnm�↓
e �

− �m�n�q���̂−q�̂qnm�↓
h ��

−
���̂nn�

2�l2N�1 − �n� �
q,n�m�	

�
m��n

vq�nm��q��n�m�
� �q�

��G��̂−qm�n�	
e

�̂qnm�↓
e �G� , �19�

where ��Ô�= �Ô�− �G�Ô�G�. The first term on the rhs of Eq.
�19� is determined by the interactions of the X populations

and X↔X coherences �X̂qnm
† X̂qn�m��, similar to the undoped

system.2 Analogous effects determine the second term, with
additional contributions in the QHS due to the scattering of
the photoexcited carriers with the thermal 2DEG. The last
term is due to the ground-state correlations, described by the
static 2DEG structure factor.

Equation �19� reduces the X-2DEG quantum kinetics to

the calculation of the density matrices �X̂†X̂�, ��̂	
e �̂↓

e�, ��̂	
e �̂↓

h�,
and ��̂↓

h�̂↓
h�. To second order in the optical field, only many-

body states with a single valence hole contribute to such
intraband density matrices �discussed in the next section�.
Thus, �ĥ†ĥ†ĥĥ�=O�E4� and

��̂−qm�n�	
h

�̂qnm	
h � = 	↓�m�m

h nn� + O�E4� . �20�

This factorization of the density matrix ��̂h�̂h� is exact to
O�E2�. In the undoped system, the same holds true for the
density matrices ��̂e�̂e� since only states with a single elec-
tron contribute to O�E2�. In the QHS this is not true due to
the ground-state electron populations. By substracting the

factorizable contribution and noting that q�0 in Eq. �19�,
we obtain

��̂−qm�n�↓
e

�̂qnm↓
e � = �n,n� − �nn�

e ��m�m
e + Cmn

m�n��q� , �21�

where we introduced the four-electron density matrix

Cmn
m�n��q� = �nn�

e
�m�m

e +
1

N
�
kk�

eiqx�k−k���2

� �êk+qy/2n↓
† êk�−qy/2m�↓

† êk�+qy/2n�↓êk−qy/2m↓� .

�22�

In the undoped system, C=0 to O�E2� since it involves op-
erators that annihilate two electrons. In the QHS, a finite
O�E2� contribution can arise due to the scattering of spin-↓
photoexcited and ground-state electrons. Similarly, the den-
sity matrices ��̂↑

e�̂↓
e� and ��̂↑

e�̂↓
h�, which vanish to O�E2� in the

undoped system, contribute in the QHS due to photoexcited
carrier scattering with spin-↑ ground-state electrons.

To establish the connection with the DCTS, we note when
calculating �nn�

e,h that, to O�E2�, in the undoped system the
operators �̂nn�

e,h act on states with a single e-h pair. One can
thus multiply �̂nn�

e,h by the h or e number operator and express

the above density matrices in terms of �X̂†X̂�. In the QHS,
this is also possible in the case of spin-↓ photoexcited elec-
trons when the ground-state 2DEG is spin-↑ polarized and
C=O�E4�.61 The density matrices ��̂↑

e�̂↓
e� and ��̂↑

e�̂↓
h� can then

be expressed in the form ��̂↑
eX̂†X̂� �Ref. 17� and describe the

coherent coupling of an X initial state to a final state consist-
ing of an X plus an excitation of the spin-↑ 2DEG. The
equations of motion of the above independent density matri-
ces require however the consideration of multiple 2DEG
excitations,14,31 discussed in the next section.

IV. LINEAR INTERBAND POLARIZATION

In this section we obtain Pn to O�E�, which determines
the linear absorption spectrum. We note that the Hamiltonian
H conserves the number of valence holes while in the ground
state the valence band is full. As a result, the O�E� contribu-
tion to Pn comes from 1-h+ �Ne+1�-e states. We denote
��1L�t�� the O�E� 1-h contribution to the many-body state
that evolves in time from the correlated ground state �G�
according to the Hamiltonian H�t�, Eq. �3�.15,17 The O�E�
contribution to the interband density matrix �Ẑ�, where Ẑ is
any operator that reduces the number of holes by one, is then
given by

�Ẑ�L = �G�Ẑ��1L�t�� = � �G��G�Ẑ� �L, �23�

which coincides with the linearized density matrix of the

Hubbard operator �G��G�Ẑ � .53 We can thus reduce the calcu-

lation of �Ẑ�L to a closed system of equations of motion of
Hubbard operator density matrices ��G�����, where the states
��� span the 1-h subspace of interest.
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��1L�t�� evolves in time as follows:15

i�t��1L� = H��1L� − d�t��
n

�Xn�X̂†�G��Xn� . �24�

The Fermi’s golden rule calculation of the linear absorption
spectrum is recovered by expanding �Xn� in terms of the
many-body eigenstates of H while the solution is trivial if
�Xn� is an eigenstate of H. However, �Xn� is not an eigenstate
of H, so the time evolution leads to the static couplings Vnn�,
Eq. �12�, in both doped and undoped systems59 and to the
coupling to “trion” configurations, Eq. �11�. In the doped
system, the nontrivial problem is to describe the dynamical
2DEG response due to the interactions of the ground-state
electrons with Xn. In the case of the Fermi edge singularity,
this was accomplished by considering a time-dependent
coupled cluster expansion expression for ��1L�, which de-
scribes an exciton dressed by an infinite number of e-h
pairs.14 In the QHS, previous Fermi’s golden rule calcula-
tions of quasiexciton31 and trion43 contributions to the pho-
toluminescence at fractional � used a basis of 1-h+ �Ne
+1�-e Slater determinants to diagonalize H for small Ne. We
note that small system exact diagonalizations have been suc-
cessful in describing both ground state and excitation prop-
erties of the QHS.20,31,43

Given a set of orthonormal states �Xi� and �Y��, where

�Y��X̂†�G�=0, that describe the main 1-h+ �Ne+1�-e configu-

rations of interest, we can express any density matrix �Ẑ�L in
terms of the linearized density matrices

Pi
L =

��G��Xi��L


N
, P̄�

L =
��G��Y���L


N
. �25�

For example, for Ne=1, the Xi states can be chosen as an e-h
pair plus a second electron in its ground-state configuration
�i.e., the states �Xn�� while the Y� states describe two elec-
trons in states unoccupied in the ground state plus one hole.
Using the relations

H�Xi� = �i�Xi� − �
j�i

Vji�Xj� +
1


N
�
�

W�i�Y�� �26�

and

H�Y�� = �̄��Y�� +
1


N
�

i

W�i
� �Xi� +

1

N
�

����

W���
� �Y��� ,

�27�

where

�i = �Xi�H�Xi�, �̄� = �Y��H�Y�� ,

Vij = − �Xi�H�Xj�, W��� = N�Y��H�Y��� ,

W�i = 
N�Y��H�Xi� , �28�

which are exact within the subspace of interest, we obtain the
following closed system of equations of motion:

i�tPi
L = ��i − i�i�Pi

L − �
j�i

VijPj
L − d�t��Xi�X̂†�G�/
N

+
1


N
�
�

Wi�P̄�
L , �29�

where we introduced the dephasing rates �i, and

i�tP̄�
L = ��̄� − i���P̄�

L +
1


N
�

i

W�iPn
L +

1

N
�

����

W���P̄��
L ,

�30�

where we introduced the dephasing rates ��. By choosing a
basis of many-body eigenstates of H, W�i=Vij =0 and the
above equations of motion decouple. This however requires
a precise calculation of all excited many-body eigenstates.
Given any convenient set of 1-h+ �Ne+1�-e states, Eqs. �29�
and �30� can be used to calculate, in the time domain, any
interband density matrix �to O�E��, including dephasing,
without solving the eigenvalue problem. Such a nonpertur-
bative solution, exact within a given subspace, is analogous
to the Green’s-function calculations of relaxation in the man-
ganites and the Hubbard Hamiltonian51,52 and applies for any
correlated ground state.

V. INTRABAND DENSITY MATRICES

In this section we obtain the O�E2� contributions to any

intraband density matrix �M̂�, where M̂ conserves the num-
ber of holes. Without loss of generality we assume that the
ground-state contribution has already been subtracted out

and �G�M̂�G�=0. Examples of such density matrices are the
carrier populations and intraband coherences between many-
body states with the same number of electrons and holes. We

first note that the 2-h contribution to �M̂� is of O�E4�. Within

the 1-h subspace, �M̂� can be expressed in terms of the Hub-
bard operator density matrices ��Xi��Xj��, ��Xi��Y���, and
��Y���Y���� for the chosen 1−h+ �Ne+1�−e states. Within a
wave-function approach, these density matrices can be ex-

pressed as products of the interband amplitudes Pi
L and P̄�

L.
However, relaxation introduces additional intraband dynam-
ics, described by nonfactorizable contributions to the above
density matrices,

Nij =
1

N
��Xi��Xj�� − Pj

LPi
L� �31�

describes the coherent Xi↔Xj coupling,

Mj� =
1

N
��Xj��Y��� − Pj

L�P̄�
L �32�

describe coherences between the Xi and Y� states, and

N��� =
1

N
��Y���Y���� − P̄�

L�P̄��
L �33�

describe the coupling of the Y� states. A nonperturbative
scheme for describing the full intraband dynamics within the
subspace of interest is obtained similar to the previous sec-
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tion by noting that Eqs. �26� and �27� allow for a closed
system of equations of motion for the above Hubbard opera-
tor density matrices. From Eq. �B1� we obtain to O�E2�

i�tNij = �� j − �i − i�ij�Nij + i��i + � j − �ij�Pj
LPi

L�

+ �
i��i

Vi�iNi�j − �
j��j

Vjj�Nij� +
1


N
�
�

�W�j
� Mi�

− W�iMj�
� � , �34�

i�tMi� = ��̄� − �i − i�i��Mi� + i��i + �� − �i��Pn
L�P̄�

L

+
1


N
�
i�

W�i�Nii� −
1


N
�
��

W��iN��� + �
i��n

Vi�iMi��

+
1

N
�

����

W���Mi��, �35�

and

i�tN��� = ��̄�� − �̄� − i�����N��� + i��� + ��� − �����P̄�
L�P̄��

L

+
1


N
�

i

�W��iMi�
� − W�i

� Mi��� +
1

N
�

�����

W����
� N���

−
1

N
�

����

W���N����
� . �36�

The interaction matrix elements and excitation energies en-
tering in the above equations are the same as in the linear
absorption calculation. We note that the above nonfactoriz-
able density matrices vanish in the coherent limit, defined as
�ij =�i+� j, �i�=�i+��, and ����=��+���. However, as al-
ready known from the undoped system,50 the deviations from
this limit are strong and result, e.g., in long-lived incoherent
carrier populations and intraband coherence. The closed sys-
tem �Eqs. �34�–�36�� can be used to describe the light-
induced population and intraband coherence dynamics for
any �.

