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The interplay between the coupling of an interacting quantum dot to a conduction band and its connection
to localized levels has been studied in a triple quantum-dot arrangement. The electronic Dicke effect, resulting
from quasiresonant states of two side-coupled noninteracting quantum dots, is found to produce important
effects on the Kondo resonance of the interacting dot. We study in detail the Kondo regime of the system by
applying a numerical renormalization-group analysis to a finite-U multi-impurity Anderson Hamiltonian
model. We find an extreme narrowing of the Kondo resonance, as the single-particle levels of the side dots are
tuned toward the Fermi level and “squeeze” the Kondo resonance, accompanied by a strong drop in the Kondo
temperature, due to the presence of a supertunneling state. Further, we show that the Kondo temperature
vanishes in the limit of the Dicke effect of the structure. By analyzing the magnetic moment and entropy of the
three-dot cluster versus temperature, we identify a different local singlet that competes with the Kondo state,
resulting in the eventual suppression of the Kondo temperature and strongly affecting the spin correlations of
the structure. We further show that system asymmetries in couplings, level structure or due to Coulomb
interactions, result in interesting changes in the spectral function near the Fermi level. These strongly affect the
Kondo temperature and the linear conductance of the system.
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I. INTRODUCTION

Quantum dots �QDs� have played a prominent role in the
investigation of the Kondo problem physics in recent
years,1–5 as they allow a systematic and well-controlled
variation in structure parameters with the consequent explo-
ration of electronic correlations in this paramount many-
body state. This exploration is of course possible by being
able to experimentally tune the relevant parameters in the
system over rather wide ranges. Moreover, in a feature that is
unique to these systems, QDs also facilitate the incorporation
and study of quantum coherence effects in the Kondo state,
and its interplay with structure resonances and field-induced
phase shifts. In fact, the Kondo effect has been studied in
multiquantum-dot systems, including double,6–12 and triple
dots,13–21 in different geometrical arrangements, motivated in
part by the richness of the Kondo physics in the presence of
localized levels, as well as by their potential application as
spin filters.

One of the main signatures of the Kondo state is the en-
hancement of the quasiparticle density of states at the Fermi
level; this Kondo resonance is accessible in electronic trans-
port experiments, as it opens an additional transport channel,
which is readily seen in the differential conductance of these
structures �typically in the zero-bias limit�. In the case of
multiple QD geometries, the Kondo and other single-
particlelike resonances provide different transport channels
which can even interfere with one another. As a result, these
structures offer the interesting possibility of controlling the
transport properties by exploiting quantum interference in
the electronic propagation, allowing the study of scattering
phenomena such as the well-known Fano22 and Aharonov-
Bohm effects,23,24 competing with the Kondo effect. For ex-

ample, the interference of Kondo and Fano resonances in
suitably designed structures has been shown recently in
beautiful experiments, giving rise to complex conductance
features.11,25 These results demonstrate that consideration of
multiple coherent scattering of traveling electronic waves,
both through single particle as well as many-body reso-
nances, is crucial for the understanding of the resulting con-
ductance features. In this regard, being able to tune the struc-
ture parameters of a multiple QD system, as well as its
Kondo state, provides a unique arena to study correlations
and coherence effects in a controllable manner.