VI. THIRD-ORDER NONLINEAR POLARIZATION

In this section we obtain, to O�E3�, an expression for the

interband density matrix �Ẑ�, where Ẑ is any operator that
reduces the number of holes by one. Our result separates the
contributions that can be expressed as products of the linear
polarizations Pn

L, whose dependence on the dynamical 2DEG
response, was described in Sec. IV, from fully correlated
contributions with different dynamics. Our main goal is to
use this expression to calculate the O�E3� contribution to the

interaction-induced density matrix �Ŷn� in the nonlinear po-
larization equation of motion, Eq. �14�. We separate out the

contribution from the states Ŷn
†�G�, which describe Xn-2DEG

interactions that can be treated by using equations of motion
and expansions similar to Sec. IV, from the contributions due
to interactions of Xn with photoexcited carriers.

Similar to the DCTS,8,53 we first expand in terms of the
optical field and note the one to one correspondence between

the photon absorption/emission and the e-h pair creation/
destruction processes. The nonlinear response arises from
multiple e-h pair creation/destruction processes. During each
transition, the photoexcited e-h pair interacts with the 2DEG,
as described by Pn

L. In the nonlinear optical response, we
must also consider the correlations among the different pho-
toexcited e-h pairs, such as, e.g., four-particle correlations
between two photoexcited e’s and two photoexcited h’s.1,11,60

In the undoped system, the DCTS cumulant expansions sepa-
rate the contributions to the density matrices due to corre-
lated and uncorrelated e-h pair transitions.2,8,9 Here we ac-
complish this for a strongly correlated populated ground
state, where Wick’s theorem does not apply as in the DCTS.
For this we introduce a decomposition of the many-body
state ���t��, which evolves from the exact ground state �G�
according to H�t�, into correlated and uncorrelated parts. In
this way we separate out the parts of ���t�� whose amplitudes
can be expressed in terms of products of the linear coherent
amplitudes. Such factorizable contributions assume that, al-
though the photoexcited excitons or quasiexcitons are
strongly correlated with the 2DEG, their interactions with
each other can be treated within a mean-field approximation.
Our scheme recovers the DCTS in the undoped system.

Since here electrons are present prior to the photoexcita-
tion, when following the effects of the applied fields we
count the number of valence-band holes in a given state.
Therefore, we use the shorthand notation 0-h, 1-h, 2-h, …, to
label the many-body states. We then express the many-body
state as ���= ��0�+ ��1�+ ��2�, where ��n� is the projection to
the n-h subspace.15,17 It is clear that states with three or more
holes do not contribute to the third-order nonlinear polariza-
tion when the Hamiltonian H conserves the number of holes,

�Ẑ� = ��0�Ẑ��1� + ��1L�Ẑ��2� + O�E5� . �37�

Next we consider the linearized time-evolved state ��1L�, cal-
culated in the previous section, and separate the linear polar-
ization contribution by projecting the �Xn� states,

��1L� = �
n

�X̂n�L

1 − �n
�Xn� + ��̄1L� , �38�

where �Xn � �̄1L�=0. ��̄1L� satisfies the equation of motion
�Eq. �E6�� and describes X+2DEG� configurations, including
trion configurations, which contribute to the optical spectra
via their coupling to the X configurations in the many-body
1-h eigenstates of H. The two-photon processes excite two
e-h pairs on top of the 2DEG, whose time evolution is given
by

i�t��2� = H��2� − d�t�X̂†��1L� + O�E4� . �39�

Similar to the time evolution of ��1L� discussed in the previ-
ous section, ��2� can be obtained by introducing a basis of
2-h+ �Ne+2�-e states.60,62 Given the complexity of treating
such states, we decompose ��2� into an uncorrelated part,
which assumes that each photoexcited e-h pair evolves inde-
pendently by interacting with the 2DEG, and a correlated
part, which describes correlations among the photoexcited
e-h pairs,
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��2� =
1

2�
nm

�X̂n�L�X̂m�L

�1 − �n��1 − �m�
X̂n

†X̂m
† �G� + �

n

�X̂n�L

1 − �n
X̂n

†��̄1L�

+ ��̄2� + O�E4� . �40�

The first term on the rhs of the above equation comes from
two independent optical transitions Xn and Xm, which create
two e-h pairs that interact independently with the 2DEG but
not with each other. The second term describes �1-h /2DEG�	
configurations, which contribute to the optical response via
their coupling to Xm in the many-body eigenstates, that inter-
act with the 2DEG independently of Xn. For example, for
Ne=1, the first term on the rhs of Eq. �40� describes two
zero-momentum e-h pairs plus an electron in its ground-state
configuration. During the time evolution, each pair interacts
separately with the 2DEG and thus the amplitude of this
configuration in the 2-h many-body wave function is the
product of the linear polarizations, as in ��1L� Eq. �38�. The
second term describes two electrons in excited configurations
correlated with a hole plus a second e-h pair with zero mo-
mentum. This term describes the time evolution of a nonin-

teracting trion and exciton configuration. ��̄2� then describes
a biexciton state interacting with the 2DEG or a correlated
five-particle complex.

i�t��̄2� − H��̄2� =
1

2�
nm

�X̂n�L�X̂m�L�Ŷn
†,X̂m

† ��G� + �
n

��X̂n�LŶn
†

− �Ŷn�LX̂n
†���̄1L� . �41�

The first term on the rhs of the above equation describes the
time evolution of the correlated four-particle excitation

�Ŷ�
† , X̂m

† ��G� analogous to the undoped system.1,11 For the
ideal 2D system Hamiltonian H,

�X̂m,Ŷn� =
1

2��2N
�

qm�m�

vq � ��nm��− q�X̂qm�n − �m�n�

− q�X̂qnm�� � ��mm��q�X̂−qm�m − �m�m�q�X̂−qmm�� .

�42�

This contribution vanishes if we project to a single LL in the
ideal 2D system, due to the hidden symmetry.56 It also de-
scribes biexciton effects as in the undoped system.1,11,60 The
last term in Eq. �41� describes correlations between X and
�1-h /2DEG�	 configurations or two �1-h /2DEG�	 configura-
tions. In an analogous way, we decompose the O�E2� contri-
bution to the 0-h state ��0�, created by two-photon Raman
processes of excitation and then de-excitation of an e-h pair,
as

��0� = �G����G� − �
n

�X̂n�L�

1 − �n
X̂n��̄1L� + ��̄0� + O�E4� .

�43�

where �G � �̄0�=0. The �0-h /2DEG�	 state ��̄0� is determined
by the equation of motion, Eq. �E5�. Equations �41� and �E5�
can be solved similar to the undoped system60 by projecting
to a subspace of 2-h and 0-h states.

By substituting the wave-function decompositions, Eqs.
�38�, �40�, and �43�, to Eq. �37� we obtain the following

exact expression for �Ẑ�, which separates out all nonlinear
contributions that are proportional to the linear polarizations
Pn

L:15,17

�Ẑ� = �
n

�X̂n�L�

1 − �n
�G��X̂n,Ẑ���2�

+
1

2�
nn�

�X̂n�L�X̂n��
L

�1 − �n��1 − �n��
��̄1L���Ẑ,X̂n

†�,X̂n
†��G�

+ �
n

�X̂n�L

1 − �n
��Ẑ,X̂n

†��c + ��G��G�Ẑ�

+ �
n

�X̂n�L�

1 − �n
�G�ẐX̂n��2� −

�X̂n�L

1 − �n
�G�ẐXn

†��̄0�

+ ��̄1L�Ẑ��̄2� + ��̄0�Ẑ��̄1L� . �44�

By using Eq. �44� to obtain the interaction-induced density

matrix �Ŷn� in Eq. �14�, we establish the connection to the
known results for the ultrafast nonlinear optical response of
undoped semiconductors.2,9 The first term on the rhs of Eq.
�44� describes the X-X interband coherence and recovers the
well-known treatment of X-X interactions in undoped

semiconductors.53,60 The 2-h state amplitude �G��X̂m , Ŷn���2�
coincides to O�E2� with the density matrices ��X̂m , Ŷn�� and

��G��G��X̂m , Ŷn��, which in turn can be expressed in terms of

X-X density matrices �X̂X̂� �see Eq. �42��. The dynamics and
dephasing of this X-X coherence can be described by using
Eqs. �40� and �41�. The familiar decomposition of the X-X
coherence into Hartree-Fock and correlated parts11,53,60 is ob-
tained by using Eq. �40� for ��2�. Similar to the undoped
system,53 Eq. �41� can be used to express the effects of the
X-X correlations in terms of a memory kernel determined by
the dynamics within the 2-h subspace.

The second and third terms on the rhs of Eq. �44� come
from the interaction of the interband polarization with intra-
band coherences and populations and describe light-induced
time-dependent corrections to the X energies and inter-LL
couplings. The third term is determined by the nonfactoriz-
able intraband density matrix

��Ẑ,X̂n
†��c = ��Ẑ,X̂n

†��

− �
n�m�

�X̂n��
L��X̂m��

L

�1 − �n���1 − �m��
�Xn���Ẑ,X̂n

†��Xm��

− �
n�

�X̂n��
L�

1 − �n�
�G��X̂n�,�Ẑ,X̂n

†����̄1L�

− �
n�

�X̂n��
L

1 − �n�
��̄1L���Ẑ,X̂n

†�,X̂n�
† ��G� , �45�

which in terms of many-body states is given by
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��Ẑ,X̂n
†��c = ��̄1L��Ẑ,X̂n

†���̄1L� + �G��Ẑ,X̂n
†���̄0� + ��̄0��Ẑ,X̂n

†��G� .

�46�

In the undoped system, this term describes X scattering from
incoherent X populations and X↔X coherences due to X-X
interactions and relaxation.2

The fourth, fifth, and sixth terms on the rhs of Eq. �44�
describe a contribution determined by the state Ẑ†�G�. Since

here Ẑ† acts on the ground state, as in the calculation of the

linearized density matrix in Sec. IV, this contribution for Ẑ

= Ŷn describes an X-2DEG coupling similar to Eq. �11� and
the calculation of the linear polarization. This contribution
describes the trion formation and can be described by its

equation of motion after expanding Ẑ†�G� in terms of the
basis states �Xi� and �Y��. We can thus obtain a closed system
of equations of motion similar to Sec. IV. The last two terms
in Eq. �44� can also be obtained from the equations of mo-
tion �Eqs. �41� and �E6�� after projecting the 1-h and 0-h

basis states. Noting that here Ẑ† acts on �1-h /2DEG�	 con-

figurations and not the ground state, ��̄1L�Ŷn��̄2� describes
both trion-trion and exciton-trion interactions. In the un-
doped system, it describes the incoherent exciton-biexciton
transition contribution determined by the fully correlated part
of the density matrices �X†XX�.9 In the next section we use
the above results to study the role of the LL0→LL1 excita-
tions of an incompressible quantum liquid in the ideal 2D
system.

VII. NUMERICAL RESULTS

In this section we describe the optical dynamics of the
ideal 2D system at �=1. This ground state simplifies the
calculation of the interaction matrix elements and excitation
energies and allows us to highlight in a simple way the quali-
tative dynamical features that can arise from X interactions
with an incompressible quantum liquid. For this we develop
a model that describes the dynamical inter-LL coupling re-
vealed by the FWM experiments of Chemla and
co-workers.45–47

A. Description of the model

At �=1, the 2DEG in the ground-state Laughlin wave
function21 populates all N of the spin-↑ LL0 states while all
spin-↓ LL0 states and all higher LLs are empty. Signatures of
spin polarization were observed in linear absorption
experiments22,61 at temperatures as high as a few kelvin.63

�̂q00↑
e �G� = q,0


N�G� �47�

for the �=1 ground state in which case the lowest 2DEG
neutral excitations are LL0→LL1 excitations. Also, the
screening of the interaction is suppressed due to the LL0-
LL1 energy gap.25 Equation �16� then reduces to

Ŷ1 = − Ŷ0 = Ŷ , �48�

where

Ŷ =
1

2��2
N
�
q�0

vq�̂q��10�− q�X̂q01 − �01�− q�X̂q10� .

�49�

Due to the hidden symmetry,56 Ŷ vanishes if we project
within a single LL. We thus retain both LL0 and LL1 carrier
states. For optical pulses tuned to excite LL0 and LL1 tran-
sitions, we neglect states with energy comparable to LL2 or
higher, whose contribution is suppressed due to their small
energetic overlap with the optical pulses in the FWM experi-
ments. The FWM experiments in the QHS �Refs. 45–47� did
not show any significant FWM signal at LL2 or higher en-
ergies. However, their results indicate a strong dynamical
coupling of the LL0 and LL1 resonances, which differ by an
energy �18 meV on the order of the electron cyclotron en-
ergy. We thus break the hidden symmetry by considering the
LL0-LL1 mixing due to inter-LL 2DEG excitations. Since
states with two or more inter-LL excitations have energy
comparable to LL2 or higher, we solve a polaronic problem
where the magnetoexciton states �X0� and �X1� couple to a
continuum of X0+ �LL0→LL1� MP or MR configurations.
Neglecting configurations with energy comparable to LL2 or
higher in the many-body eigenstates is justified for suffi-
ciently large magnetic fields, when the Coulomb-to-
cyclotron energy ratio e2 / ��l
c

e� becomes smaller than 1. We
note however that, in GaAs, the Coulomb-to-cyclotron en-
ergy ratio is comparable to 1 for the magnetic fields up to
�10 T in FWM experiments For example, at 10 T, 
c
�18 meV for electrons while the characteristic Coulomb
energy is e2 /�l�14 meV. Therefore, quantitative compari-
sons with experiments must include higher LLs. Neverthe-
less, we expect that the higher energy states will not change
the qualitative features, as is often the case for the 2DEG
excitation spectrum.27,28

In the case of X1 in the QHS, the e-2DEG interaction
scatters the LL1 electron to LL0 by emitting a LL0→LL1
2DEG excitation at small total energy cost �see Fig. 1�a��.
This resonant interaction process couples X1 to the
�1-h /2DEG�	 orthonormal states

�Yq� = Ŷq
†�G� = X̂q01

† �̂−q10↑
e �G� �50�

that enter in Eq. �49�. We include this continuum of basis
states to our subspace, which allows us to treat the quantum
kinetics of the X1→X01+MP scattering process nonperturba-

FIG. 1. �Color online� Interaction-induced coupling of X1 and
�a� the �1-LL0-e+1-LL1-h+LL0→LL1	 four-particle excitations
�Yq� �resonant process� and �b� �1-LL1-e+1-LL0-h+LL0→LL1	
excitations �nonresonant process�.
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tively in the Coulomb interaction, rather than use the semi-
classical Fermi’s golden rule. Due to the resonance between
the X1 and Yq states, their coupling is strong. In the ideal 2D
system, �Y0�, Eq. �11�, is a linear combination of the same
states as �Y1� due to the hidden symmetry �Eq. �48��. How-
ever, their energies are higher than that of �X0�. Therefore,
the X0-2DEG interactions, treated here on the same basis as
the X1-2DEG scattering, are suppressed in the ideal 2D sys-
tem for sufficiently large magnetic fields. We show below
that this asymmetry between the two QHS magnetoexcitons
is important for understanding the optical dynamics.

Turning to the h-2DEG scattering, we note that the X1
hole can scatter to LL0 by emitting a LL0→LLn 2DEG
excitation, which leads to the �1-LL1-e+1-LL0-h+LL0
→LLn	 final states in Eq. �49� �see Fig. 1�b��. However,
noting that the hole cyclotron energy is �4 meV at 10 T, the
energy of these states is close to that of LL2 or higher and
therefore their contribution to the optical response at the LL1
and LL0 energies is suppressed. The only other
�1-h /2DEG�	 excitations with energies comparable to LL0
or LL1 are the �1-LL0-e+1-LLn-h+LL0→LL1	 configura-
tions, where n=0,2 , . . ., which in the ideal 2D system couple
to Yq via inter-LL hole scattering, However, such configura-
tions are not expected to change significantly the LL0-LL1
resonance coupling observed in the experiments and we ne-
glect them for simplicity, after noting that the complicated
valence band structure must be treated for quantitative com-
parisons to experiment and that the characteristic disorder
energy is often comparable to the hole cyclotron energy. Be-
low we calculate the full optical dynamics within the sub-
space spanned by �Xn�, n=0,1, and the continuum of �Yq�
states, Eq. �50�.