It is clear that the features of the Kondo resonance near
the Fermi level significantly affect the conductance of the
system, sometimes in quite subtle ways. For example, the
shape of the density of states in the leads near the FL has
been shown to produce strong modifications of the Kondo
resonance and characteristic energy �the Kondo tempera-
ture�. These modifications can arise from intrinsic global
properties26,27 or from the local environment in the vicinity
of the active QD.10 We are here especially interested in reso-
nances and modifications due to the electronic version of the
Dicke effect.28 The latter is the electronic analog of the well-
known Dicke effect in quantum optics, which takes place in
the spontaneous emission of closely linked atoms lying in the
same environment �within one characteristic wavelength of
each other�.29 In the electronic case, the decay rates �level
broadenings� are produced by the couplings between local-
ized levels and a conduction channel, and their close prox-
imity and effective coupling gives rise to effectively fast
�supertunneling� and slow �subtunneling� modes.30–32 Inter-
estingly, this coherent single-particle physics results in strong
changes in the Kondo screening, as we will discuss below,
once Coulomb interactions are fully taken into account.
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Although other multidot geometries would exhibit similar
physics, a specific configuration to study this effect consists
of three QDs where two large �essentially noninteracting�
dots are attached laterally to a central dot that is embedded
between current leads, as schematically shown in Fig. 1. This
cross-bar structure is reminiscent of quantum wave guides
with a resonator cavity.33 In our case, the side QDs act as
scattering centers to the main transport channel, and compete
with the Kondo effect of the central dot.34 Similar configu-
rations have been studied before, and recent work by Trocha
and Barnas using a slave boson mean field approach has
identified interesting regimes.35 They studied the interplay
between Kondo and Dicke resonances and considered the
limit of infinite Coulomb repulsion �U→��, which sup-
presses virtual processes involving the doubly occupied state
in the interacting dot. Additionally, the mean-field approxi-
mation adopted in the auxiliary boson fields neglects corre-
lations due to charge fluctuations involving the empty state
of the dot. All of these processes may be expected to be
important in providing a full description of the Kondo reso-
nance, especially in competition with the Dicke effect here,
as we indeed show in this work. Our numerical renormaliza-
tion group �NRG� approach,36–38 provides a reliable descrip-
tion that incorporates all charge and spin fluctuations in the
problem, it allows the study of finite U values, corresponding
to real QD experiments, and gives us a systematic way to
study the subtle interference effects inherent in this geom-
etry.

In this work, we explore the Kondo state that appears
when the levels of the noninteracting dots are brought to-
gether both symmetrically and asymmetrically about the
Fermi level. In both situations, the Kondo resonance narrows
drastically and is “squeezed” between the two single-particle
levels, suggesting a drop in the Kondo temperature of the
system, as described recently in the symmetric case.35 We
show that indeed the Kondo temperature drops, as the onset
of the Dicke effect involving the interacting dot totally sup-
presses the Kondo state and results in vanishing Kondo tem-
perature. This behavior, due to the enhancement of spin-spin
correlations in the QDs orbitals, results in the formation of a
local singlet, which decouples from the current leads. As the
system moves away from a fully degenerate Dicke configu-
ration, the Kondo temperature is nonzero but has a non-
monotonic dependence on structure parameters, behavior

which is only brought out by our numerical renormalization
group approach. This optimization of the Kondo effect in a
structure may have interesting applications in a real experi-
mental system.

We will further show that the competition of Kondo and
Dicke effects modifies excited states near the Kondo regime
as well, resulting in unexpected changes in the thermody-
namic and transport properties of the system. Interestingly,
the local �non-Kondo� singlet state mentioned above emerges
due to a strong coupling between the interacting QD and the
supertunneling state. A crossover between these two configu-
rations can be tuned by varying the coupling between the
QDs.

We also describe the effects of asymmetries in the system,
including different interdot couplings, as well as energy lev-
els and finite Coulomb interactions in all the dots of the
structure. We show that these structural asymmetries intro-
duce interesting particle-hole asymmetries in the problem,
resulting in strong changes in the Kondo temperatures and
the linear conductance of the system.

II. MODEL AND THEORETICAL APPROACH

The system consists of an interacting QD �labeled QD1�
coupled to two current leads �L and R� and to two effectively
noninteracting QDs �QD2 and QD3� �see Fig. 1�; one could
also think of QD2 and QD3 as being close to a Coulomb
blockade peak so that they conduct and their behavior is
single resonancelike, as charging effects are typically small
when conducting. The three-dot structure is described by a
multi-impurity Anderson Hamiltonian, H=Hdots+Hleads+HT,
with

Hdots = �
�,i=1

3

�ici�
† ci� + Uini↑ni↓

+ �
�

�V12c1�
† c2� + V13c1�

† c3� + H.c.� , �1�

Hleads = �
k�,�=R,L

��kc�k�
† c�k�, �2�

HT = V�
�k�

�

�c1�
† c�k� + H.c.� , �3�

where ci�
† �c1�� is the operator that creates �annihilates� an

electron with energy �i �i=1,2 ,3� and spin � in the respec-
tive QD and c�k�

† is the corresponding fermion operator for
the leads �=R ,L with energy ��k, where k is the momentum
quantum number of the free conduction electrons. The sec-
ond term in Eq. �1� accounts for the Coulomb repulsion in
the doubly occupied state of the dots. The hopping ampli-
tudes V, V12, and V13 couple the interacting QD1 to the leads
and to QD2 and QD3, respectively. For simplicity, unless
stated otherwise �see Sec. III B�, we will take V12=V13=V�,
and U1=U�0, while U2=U3=0.