B. Linear absorption at �=1

In this section we present our results for the linear absorp-
tion spectrum. From Eq. �28� we obtain by using Eqs.
�48�–�50� that the Xn-Yq interaction,

Wqn = Wnq = �n,1 − n,0��01
01�q� , �51�

is proportional to the interaction potential

�nn�
mm��q� =

1

2�l2�q�mm�
� �q��nn��q� . �52�

Equations �29� and �30� then reduce to

i�tP0
L = ��0 − i�0�P0

L − V01P1
L − d�t� −

1

N

�
q

�01
01�q�P̄q

L

�53�

for the LL0 polarization and to

i�tP1
L = ��1 − i�1�P1

L − V10P0
L − d�t� +

1

N

�
q

�01
01�q�P̄q

L

�54�

for the LL1 polarization. The exciton dephasing rates, �0
=�1=0.5 meV, are chosen similar to the undoped system.
The energies of the X states are given by

�n = Eg + �n +
1

2
��
c

e + 
c
h� − Vnn, �55�

where, as obtained from Eq. �28�,

Vnm = dq

�2��2vq��nm�q��2 �56�

are the X binding energies �n=m� and static inter-LL cou-
pling energies �n�m�. The equations of motion for the Yq
coherences are obtained from Eqs. �30� and �51�,

i�tP̄q
L = ��̄q − i��P̄q

L +
�01

01�q�

N

�P1
L − P0

L� +
1

N
�

q��q

Wqq�P̄q�
L ,

�57�

where we introduced a Y-excitation dephasing rate �

=0.35 meV. The coupling between Pn
L and P̄q

L in the above
equations of motion gives eigenstates that are a linear com-
bination of X and Yq configurations. From Eq. �28�, we ob-
tain after using Eqs. �C1� and �B5�,

Wqq� = Wq�q = 2�11
00�q� − q�cos��q � q��z�

2� − �11
11�q� − q�

− �00
00�q� − q� . �58�

The interaction Wqq� leads to rescattering among the con-
tinuum of Yq states with different momenta, which corre-
sponds to nonperturbative vertex corrections beyond the

Born approximation. The Y-state dispersion �̄q=�q01+
−q
is obtained in Appendix C. �q01, Eq. �C4�, is the X01 excita-
tion energy and 
q, Eq. �C5�, is the energy of the LL0
→LL1 2DEG excitations, given by25


q − 
c
e =

e2

��

q�

2
e−q2�2/2 +

e2

��

1

2

�

2
�1 − e−q2�2/4��1 +

q2�2

2
�I0�q2�2

4
� −

q2�2

2
I1�q2�2

4
��� , �59�

where In is a modified Bessel function of the first kind and �
is the dielectric constant. The first term on the rhs of the
above equation corresponds to the RPA treatment of the

2DEG interactions. The second term results from the many-
body corrections to the local field seen by an electron, which
at �=1 correspond to exchange effects. These local-field cor-
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rections result in a magnetoroton dispersion minimum absent
within the RPA, whose detailed momentum dependence is
determined by the ground-state static structure factor at the
corresponding filling factor.27 Analogous dispersions can be
obtained for fractional � by considering a basis set of 2DEG
excitations as in Ref. 27.

Figure 2 shows �̄q at �=1. The energy dispersion of the
Yq continuum basis of states mainly reflects the momentum
dependence of the inter-LL excitation energy 
q but also
depends on the X01 dispersion. The origin of the collective
excitation dispersion may be seen by first noting that the
lowest energy neutral excitations of a noninteracting 2DEG
are the N2 degenerate LL0→LL1 incoherent pair excita-
tions, which all have energy 
c

e. This degeneracy is lifted by
the electron-electron interaction, which in the case of an in-
compressible ground state leads to an energy dispersion of
the form shown in Fig. 2. For q��1, the momentum depen-

dence of �̄q is approximately linear, as in the RPA treatment
of the 2DEG interactions. However, the RPA fails completely
for q��1, where the 2DEG correlations result in a MR dis-
persion minimum.20,22,25,27 The drastic change in the Yq dis-
persion as compared to the RPA, due to an incompressible
ground state, has a significant effect on the X1-Yq coupling
since it changes the relative energies �see Fig. 2�. One of our
goals here is to study the effects of the inter-LL MR disper-
sion minimum on the linear and nonlinear optical properties.

Figure 3 shows the linear absorption spectrum. By com-
paring to the result obtained with Wqn=0, which neglects the
polaronic effects due to MP coupling, it is clear that the
X1-Yq coupling gives a third absorption peak above the LL1
exciton peak and not simple broadening. Importantly, this
third peak is suppressed if the Yq energy dispersion is ap-
proximated by using the RPA. In the latter case, the coupling
of X1 to the Yq continuum broadens the LL1 resonance,
which suppresses its strength as compared to the full calcu-
lation. The differences between the RPA and full dispersion
calculations come from the MR minimum, which enhances
the X1-X01+MR coupling. Figure 3 also shows the results

obtained by treating the X-Y coupling perturbatively �Born
approximation�, obtained by setting Wqq�=0 in Eq. �57�. The
vertex corrections describe rescattering among the con-
tinuum of Yq states and strongly enhance the third absorption
peak.

We conclude from Fig. 3 that the full dynamics of the X
+MR excitations and their coupling to X1 play a crucial role
in determining the linear absorption line shape. We obtain a
new resonance close to the LL1 energy, resulting from the
coupling of X1 to �1MR+1-LL0-e+1-LL1-h	 states in the
many-body eigenstates, which is suppressed within the RPA
treatment of the 2DEG interactions. An analogy could be
drawn between the above resonance at �=1 and the trion
resonances at ��1 �Refs. 40–42 and 55� �for a review, see
Ref. 39�. Both come from the coupling of X and Yn configu-
rations in Eq. �14�. We note however that X-intra-LL scatter-
ing effects are suppressed when the dephasing and disorder
characteristic energies are sufficiently strong. For example,
in the samples used in the experiments of Refs. 18 and 47,
the LL0 resonance displayed a Lorentzian line shape while
the FWM signal in the case of photoexcitation at the LL0
energy did not produce any unexpected results. On the other
hand, these experiments show the emergence, for ��2, of an
asymmetric LL1 resonance with a strong high-energy shoul-
der. In the realistic doped quantum well system, the finite
confinement, valence-band mixing, and disorder effects
change the exciton energies and X1-Yq coupling as compared
to our Hamiltonian, which affects the relative magnitudes
and energies of the two LL1 peaks. Our calculation gives a
linear absorption line shape similar to the experiment if we
consider X1-Yq energy splittings smaller than in the ideal 2D
system and larger dephasing rates. In this case however, the
differences between the RPA and full calculations are sup-
pressed.

C. Transient nonlinear optical response

In this section we present our results for the third-order
nonlinear polarization. First we use Eq. �42� to express the
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FIG. 2. �Color online� Energy dispersion �̄q of the Yq states,
measured with respect to the X1 energy at �=1. Solid line: corre-
lated 2DEG. Dotted line: RPA approximation. B=8.7 T as in the
experiment.
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FIG. 3. �Color online� Linear absorption spectrum. Solid line:
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Also shown is the overlap of the optical pulse with the LL0 and
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X-X coherence ��X̂m , Ŷn�� in terms of the two-exciton density

matrices �X̂X̂� and obtain from Eq. �40�,

�X̂−q10X̂q10� =
2V10

N
P0

LP1
L + �X̂−q10X̂q10�c, �60�

where the first term is the Hartree-Fock X-X contribution. On

the other hand, �X̂−qmnX̂qmn�= �X̂−qmnX̂qmn�c for m=0, n=1

and m=1, n=0. Since the experimental studies of both doped
and undoped quantum wells45,46,50 did not produce any long-
lasting FWM signal at negative time delays, which would
signify long-lived X-X correlations,1,11,60 we treat for sim-
plicity the X-X interactions within the Hartree-Fock approxi-
mation. The third term on the rhs of Eq. �44� was expressed
in Appendix D in terms of the Hubbard operator density
matrices Nnm, Mnq, and Nqq�. We thus obtain from Eqs. �14�
and �44� after some algebra

i�tP0 − ��0 − i�0�P0 + V01P1 = d�t�n0 + V01P1
L�n0 − 2N01

� � − V01P0
L�n1 − 2N01� − P0

L�
q

�01
01�q��n̄q +

1

N

�M1q
� − M0q��

− P1
L�

q
�01

01�q��n̄q −
1


N
�M1q − M0q

� �� −
1


N
�
q

�01
01�q�P0

LP1
LP̄q

L� −
1


N
�
q

�01
01�q�P̄q, �61�

i�tP1 − ��1 − i�1�P1 + V01P0 = d�t�n1 − V01P1
L�n0 − 2N01

� � + V01P0
L�n1 − 2N01� + P0

L�
q

�01
01�q��n̄q +

1

N

�M1q
� − M0q��

+ P1
L�

q
�01

01�q��n̄q −
1


N
�M1q − M0q

� �� +
1


N
�
q

�01
01�q�P0

LP1
LP̄q

L� +
1


N
�
q

�01
01�q�P̄q. �62�

The double-peak structure of the linear absorption spectrum close to the LL1 energy implies that the Y and X states couple

strongly in the eigenstates of the QHS Hamiltonian, which is described by the coupling between Pn and P̄q. Such linear and

nonlinear X-Y couplings are described by the following equation of motion for P̄q, derived in Appendix E:

i�tP̄q − ��̄q − i��P̄q =
�01

01�q�

N

�P1 − P0� +
1

N
�
q�

Wqq�P̄q� + d�t��P1
L� + P0

L��P̄q
L +

�01
01�q�

N

�P1
L�N11 − P0

L�P0
L − N00� − P0

L�N00 − P1
L�P1

L

− N11�� + ��01
01�q� − V01��P1

L − P0
L��P1

L�P̄q
L + M1q − P0

L�P̄q
L − M0q� + �

q�

�01
01�q��

N

P̄q�
L �M1q − M0q� +

�01
01�q�

N

�P1
L

− P0
L��2Nn̄q − 3�

q�

n̄q�� + �P1
L − P0

L��
q�

�01
01�q��

N

�P̄q�
L�P̄q

L − 4n̄q�q� +
4

N
�P1

L

− P0
L� �

q�q�

�01
01�q + q� − q��


N
cos2� l2

2
�q � q� + q� � q� − q � q��z�n̄q�q�. �63�

The first two terms on the rhs of Eq. �63� describe linear X-Y
couplings, similar to the calculation of the linear polariza-
tion, while the rest of the terms describe light-induced non-
linear couplings and polarization dephasing.