The characteristic properties of the Kondo physics of the
system will be probed through thermodynamic quantities,

FIG. 1. �Color online� Schematic representation of the three-dot
system. QD1 is considered to be strongly interacting �U�0�
whereas QD2 and QD3 are assumed to be effectively noninteracting
�U� small or vanishing—see text�.
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namely, the local magnetic moment and its contribution to
the entropy, which can be readily obtained from the NRG
procedure. To calculate dynamical quantities, such as the
spectral functions and the conductance of the system, one
needs to calculate the local retarded Green’s function �GF� at
the interacting dot, which is defined in the standard form

G11
� ��� � ��c1�;c1�

† ��� = 	
−�

�

e−i����c1��t�;c1�
† �t����d� ,

�4�

where �= t− t� and

��c1��t�;c1�
† �t���� = − i��t − t����c1��t�,c1�

† �t���+� �5�

is the double-time Green’s function, with ���� the usual step
function, and �¯ ,¯�+ the anticommutator. Once G11

� ��� is
known, the spectral function �1���� �or density of states
�DOS�� of the interacting dot can be obtained from the rela-
tion

�1���� = −
1

	
Im�G11

� ���� . �6�

A. Noninteracting analysis

In the noninteracting limit �Ui→0� the GF G11
�0����� can

be easily obtained by the equation-of-motion method, lead-
ing to an exact closed expression

G11
�0����� =

1

� − �1 − 
1���
, �7�

where


1��� = �1��� + i�1��� �8�

is the self-energy in the noninteracting case, which takes into
account the effects of the QD1 contacts with the leads, and
with QD2 and QD3. The self-energy can be written as


1��� = 2V2�
k

1

� − �k
+ V�2 2� − �2 − �3

�� − �2��� − �3�
. �9�

In these expressions, the frequency � must be understood in
its analytical continuation sense, �→�+ i
, where 
 is an
infinitesimal. Notice that the poles at �2 and �3 appearing in
the self-energy describe localized states in the effective con-
duction band due to the presence of QD2 and QD3. In the
limit of V�→0, the self-energy reduces to the single impurity
case


1
�V�=0���� =

�0

2	
ln
� + D

� − D

 − i�0, �10�

where �0=2	V2 /2D is the hybridization function for a flat
density of states and D is the half-bandwidth of the conduc-
tion electrons. Notice that the effect of the leads and the two
side-coupled QDs is fully taken into account in Eq. �7� by
the self-energy 
1���, which provides a “structured” effec-
tive conduction band. The electrons localized in QD1 are
then coupled via the effective density of states in the leads
represented by �1 in Eq. �8�.

The spectral function, �1
0��↑=�↓ in this noninteracting

case is depicted in Fig. 2 for �1=0, V�=0.05, V=0.1, and
different values of �. We observe that by increasing � the
width of the central peak increases while the satellite peaks
are just slightly shifted away from the Fermi level. The shift
of the satellite peak position can be estimated by analyzing
the poles of G11

� . Assuming the satellite peaks to be Lorent-
zian shaped, we find that their positions are given by
��2V�2+�2. In the inset we show the peak positions as func-
tion of �. The continuous �black� curve corresponds to the
analytical expression 1.01�2V�2+�2, while symbols corre-
spond to the values obtained from the curves in the main
panel. The need for the factor 1.01 results from the assump-
tion that the peak has a Lorentzian shape in the analytical
estimate. On the other hand, close to zero energy ���0� and
for small detuning ����0�, the DOS can be written as a
superposition of a symmetric Fano lineshape—arising from
the supertunneling Dicke state—of width �+��0, and a
Lorentzian line—arising from the subtunneling state—of
width �−��2 /�0, respectively.28 This complex behavior of
the DOS is due to the hybridization of the lateral dots
through the continuum of the central dot and leads. This
phenomenon is in close analogy to the Dicke effect in quan-
tum optics.28 Here, the supertunneling and subtunneling
modes give rise a broad ��+� antiresonance and a sharp ��−�
resonance, respectively. As we will discuss later, this effect
also modifies dramatically the many-body Kondo state.