The nonlinearities in Eqs. �61�–�63� depend on the LLn
carrier populations nn and on the Y-state populations n̄q. As
shown in Appendix D, the total carrier populations, Eq. �15�,
can be expressed as

nn = 2Pn
LPn

L� + �̄n, �64�

where the first term is the coherent Xn population and

�̄n = 2Nnn + �
q

n̄q, �65�

obtained by using Eqs. �D16� and �D17�, is the incoherent
LLn total electron and hole population, with contributions in
the QHS from both the Xn and Yq configurations, Nnn and n̄q,
respectively. n̄q= n̄qq, where

n̄qq� = P̄q
L�P̄q�

L + Nqq�. �66�

The coherences n̄qq� between Y states with different mo-
menta q�q� dephase rapidly and are neglected for simplic-
ity. We retain however the Xn↔Yq coherences Mnq, obtained
from the equation of motion �Eq. �35�� with dephasing rates

TRANSIENT THREE-PULSE FOUR-WAVE MIXING… PHYSICAL REVIEW B 82, 165313 �2010�

165313-13



�nq=0.5 meV without resorting to the adiabatic semiclassi-
cal approximation.3 The total populations nn were obtained
from Eqs. �34� and �36� by including the population relax-
ation rate �pop=�qq=�nn=0.001 meV. Our truncation
scheme satisfies the total charge conservation condition,

�t�n0 + n1� = 4 Im�d��t��P0
L + P1

L�� − �pop�n0 + n1� , �67�

where the first term on the rhs describes the photoexcited
total carrier population. The LL0-LL1 coupling due to the
interactions leads to carrier redistribution and coherence be-
tween the LLs. Such coupling changes the frequency depen-
dence of the FWM signal as discussed below without how-
ever affecting the total charge.

D. Three-pulse four-wave mixing: Numerical results

We now consider a three-pulse FWM configuration,
where the QHS system is excited by three optical pulses

d�t� = �Ep�t�ei�k1·r−
pt� + �Ep�t + �t12�ei�k2·r−
pt� + �Ep�t

+ �t13�ei�k3·r−
pt�, �68�

where Ep�t�=E0e−�t / tp�2
is the pulse amplitude and 
p its cen-

tral frequency. The optical fields propagate in the spatially
distinct directions k1, k2, and k3, with a time delay �t12
��t13� between pulses k1 and k2 �k3�. For negative time de-
lays, pulse k1 arrives first. Importantly, we tune 
p close to
LL1 �see Fig. 3�, which results in small photoexcitation of
LL0 transitions as compared to LL1. This choice suppresses
the PSF contribution at the LL0 energy and highlights the
interaction effects.

We calculated the third-order FWM signal

S�
,�t12,�t13� = �P0�
� + P1�
��2 �69�

in the background-free direction k1+k2−k3, as function of
frequency and the two time delays. Here we present the time
dependence along the �t12 axis ��t13=0� and the �t13 axis
��t12=0�, calculated in all cases at the two frequencies 

corresponding to the peaks of the LL0 and LL1 FWM reso-
nances. For �t13�0, �t12=0, pulse k3 comes first and cre-

ates an interband polarization. The latter evolves and decays
for a time interval �t13, when pulses k1 and k2 arrive and
create the third-order FWM signal. Therefore, the �t13�0
axis mainly accesses the decoherence of the interband polar-
ization. Along the negative �t13 axis, pulses k1 and k2 first
create an X-X coherence, which evolves and dephases for a
time interval ��t13� when pulse k3 arrives. Therefore, the
�t13�0 axis mainly accesses the dephasing of the X-X co-
herence. Along the negative �t12 axis, pulses k1 and k3 ar-
rive first ��t13=0� and create a second-order X- or Y-state
population, or a coherence between different X and Y states.
These evolve and relax for a time interval ��t12�, at which
time pulse k2 arrives. Therefore, the �t12�0 axis probes
population relaxation and intraband coherence dephasing and
oscillations. Finally, along the positive �t12 axis, pulse k2
arrives first and creates an interband polarization, which
evolves for a time interval �t12 when pulses k1 and k3 arrive.
Thus the �t12�0 axis mainly probes interband polarization
dephasing. The dependence of the three-pulse FWM signal
on the two time delays gives complementary information on
the coherent and relaxation dynamics of the QHS.

The polarizations Pn, Eqs. �61�–�63�, depend on the inter-
actions V01, Eq. �56�, and Wqn, Eq. �51�. V01 gives static
LL0-LL1 couplings and X-X interaction nonlinearities simi-
lar to the undoped system. Wqn��01

01�q� governs the X-2DEG
scattering in the ideal QHS. Next we present numerical re-
sults that clarify the role of these two different interaction
effects. Figure 4 shows the time evolution of the FWM sig-
nal at the LL0 and LL1 peak energies for photoexcitation
triggered by optical pulses centered close to LL1 as in Fig. 3.
Striking in Fig. 4 is that, despite the very different photoex-
citation of the two LLs, the full calculation with Wqn�0
gives LL0 and LL1 FWM signals that are comparable in
magnitude �solid line�. This result is consistent with the
experiments.18,45–47 On the other hand, for Wqn=0, V01�0,
the LL0 signal is much smaller than the LL1 signal �dashed-
dotted line in Fig. 4�, as expected for LL1 photoexcitation
and as observed experimentally in the undoped system.50 We
conclude that the X-2DEG interactions drastically enhance
the LL0/LL1 FWM peak ratio. Figure 4 also shows that they
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drastically change the decay and amplitude of the coherent
FWM oscillations.

The X-2DEG interactions couple X1 to the continuum of
Yq states, in a way that depends on the dispersion of their

excitation energies �̄q. To study the effect of the MR mini-
mum, which is characteristic of an incompressible quantum
liquid, on the FWM signal, we compare in Fig. 4 �and in Fig.
7�a�� our full result to that obtained by treating the 2DEG
interactions within the RPA �dashed line�. The RPA disper-
sion broadens the LL1 FWM resonance while having a
smaller effect on the LL0 FWM strength, a result consistent
with the linear absorption behavior of Fig. 3. This RPA
broadening is suppressed in the case of an incompressible
quantum liquid and significantly depresses the LL1/LL0
FWM ratio. We thus conclude that the LL1/LL0 FWM peak
ratio depends sensitively on the correlations leading to an
incompressible quantum liquid with magnetoroton inter-LL
excitations. The RPA also results in a faster decay of the LL0
coherent FWM oscillations along the �t12�0 axis. This os-
cillation decay is induced by the X-2DEG interaction. Impor-
tantly, the full calculation gives a nonexponential decay of
the LL0 signal along the �t13�0 axis, absent within the RPA
or for Wqn=0. This behavior reflects the non-Markovian po-
larization dephasing due to X-Y coupling in the presence of
MR excitations �compare the full and RPA calculations in
Fig. 4 along the �t13�0 axis�. We conclude that the tempo-
ral profile of the LL0 FWM signal in the case of LL1 pho-
toexcitation may be used to measure the quantum dynamics
due to magnetoexciton interactions with an incompressible
2DEG, which differs significantly as compared to the RPA.

The PSF and X-X interaction nonlinearities, previously
studied for magnetoexcitons in undoped
semiconductors,50,59,60 are described by the first three terms
on the rhs of Eqs. �61� and �62�. Figure 5 shows the contri-
bution of these nonlinearities, which have the form d�t�nn
�PSF� and Pnnm, PnN01 �X-X interactions�, to the FWM sig-

nal and also includes the effects of the linear Pn-P̄q coupling
�first two terms on the rhs of Eq. �63��, which gives
interaction-induced polarization dephasing similar to the lin-
ear response. The above nonlinearities give a large part of the

overall FWM signal in the ideal QHS. However, their con-
tribution differs from the full result, Fig. 4, at the LL1 en-
ergy. This difference comes from the light-induced changes
in the X energies, inter-LL couplings, and dephasing de-
scribed by the rest of the nonlinear terms on the rhs of Eqs.
�61�–�63�, which are generated by the X-2DEG interaction
�01

01�q�. The PSF and X-X interactions give a large LL1/LL0
FWM peak ratio, similar to the Wqn=0 result in Fig. 4 and
the undoped system.50 The Wqn=0, V01�0 FWM signal dif-
fers from that in Fig. 5 due to the changes in the population
relaxation and the dephasing of the X0↔X1 coherence in-
duced by the X-2DEG interactions.

Figure 5 also compares the PSF+X-X interaction nonlin-
ear contribution for populations given by �i� nn=nn

X+nn
Y �full

result�, �ii� nn=nn
X=2Pn

LPn
L�+2Nnn �population of Xn states

only�, and �iii� nn=nn
Y =�qn̄q �population of the continuum of

Yq states�. The excitonic contribution to the LLn population,
nn

X, gives a FWM signal that decays for �t12�0 and is rela-
tively small. The strong effect of the X-2DEG interaction on
this excitonic signal can be seen by comparing it to the
Wqn=0, V01�0 result in Fig. 4 �dashed-dotted line�. Impor-
tantly, Fig. 5 demonstrates that the �t12�0 axis FWM signal
reflects the gradual buildup of the Y-state populations nn

Y, due
to the X→Y scattering, and increases slowly with time. We
conclude that the population of the Y-state continuum states
plays an important role in determining the magnitude and
temporal profile of the FWM signal due to PSF+X-X inter-
actions in the QHS.