B. Interacting central dot

We will now consider the interesting case of interactions
in the central dot only, so that U1=U is finite, while U2
=U3=U�=0. In this case, the system can also be mapped
into a single QD coupled to an effective conduction band. In
this case the dressed GF of the interacting dot can be for-
mally written as
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FIG. 2. �Color online� Spectral function vs energy for V=0.1,
V�=0.05, and �1=0, for �=0.001 �solid, black�, �=0.01 �dashed,
red�, �=0.02 �dot-dash, green�, and �=0.03 �dot-dot-dash, blue�.
The inset shows the position of the right-side satellite peak as func-
tion of �. Solid line corresponds to the analytical expression �see
text� while �red� circles show peak positions taken from curves in
main panel.
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G11
� ��� =

1

� − �1 − 
1
����

, �11�

where 
1
���� is the proper self-energy which takes into ac-

count the influence of the lateral QDs, the current leads, as
well as the Coulomb repulsion U. Unlike the noninteracting
case, a closed expression for 
1

���� is not possible, due to the
many-body term in the Hamiltonian. However, G11

� ��� can
be reliably obtained using the NRG procedure.38,39 For con-
venience, we write the GF in the Lehmann representation40

G11
� ��� =

1

Z
�
nn�


�n
cd�
† 
n��
2

� − En� + En
�e−�En + e−�En�� , �12�

where Z is the partition function in the canonical ensemble,

n� is an eigenstate of the Hamiltonian H, with corresponding
eigenenergy En, and �= �kBT�−1. The imaginary part of
G11

� ��� is calculated at zero temperature �T=0� directly from
the NRG spectrum41 while the real part can be obtained from
a Kramers-Krönig transformation.42

C. Cluster impurity approach

As we will see in the next section, it is also useful to
analyze the details of the states involving the three QDs,
considering the system as a whole. This approach also proves
essential when dealing with Coulomb interactions in all three
QDs, as the approach of an effective density of states de-
scribed in the previous section, is no longer applicable in the
more general case. To that end, we solve the problem con-
sidering all the dots composing the “impurity region” so that
the three-dot cluster is coupled to a flat conduction band.
This requires a simple generalization of the NRG procedure:
start with a cluster impurity described by a set of 64 basis
states, on which one writes and diagonalizes the initial
Hamiltonian, Hdots, while the current lead is characterized by
a flat density of states. For these NRG “cluster impurity”
runs, we typically keep 1600 states and use a discretization
parameter �=3.5, which provides sufficient accuracy for the
spectral function in the scales of interest.

III. ROLE OF ELECTRONIC INTERACTIONS

A. Particle-hole symmetric case

Hereafter, we set D=1 �typically the largest energy scale
of the problem� as our energy unit. We further consider the
Coulomb repulsion U=0.5, and �1=−U /2, which corre-
sponds to a particle-hole symmetric system with interactions
in QD1. In order to study the Dicke effect in this system we
first focus on the particle-hole symmetric point of the entire
system. To this end, we tune the on-site energies �2 and �3 of
the noninteracting QDs �U�=0�� symmetrically displaced
from the Fermi level, for which we set �3=−�2=�. With this
choice of parameters, the last term of Eq. �9� shows two
poles located at �= ��, which produce strong enhancement
of the effective coupling �1���. This results in a dramatic
distortion of the local interacting DOS projected in QD1,
�1

����, with important implications on the properties of the
system. We first fix � �=0.01� and vary the interdot coupling

V�. Figure 3 shows �1��� �=�1↑=�1↓ in Eq. �6��, for several
values of V�. The solid �black� curve shows the case V�=0,
which corresponds to the typical case of a QD coupled to a
conduction band with a flat density of states. Notice the
Kondo resonance at the Fermi level in addition to the two
Hubbard peaks at ��U /2 �see inset; which give rise to
Coulomb blockade peaks in the conductance at appropriate
gate voltages�. The width of the Kondo peak is proportional
to the Kondo temperature, which in this case is43 TK