To elucidate the nonlinear response due to the X-2DEG
interaction, we show in Fig. 6 the FWM results obtained by
setting V01=0 and compare them to the noninteracting sys-
tem for optical pulses tuned as in Fig. 3. For V01=0, the X-X
interactions and static LL0-LL1 couplings vanish, which af-
fects both the linear and nonlinear polarizations. The nonlin-
earities then result from PSF and X-2DEG interactions. The
latter interactions introduce the nonlinear terms in the last
two lines on the rhs of Eqs. �61� and �62� and on the rhs of
Eq. �63�. They also change the carrier relaxation, which af-
fects the PSF contribution. We see in Fig. 6 that the LL0
FWM signal of the noninteracting system is very small, as
expected for LL1 photoexcitation, and is determined by PSF

-6000 -4000 -2000 0 2000 4000 6000
0

1000

2000

3000

4000

5000

L
L

0
F

W
M

SI
gn

al

-6000 -4000 -2000 0 2000 4000 6000
0

1000

2000

3000

4000

5000

-6000 -4000 -2000 0 2000 4000 6000
∆t

12
(fs)

0

5000

10000

15000

L
L

1
F

W
M

Si
gn

al

-6000 -4000 -2000 0 2000 4000 6000
∆t

13
(fs)

0

5000

10000

15000

FIG. 5. �Color online� FWM contribution due
to the PSF and X-X interaction nonlinearities
�first three terms on the rhs of Eqs. �61� and �62��.
Solid line: nn=2Pn

LPn
L�+2Nnn+�qn̄q. Dashed

line: nn
X=2Pn

LPn
L�+2Nnn. Dashed-double dotted

line: nn
Y =�qn̄q.

TRANSIENT THREE-PULSE FOUR-WAVE MIXING… PHYSICAL REVIEW B 82, 165313 �2010�

165313-15



alone. For Wqn�0, the X-2DEG interactions generate a LL0
signal that increases slowly with time along the LL0 �t12
�0 axis, which reflects the population dynamics. However,
this LL0 signal is still small in the case of LL1 photoexcita-
tion of the ideal QHS as in Fig. 3. We thus conclude that the
LL0 signal in Fig. 4 is mainly generated by X-X interactions
modified by X-2DEG scattering. The nonlinearities gener-
ated by the X-2DEG interaction give the �t13�0 FWM sig-
nal in Fig. 6, which cannot arise from PSF, and lead to non-
exponential decay along the �t13�0 axis. The overall FWM
behavior results from the interplay between the X-X and X-Y
interactions, whose relative contribution depends on the par-
ticularities of the realistic system.

Next we consider the coupling between the nonlinear co-

herences Pn and P̄q due to the X-2DEG interaction. As al-
ready seen by the emergence of the extra absorption peak in

Fig. 3, the linear P1
L-P̄q

L coupling changes drastically the 1-h
eigenstates, in a way that depends critically on the dispersion
of the Yq states. The X and Yq states are not eigenstates of the

system, as demonstrated by the comparison to the results
obtained for Wqn=0, in which case Xn are approximate
eigenstates in our calculation. Rather, the equations of mo-
tion, Eqs. �61�–�63�, describe polaronic effects in the time
domain that lead to eigenstates consisting of a coherent su-
perposition of X1 and Yq configurations. Figure 7�b� shows
the result obtained by only retaining the first two terms on
the rhs of Eq. �63�, which treats the above coupling similar to
the linear polarization calculation. The comparison of Fig.
7�b� to the full calculation, Fig. 7�a�, shows that the nonlin-
ear contributions to P̄q mainly decrease the �t12�0 LL1
signal but do not change the overall qualitative behavior.
Figure 7 also compares the full and RPA dispersion calcula-
tions and shows more clearly that the RPA dispersion de-
presses the LL1 nonlinear signal and enhances the decay of
the LL0 coherent FWM oscillations. The RPA broadening
comes from the X1 coupling to the entire Yq continuum,
given by the first line on the rhs of Eq. �63�, which is sup-
pressed in the full calculation due to the MR excitation en-
ergy minimum of the incompressible quantum liquid.
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We now turn to the FWM signal generated by the Y-state
populations n̄q�t�, Eq. �66�. In Fig. 8 we compare the full
FWM calculation with the result obtained by setting Nqq=0

in which case n̄q= P̄q
L�P̄q

L is given by the Y-state coherences.
Figure 8 demonstrates that the long-lived Y-state populations
Nqq give a LL0 FWM signal that rises with �t12�0 follow-
ing the initial coherent regime. This can be seen by compar-
ing the full and Nqq=0 results in Figs. 8�a� and 8�b�. For
Nqq=0, the FWM signal decays fast along the �t12�0 axis.
The full calculation signal builds up gradually and then de-
cays as determined by the population relaxation rate �pop
=�nn=�qq. This is seen more clearly in Figs. 9�a� and 9�b�,
where we compare the LL0 and LL1 FWM for the different
relaxation rates given in the inset of Fig. 9�c�. The rise time
of the LL0 signal for �t12�0 reflects the slow buildup of
n̄q�t�, shown in Figs. 9�c� and 9�d� at different momenta, as
the X states depopulate due to irreversible X→X+MP scat-
tering. Figure 9 shows that the dynamics of this X-2DEG
interaction process can be resolved with femtosecond pulses.
The strong coupling of the X+MR final states, missed by the

RPA, is demonstrated by Fig. 9�d�, which compares the
populations of the Yq states with ql=2 for the full or RPA
dispersion. At such momenta, the two dispersions deviate
strongly �see Fig. 2�. Figure 9�d� shows that the MR excita-
tions characteristic of the incompressible 2DEG result in
larger X+MR populations as compared to the RPA, which
implies stronger coupling of X1 to the Yq states with MR
momenta.

The above results indicate the important role of carrier
relaxation due to X-2DEG scattering on the three-pulse
FWM signal, in addition to the non-Markovian polarization
dephasing effects. Figures 10�a� and 10�b� show the time
dependence of the total LLn carrier populations, nn, for LL1
photoexcitation by a single pulse as in Fig. 3. The role of the
X-2DEG interaction is seen by comparing to the populations
obtained for Wqn=0, V01�0 as in the undoped system. The
LLn electron and hole populations, given by Eqs. �64� and
�65�, include coherent and incoherent contributions from
both the Xn and Yq states, which are shown in Figs. 10�c� and
10�d�.
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In the initial coherent temporal regime, nn�2Pn
L�Pn

L. The
time evolution of these coherent exciton populations is
shown in Figs. 10�c� and 10�d�. The nonexponential time
evolution of the LL1 populations in Fig. 10�d� is due to the
emergence of the two LL1 peaks �Fig. 3� as a result of the
MR dispersion minimum. By comparing to the RPA, Figs.
10�a� and 10�b� show that these quantum kinetic effects
manifest themselves on the carrier relaxation. We also note
that n1 /n0�4 in the coherent regime due to the different
photoexcitation of the two LLs. It is clear that the early time
LL1/LL0 FWM ratio in Fig. 4 does not simply reflect the
photoexcited carrier ratio n1 /n0, in agreement with the
experiment.45,47

Figures 10�a� and 10�b� clearly show that, following the
initial coherent temporal regime, the X-2DEG interaction
drastically changes the carrier relaxation and n0 /n1 popula-
tion ratio as compared to the undoped system. The LL0
population increases sharply for intermediate time scales
�Fig. 10�a�� while simultaneously the LL1 population drops
�Fig. 10�b�� and the Y-state populations build up �Figs. 9�c�
and 9�d��. The above dynamics is due to the X1→X01+MP
interaction process of Fig. 1�a�, which involves inter-LL
2DEG excitations and couples the two LLs. The population
time dependence differs markedly for Wqn=0 in which case
the coupling of the X0 and X1 populations comes from the
nonresonant e-h interaction process described by the X0↔X1
coherence N01�t� in Eq. �34�. In the QHS, the population
relaxation is governed instead by the resonant X1→Y inter-
actions and the X1↔Yq coherence. The population time de-
pendence becomes similar to the undoped system if we set
Mnq=0 in Eqs. �34� and �36�. The LL0 population rise time
in Fig. 10�a� is mainly determined by the dynamics of
M1q�t�. At sufficiently long times, when the scattering is
complete, the carrier populations nn are determined by the
total population of the continuum of �1MP+1-LL0-e
+1-LL1-h	 states, nn

Y =�qn̄q, whose time dependence and
slow rise is shown in Figs. 10�c� and 10�d� �dashed-dotted
line�. As a result, n0�n1 at long times, in contrast to the
Wqn=0 result, which gives n1�n0 as in the undoped
system.50 Figures 10�c� and 10�d� also show the time depen-

dence of the incoherent exciton populations Nnn�t� �dashed
line�. N00 relaxes very slowly, as determined by �pop. In con-
trast, the relaxation of N11 is fast in the QHS and occurs on a
time scale of a few picoseconds, which coincides with the
buildup of nn

Y. This rapid relaxation of the LL1 excitonic
population due to inter-LL MP scattering is absent for Wqn
=0 and changes the temporal profile of the 2DEG FWM.

VIII. CONCLUSIONS

In conclusion, we discussed in full detail a nonequilib-
rium many-body theory that describes the ultrafast coherent
nonlinear optical response of magnetoexcitons interacting
with an incompressible quantum liquid. For this, we devel-
oped a density-matrix quantum kinetic description of
dephasing/decoherence and relaxation in systems with a
strongly correlated ground state, which recovers established
results in undoped semiconductors and does not adopt the
semiclassical or Boltzmann pictures of instantaneous interac-
tions, structureless 2DEG bath, and quasiequilibrium free en-
ergy.