0

�TK�V�=0�=5.6�10−5. As V� increases, the low-energy
structure of �1��� is strongly modified. Two satellite peaks
emerge symmetrically about the central peak at �=0. These
peaks become more pronounced for larger V� and the dis-
tance between them increases somewhat more than
2�2V�2+�2, as one would expect from the noninteracting
regime. The widths of the satellite peaks increase as V� in-
creases, similarly to the noninteracting case, where their
width is given by ��0V�2. Notice also Fano antiresonances
in �1 between the central and satellite peaks, located at �
� ��. These antiresonances result from destructive interfer-
ence between the Kondo state of QD1 and the localized lev-
els in the lateral QDs.34 We will discuss this point in greater
detail below.

It is interesting to notice that the central Kondo resonance
peak width shows a nonmonotonic dependence on V�, first
increasing with V�, but decreasing after a particular value.
This behavior, first identified in Ref. 35 from the slave boson
approximation, suggests that the Kondo temperature has a
similar behavior, although this suspicion was not explicitly
verified. Using NRG, we find indeed that to be the case. In
Fig. 4�a� we show TK as function of V� for �=0.01, and
obtain a clearly convex curve with a maximum value
��10TK

0 � at V��0.04, in agreement with the behavior seen
in the Kondo resonance in Fig. 3. We should emphasize that
TK for V��0 is larger than for the isolated QD1, TK

0 �see
value above�.

The zero-energy resonance also depends strongly on �.
Figure 5 shows �1��� for V�=0.05 and several values
of �. Notice that all curves show well-defined peaks and
their positions remain nearly constant at either ��0 or
�� ��2V�2+�2. However, the dips between the Kondo and
the satellite peaks are less pronounced for larger �, and their
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FIG. 3. �Color online� Spectral function vs energy for V=0.1,
�=0.01, and coupling V�=0.0 �solid, black�, V�=0.01 �dashed, red�,
V�=0.025 �dotted, brown�, and V�=0.04 �short-dash, blue�. The in-
set shows the same curves over a wider energy range. Here, U
=0.5, U�=0, and D=1.
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position shifts with �, as can also be seen in the inset. The
displacement of the dips toward the Fermi level as � de-
creases produces a “squeezing” of the Kondo peak at the
Fermi energy. The most evident situation shown in Fig. 5 is
the case of �=0.001, when the Kondo resonance takes the
form of a narrow and sharp peak. The behavior of TK with �
is shown in Fig. 4�b� and it is clearly nonmonotonic as well.
Notice that for V�=0.05 we find a maximum value of TK
�20TK

0 at ��0.025. More importantly, the squeezing of the
Kondo resonance as �→0 is accompanied by a strong sup-
pression of TK, which vanishes completely as �→0. The
above behavior is a clear signal of the influence of the sub-
tunneling mode on the Kondo state. Indeed, one can under-
stand these results in terms of the Dicke state physics. For
small values of �, the subtunneling Dicke state dominates
and the Kondo temperature decreases. For sufficiently large
values of � the supertunneling Dicke state dominates and the
Kondo temperature reaches its maximum value. For larger �
values, however, the system goes out of the Dicke regime
and the Kondo temperature drops.35 We should also com-
ment that the total suppression of the Kondo screening for
�=0 is essentially a quantum phase transition, which results

in the QD cluster isolating itself from the current leads. Per-
haps one way to view this suppression of Kondo screening is
to think of a Kondo resonance in the central dot that inter-
feres destructively with the single-particlelike resonances of
the side-connected dots �themselves hybridized with the
leads via the central dot�. The fact that all these resonances
appear at the same energy, �=0, results in the eventual sup-
pression of the Kondo state for the entire cluster. Of course,
this is only a qualitative argument, ultimately validated by
the NRG results. The underlying physical mechanism for this
destructive interference and resulting ground state is fasci-
nating, as we proceed to describe.

To provide a different perspective on the suppression of
the Kondo screening �and vanishing Kondo temperature�, we
study the thermodynamical properties of the system, namely,
the contribution of the impurity to the magnetic moment, �2,
and the entropy, S, from which one extracts information
about the nature of the states the system visits when the
parameters are varied. As usual, �2�T�=�tot

2 �T�−�0
2�T� and

S�T�=Stot�T�−S0�T�, where Xtot�T� and X0�T� �with X
=�2 ,S� are thermodynamical quantities of the system calcu-
lated with and without impurity, respectively. The magnetic
moment and the entropy can be written in terms of the mag-
netic susceptibility and the partition function as �2�T�
=T��T�, and S=log Z �we set kB=1�. In order to study the
effects of all three dots, we employ here the “cluster impu-
rity” approach described in Sec. II C.

Figures 6�a� and 7�a� show, respectively, �2 and S as
function of the NRG iteration energy �temperature T� for
several values of V� and �. Before engaging in the discussion
of the more complicated situations, lets us examine the result
for V�=�=0 �small open circles, purple�, corresponding to a
single impurity case, as QD2 and QD3 have their level at the
Fermi energy ��=0� but are decoupled from the rest of the
system �V�=0�—we include this curve as a reference for the
more general cases. For T�U, all the curves show conver-
gence to �2=3 /8 and S=log�64�, resulting from the free
orbital fixed point of the system. As T→0, DQ1 undergoes
a crossover into a Kondo singlet state and its magnetic
moment is screened by the conduction band, while QD2 and
QD3 remain in their free orbital states �since V�=0 and �
=0�, resulting in a net unscreened magnetic moment of 1/4
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FIG. 4. �Color online� �a� Kondo temperature as function of V�
for �=0.01. Notice TK at V�=0 is nonzero, TK

0 =5.6�10−5 here. �b�
Kondo temperature as function of � for V�=0.05. Other parameters
are as in Fig. 3. Notice TK→0 for �→0. The step structure seen
here results from the NRG discretization of the energy and corre-
sponds also to the discrete temperature values for which we calcu-
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smooth fit of NRG results as guide to the eye.
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and entropy S=log�16� for the three-dot cluster.
For V� ,��0, different regimes can be found. In the low

temperature limit �T�TK� the system always flows into a
Kondo state, where QD1 is in a Kondo singlet configuration
with the reservoirs, while QD2 and QD3 are combined into a
symmetric/antisymmetric pair of states, one of which is dou-
bly occupied �and the other empty� at T=0, as schematically
shown in Fig. 8�a�. This situation is characterized by a mag-
netic moment completely screened by the conduction band
��2=0� and with entropy S=0, as shown by all curves in Fig.
6 and 7.

Other interesting situations occur when TK�T��.43 For
V���, the physics can still be understood in terms of the
local orbitals, in which case �since T��� QD2 and QD3 are
still locked in one doubly occupied and one empty state. In
contrast, QD1 is in the magnetic moment regime, contribut-
ing alone to the magnetic moment �2=1 /8 and to the en-
tropy S=log�2�. When V���, however, the system goes into
a more intricate configuration of local molecular orbitals.
This is better understood in terms of symmetric �supertun-
neling� and antisymmetric �subtunneling� combination of the
QD2 and QD3 local orbitals, defined as

c+� =
1
�2

�c2� + c3�� ,

c−� =
1
�2

�c2� − c3�� , �13�

where c+� and c−� annihilate an electron in the bonding and
antibonding orbital, respectively, with energy �+=�−=0 �for
�3=−�2=� as before�. With this transformation, the Hamil-
tonian of the dots reads

H̃dots = �
�

�1c1�
† c1� + Un1↑n1↓

+ �2V��
�

�c1�
† c+� + H.c.�

− ��
�

�c+�
† c−� + H.c.� . �14�

The transformed system is schematically represented in Fig.
8�b�. Note that the orbital “+” and “−” are coupled to each
other by a matrix element −� and only the orbital “+”
couples to the QD1 via matrix element �2V�. On this trans-
formed basis we can provide a more intuitive analysis of the
thermodynamic quantities as follows. For TK�T�� and
V��� the configuration of the system is represented in Fig.
8�c�, where the QD1 orbital couples to the + orbital to form
a “local singlet” �essentially decoupled from the leads� while
the − orbital remains almost free �since ��V��. The contri-
bution to the magnetic moment and entropy is then provided
solely by the − orbital, resulting in �2=1 /8 and S=log�4�, as
clearly seen in the curves with �blue� square symbols in Fig.
6�a� and 7�a�. We should notice that the two curves for V�
=0 �for �=0 and �=0.01�—in each of the �a� panels of both
figures—are identical for temperatures T��=0.01, since for
high T the QD2 and QD3 levels at �� are thermally acces-
sible �which is no longer the case when T���.