Our main motivation for developing this theory was to
identify the signatures of an incompressible quantum liquid
in nonlinear optical spectroscopies and compare to recent
experiments.18,45–47 We note that photoexcitation with three
time-delayed femtosecond optical pulses accesses a much
larger phase space than the more conventional one-
dimensional four-wave mixing or linear spectroscopic tech-
niques. The main question down the road is how two-
dimensional correlation spectroscopy64 can be used to
resolve the detailed dynamics of the fundamental many-body
interaction processes in strongly correlated systems.

Our goal here was to identify generic temporal and spec-
tral features due to exciton coupling with an incompressible
quantum liquid. For this we presented numerical results ob-
tained for an ideal two-dimensional 2DEG at filling factor
�=1. This is the simplest system for studying the generic
effects of inter-LL magnetoroton collective excitations,
which are signatures of the many-body corrections in the
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local field of an incompressible quantum liquid, and their
coupling to X’s. We studied the differences between the full
calculation of the third-order nonlinear polarization and the
results obtained by treating the 2DEG interactions within the
RPA. The latter approximation only gives MP long-
wavelength collective excitations but misses the magnetoro-
ton minimum. We described the effects of the dynamical
coupling between the X and X+MP or X+MR configurations
by spectrally resolving the FWM signal and then comparing
its strength and time evolution along two time axes at the
LL0 and LL1 energies. We showed that it is useful for draw-
ing conclusions to excite the system close to the LL1 energy
so that the LL0/LL1 ratio of photoexcited carrier populations
is kept small and the phase-space filling nonlinearities at the
LL0 energy are suppressed. A noninteracting multilevel sys-
tem calculation then predicts a correspondingly small ratio of
LL0/LL1 FWM signals. This also holds true in the undoped
system,50 despite the coupling of the LL0 and LL1 magne-
toexcitons by the exciton-exciton interaction nonlinearities.
The experimental measurements in the 2DEG revealed com-
parable LL0 and LL1 FWM signals for ��2 even though
the photoexcited LL1 carriers far exceeded the photoexcited
LL0 carriers, in sharp contrast to an undoped quantum well
system under the same photoexcitation conditions.45–47

These experiments also revealed the emergence of a strong
high-energy shoulder above the LL1 exciton peak for ��2,
as empty LL0 states become available for LL1→LL0
scattering.47 Our calculations offer a possible microscopic
explanation of these experimental features, which clearly dis-
tinguish the dynamics of magnetoexcitons interacting with a
2DEG at filling factors ��2 from that of magnetoexcitons in
an undoped semiconductor system. Here we also predict the
experimental signatures of an incompressible 2DEG.

By treating the full quantum kinetics of the coupling be-
tween the LL1 magnetoexciton and the continuum of
�1-LL0-e+1-LL1-h+LL0→LL1MP	 configurations, we ob-
tained a double-peak spectral line shape close to the LL1
energy. This double resonance is suppressed by the RPA
treatment of the 2DEG interactions, which misses the mag-
netoroton excitations and simply broadens the LL1 excitonic
resonance. Such broadening is suppressed in our full calcu-
lation, which indicates polaronic effects due to the coupling
of MRs. The above result may explain the experimental ob-
servation, for ��2, of a strong high-energy shoulder right
above the LL1 energy while at the same time the LL0 reso-
nance remains Lorentzian.47 This difference in resonance
line-shape results from the suppression of the X0-2DEG cou-
pling.

Our calculations show that the ratio of the LL1 and LL0
FWM resonance strengths does not simply reflect the photo-
excited carrier populations, as in an atomiclike noninteract-
ing system, but depends on interaction-induced nonlinearities
and couplings in the presence of an interacting 2DEG. By
only including the X-X interactions, or in a completely non-
interacting system, we obtain a LL1 peak FWM signal that
far exceeds the LL0 peak signal. In contrast, the full calcu-
lation gives comparable FWM peaks, despite the different
LL0 and LL1 photoexcitations. This result is consistent with
the experimental observations45–47 and comes from the
gradual population of �1-LL0-e+1-LL1-h+LL0→LL1MP	

configurations in the many-body eigenstates and from their
coherent dynamical coupling to the discrete X states. Our
quantum kinetic calculation shows that femtosecond optical
pulses can be used to resolve the details of this noninstanta-
neous interaction process, whose dynamics is described by
the time evolution of the X- and Yq-state populations coupled
by a X↔Yq coherence.

The comparison between our full calculation and the RPA
results show that the optical spectra and their time evolution
are sensitive to the magnetoroton minimum in the excitation
dispersion of an incompressible liquid. The latter changes the
exciton coupling to the continuum of X+MP configurations.
In particular, the RPA dispersion broadens the LL1 resonance
while this broadening is suppressed in the full calculation.
This drastic effect of the 2DEG correlations strongly affects
the LL1/LL0 FWM peak ratio and reflects on the time evo-
lution of the FWM line shape. Along the �t13 axis, the in-
compressible quantum liquid gives a nonexponential FWM
decay that reflects the non-Markovian interaction-induced
exciton dephasing. Along the �t12 axis, the incompressible
quantum liquid determines the decay time of the LL0 coher-
ent FWM oscillations. Another experimental signature is the
rise time of the �t12�0 LL0 FWM signal, which is deter-
mined by the X-Y coupling described by the dynamics and
dephasing of the X↔Y coherences. A comparison to the ex-
perimental results of Refs. 45–47 will be presented else-
where.

The numerical calculations discussed here did not explore
the full phase-space accessible with two-dimensional corre-
lation spectroscopy.64 Nevertheless, they clearly show that
these experiments can isolate the different physical processes
and measure the details of the magnetoexciton coupling to an
incompressible quantum liquid at different filling factors and
ground states. In the realistic system, the relative magnitude
of the different competing contributions also depend on the
valence band structure, disorder, finite quantum well confine-
ment, doping asymmetry, and dephasing rates, which are
clearly important for a detailed description of the experi-
ments. For example, here we did not address the formation
of trion states and their nonlinear response, or quasiexcitons
at fractional filling factors. Future experimental and theoret-
ical studies promise to elucidate the dynamics of both spin
and charge elementary excitations and their interactions in
strongly correlated systems.
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APPENDIX A

In the Landau gauge, the interaction matrix elements
v�1�2,�3�4

ij �with i , j=e ,h� are given by
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v�1�2,�3�4

ij = dq

�2��2vqF�1�2

i �q�F�3�4

j �− q� , �A1�

where vq is the Coulomb potential,

F�1�2

e �q� = �n1n2
�q�eiqx�k1+k2��2/2k1,k2+qy

	1,	2
�A2�

and

F�1�2

h �q� = F−�2,−�1

e �q�, − � = �− k,n,	� . �A3�

In the above equations,

�mn�q� =
n!

m!� �− qy + iqx�l

2

�m−n

Ln
m−n�q2�2

2 �e−q2�2/4

�A4�

for m�n and �mn�q�=�nm
� �−q� for m�n, where Ln

m−n is the
generalized Laguerre polynomial.

APPENDIX B

The density-matrix equation of motion for a general op-

erator Ô is given by

i�t�Ô� = ��Ô,H�� − d�t�
N�
m

��Ô,X̂m
† ��

− d��t�
N�
m

��Ô,X̂m�� . �B1�

The deviation from bosonic behavior of a LLn electron-LLm
hole excitation is determined by the commutator

�X̂qnm,X̂q�n�m�
† � = qq�nn�mm� −

�̂q�−q,m�m↓
h


N
nn�e

i�q� � q�zl
2/2

−
�̂q�−q,n�n↓

e


N
mm�e

−i�q� � q�zl
2/2. �B2�

The Pauli exchange effects between X’s and 2DEG collective

excitations, as well as between photoexcited carriers, are de-
scribed by the commutators

��̂qnm	
e ,X̂q�n�m�

† � =
1


N
	↓mn�e

i�q � q��z�
2/2X̂q+q�nm�

†

�B3�

and

��̂qnm	
h ,X̂q�n�m�

† � =
1


N
	↓mm�e

−i�q � q��z�
2/2X̂q+q�n�n

† .

�B4�

Finally, the Pauli exchange effects between the 2DEG exci-
tations, which distinguish the QHS from the undoped sys-
tem, are described by the commutators

��̂qnn�	
e , �̂q�mm�	�

e � =
		�n�m


N
ei�q � q��z�

2/2�̂q+q�nm�	
e

−
		�nm�


N
e−i�q � q��z�

2/2�̂q+q�mn�	
e .

�B5�

APPENDIX C

In this appendix we present the commutators with the
many-body Hamiltonian given by Eqs. �1� and �2�, which
describe the interaction contribution to the equation of mo-
tion Eq. �B1�. For a general interband e-h excitation, we
obtain after some straightforward algebra

�X̂qnm,H� = �Eg + �n + 1/2�
c
e + �m + 1/2�
c

h�X̂qnm − �
n�m�

V̄m�m,n�n�q�X̂qn�m� +
1

2�l2
N
�
q�n�

vq��̂−q���nn��q��e−i�q � q��zl
2/2X̂q−q�n�m

− �n�m�q��ei�q � q��zl
2/2X̂q−q�nn�� . �C1�

In the QHS we must also consider the dynamics and interactions of the 2DEG collective excitation operators �̂qmm�	
e ,

��̂qnm	
e ,H� = �
c

e�m − n� + �
n�

Vn�n��̂qnm	
e − �

n�m�

V̄mm�,nn��q��̂qn�m�	
e +

1

2��2
N
�
q�n�

vq��̂−q���mn��q���̂q+q�nn�	
e ei�q � q��z�

2/2

− �n�n�q���̂q+q�n�m	
e e−i�q � q��z�

2/2� . �C2�

KARADIMITRIOU et al. PHYSICAL REVIEW B 82, 165313 �2010�

165313-20



In the above equations we used the interaction matrix ele-
ments Eq. �56� and defined

V̄nn�,mm��q� = dq�

�2��2vq�e
i�q � q��zl

2
�nn��q���mm�

� �q�� .

�C3�

Using the above equations and the �=1 ground state, we
obtain the dispersion of the X01 excitation,

�q01 = Eg +
�c

c

2
+

3�c
v

2
− V̄11,00�q� �C4�

and the energy of the MP excitations,


q = �c
c + V00 − V10 + �01

01�q� − V̄11,00�q� . �C5�

APPENDIX D

In this appendix we express the intraband density matrices
in Eq. �19� in terms of Hubbard operators at �=1 after re-
stricting to the photoexcited �first two� LLs. First we con-

sider the X-X density matrices �X̂mnq
† X̂m�n�q�. Using the com-

mutator Eq. �B2�, we obtain

�Xl�X̂mnq
† X̂m�n�q�Xl�� = q0m�n�mnmlm�l�, �D1�

�YQ�X̂mnq
† X̂m�n�q�YQ�� = Q�qQqm0n1m�0n�1 �D2�

while �Xl�X̂mnq
† X̂m�n�q�YQ�=0. We thus obtain for the X popu-

lations and X↔X coherences

�X̂mnq
† X̂m�n�q� = q0m�n�mn��Xm��Xm��� + m0m�0n1n�1��Yq�

��Yq�� , �D3�

which differ from the undoped system due to the contribu-
tion of the Y states. Next we consider the density matrices of
the form ��̂	�̂↓�. Using the commutators �Eqs. �B2�–�B4� and
�17�� we obtain the matrix elements

�Xl���̂−q�̂qnm↓
e �Xl� =

ml

N
��nl

� �q�ll� − �l�l
� �q�nl�� , �D4�

�Xl���̂−q�̂qnm↓
h �Xl� =

ml

N
��ll�

� �q�nl� − �ln
� �q�ll�� . �D5�

The coupling between the X and Y states is described by the
matrix elements

�YQ��̂−q�̂q01↓
e �Xl� =

�01
� �q�

N

qQl1, �D6�

�Xl��̂−q�̂q10↓
e �YQ� =

�10
� �q�

N

q,−Ql1, �D7�

�YQ��̂−q�̂q10↓
h �Xl� =

�01
� �q�

N

qQl0, �D8�

�Xl��̂−q�̂q01↓
h �YQ� =

�10
� �q�

N

q,−Ql0, �D9�

while �Y��̂�̂q10↓
e �X�= �Y��̂�̂q01↓

h �X�= �X��̂�̂q01↓
e �Y�

= �X��̂�̂q10↓
h �Y�=0. Finally, for q�0, we obtain that

�YQ���̂−q�̂q10↓
e �YQ� =

�10
� �q�Q�Q

N
, �D10�

�YQ���̂−q�̂q01↓
h �YQ� = −

QQ�

N
�10

� �q� �D11�

while �Y��̂�̂10↓
h �Y�= �Y��̂�̂01↓

e �Y�=0. Using the above matrix
elements and Eq. �66�, we obtain

��̂−q�̂q10↓
e �c = �10

� �q��N00 − N10 + 
NM1,−q + �
q�

n̄q�� ,

�D12�

��̂−q�̂q01↓
e �c = �01

� �q��N11 − N10
� + 
NM1q

� � , �D13�

��̂−q�̂q10↓
h �c = − �01

� �q��N00 − N10 − 
NM0q
� � , �D14�

��̂−q�̂q01↓
h �c = − �10

� �q��N11 − N10
� − 
NM0,−q + �

q�

n̄q�� .

�D15�

The photoexcited electron and hole incoherent populations
are obtained after expanding the operators �Eq. �6�� in terms
of Hubbard operators,

�̄0
e = N00 + �

q

n̄q, �̄0
h = N00 �D16�

gives the LL0 electron and hole populations while

�̄1
e = N11, �̄1

h = N11 + �
q

n̄q �D17�

gives the LL1 carrier populations. The incoherent total car-
rier populations, �̄n= �̄n

e + �̄n
h, are then given by Eq. �65� while

�̄10
e =N10= �̄10

h . Substituting the above results into Eq. �19� we
obtain the intraband interaction-induced density-matrix con-
tribution to Eqs. �61� and �62�.

APPENDIX E

In this appendix we derive the equation of motion for the

correlated contribution P̄q to the nonlinear polarization equa-
tion of motion. At �=1, we note that

X̂n�Yq� = 0 �E1�

while �Yq��̂01�Yq��=0 since we restrict to states with up to

one MP. Using the property �Ŷq , X̂n�= �Ŷq , Ŷq��=0,
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P̄q =
1


N
��0��G��Yq���1� +

1

N

��̄0��G��Yq���̄1�

+ �
m

Pm
L��YqX̂m��2� +

1

N

�
m

��̄1��Xm��YqX̂m���̄2�

+
1


N
�
q�

��̄1��Yq���YqYq����̄2� , �E2�

where we introduced the Y-Y states �YqYq��= Ŷq
†Ŷq�

† �G�. An
analogous expression can be obtained for the nonlinear po-

larization Pn by substituting Ẑ=Xn in Eq. �44�. Noting from
Eqs. �5� and �46� that

�
m

Pm
L ��̄1L��X̂n,X̂m

† ���̄1L� = − Pn
L�̄n + Pn

L��̄1L��̄1L� �E3�

and using Eq. �E1�,

Pn =
1


N
��0�G��Xn��1� +

1

N

��̄0��G��Xn���̄1�

+ �
m

Pm
L��XmXn��2� +

1

N

�
m

��̄1��Xm��XnXm���̄2�

+
1


N
�
q�

��̄1��Yq���Yq�Xn���̄2� + Pn
L��̄1L��̄1L� − Pn

L�̄n.

�E4�

We obtain the equation of motion of P̄q from Eq. �E2� after
noting that the time evolution of the correlated 2-h state,
obtained from Eq. �40�, is given by Eq. �41�.15,17

Similarly,15,17

i�t��̄0� = H��̄0� − �
n

�Ŷn�L�X̂n��̄1L� + �
n

�X̂n�L��Ŷn��̄1L�

− �Ŷn�L�G�� , �E5�

where we used Eq. �E1� and15,17

i�t��̄1L� = H��̄1L� + �
n

�X̂n�L�Yn� − �
nq

WnqP̄q
L�Xn� . �E6�

Using Eqs. �B1�, �11�, and �27�, Eq. �5�, the properties
H�G�=0 and

�̂n�Yq� =
1

N
�Yq� , �E7�

Equations �31�–�33�, Eq. �40�, the orthogonality

�YqYq��XnXm� = �YqYq��XnYq�� = �XnYq�Xn�Xm�� = 0

�E8�

and Eq. �28�, we obtain after some algebra the equation of
motion �exact at �=1 within our subspace�

i�tP̄q = ��̄q − i��P̄q +
1

N
�
q�

Wqq�P̄q� +
1


N
�

n

WqnPn + d�t��
n

Pn
L�P̄q

L +
1


N
�

n

WqnPn
L�̄n +

1

N

�
nq�

Wq�nPn
LP̄q�

L�P̄q
L

+ �
nmm�

Pn
L�Pm

L�Pm�
L N

2
�G��Ŷq,Ŷm��XnXm�� + Nmm�N�Xm���ŶqŶn

†�Xm��� + �
nn�q�

Pn
L�Pn�

L�P̄q�
L N�G��Ŷq,Ŷn���XnYq��

+ Mn�q�N�Xn�Ŷq��Ŷn
†,Ŷq�

† ��G�� + �
nq�q�

Pn
Ln̄q�q�N��Yq����ŶqŶn

†��Yq�� − q�q�Yq��Yn�� +
1


N
�

nn�q�

Wnq�P̄q�
L Mn�qN�nn�

− �Xn�Yq�XnYq�� + �
n

Pn
L��G��Ŷq,Ŷn���̄2� + �

q�

P̄q�
L��G��Ŷq�,�Ŷq,H����̄2� . �E9�

The following interaction matrix elements are obtained after
straightforward algebra at �=1 by using the commutators
Eqs. �B3�–�B5� and the definition of the Y operators, Eqs.
�49� and �50�,

N�G��Ŷq,Ŷ��XnXm� =
�01

01�q�

N

� �n1m0 + n0m1� , �E10�

N�Xm���ŶqŶ†��Xm�� = −
�01

01�q�

N

mm� �E11�

describe X-X interactions mediated by the emission and re-
absorption of a MP,

N�G��Ŷq,Ŷ��XnYq�� = qq��n1 − n0���01
01�q� − V01� , �E12�

N�XnYq�Xn�Yq�� = nn�qq��N − 1� �E13�

describe X-Y interactions while

�YqYq��Yq�Yq��

= �qq�q�q� + qq�q�q� −
2

N
q+q�,q�+q�cos

�� l2

2
�q � q� + q� � q� − q � q��z��2

�E14�

describes Y-Y interactions. Using the above results and Eq.
�51�, we obtain from Eq. �E9� the equation of motion, Eq.
�63�, after neglecting the correlated 2-h contributions de-

scribed by the amplitudes of ��̄2�.
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