In Fig. 6�b� and 7�b� we fix V�=0.075 and plot the mag-
netic moment and entropy for different values of �. For �
=0.02�V�, the situation described above is favored, but
when �→V�, the plateaus in the susceptibility and entropy
shift toward the curves with empty �black� circles of panel
�a� in the respective figures. The system is then returning to
the situation when the local orbitals are described indepen-
dently, as shown in Fig. 8�d�. Notice the Kondo singlet is not
yet formed at these high temperatures �T�TK�. These results
reveal the establishment of a local antiferromagnetically cor-
related state, involving orbitals �1 and +, emerging at tem-
peratures above TK.

In order to provide more evidence of the local singlet
between QD1 and the + orbital, Fig. 9 depicts the spin-spin
correlation value �S1 ·S+� �top panel�; the correlation with the
− orbital, �S1 ·S−� is shown in the bottom panel, as function
of temperature for various values of V�. Notice that �S1 ·S+�
is always negative �antiferromagnetic� and has increasingly
negative values for larger V�. In contrast, the correlation be-
tween the spin in QD1 and in the − orbital is an order of
magnitude weaker, and totally vanishes for large V�. It is
interesting to notice that although the local correlation with
the + orbital is large, it does not fully exhaust the anticipated
singlet correlation of −3 /4, even for the larger V� values,
where it seems to saturate at �−1 /2.
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FIG. 7. �Color online� �a� Entropy of three-dot cluster as func-
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small circles �purple� show results for V�=�=0. �b� Entropy of
cluster as function of temperature for V�=0.075 and various values
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FIG. 8. �Color online� Schematic representation of the various
configuration of the systems. �a� Kondo singlet for ��0 and T
�TK. �b� Symmetric �+� and antisymmetric orbital �−� combination.
�c� Antiferromagnetic singlet formation between �1 and + orbital.
�d� Magnetic moment configuration for ��0 and T�TK.
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B. Effects of particle-hole asymmetry

In a typical experimental situation, asymmetry in the
structure parameters is more likely to occur. It is therefore of
interest to analyze the stability and behavior of the results
discussed above with respect to changes that more generally
make the problem particle-hole asymmetric. We introduce
asymmetry parameters �v and �� that allow for V12�V13,
and 
�3
� 
�2
, respectively, as

V1l = V��1 � �v� �15�

and

�l = ��1 � ��� , �16�

where the positive �negative� sign in the expressions above
corresponds to the index l=2�3�. The fully symmetric situa-
tion previously described corresponds obviously to the case
�v=��=0.

We first allow for asymmetry in the couplings to the side
dots; Fig. 10 shows the results for weakly asymmetric cou-
plings V12 and V13 for different values of �. The top �bottom�
panel shows the case of �v=0.025 ��v=0.05�. The asymme-
try in the couplings results in a shift of the central peak away
from the Fermi level, as well as its strong suppression �com-

pare with Fig. 5�. This effect is less pronounced for larger
values of �. Notice, for instance, that for �=0.001 the central
peak is almost completely suppressed. Also, comparing the
curves in the top and bottom panels, we observe that for a
given � the shift and suppression of the peak is larger as �v
increases.

In Fig. 11 we fix �=0.01 and �v=0 �symmetric couplings
to central dot�, and show the spectral function as function of
energy for two values of �� and different values of V�. In the
top �bottom� panel we have ��=0.025���=0.05�. We notice
that for small V� �for instance, V�=0.01�, there is a strong
distortion in the spectral function near the Fermi level for
both values of ��. However this distortion is much weaker
when V� increases, so that for V�=0.02 and 0.03, the asym-
metry in the spectral function is nearly absent.

One would expect, from seeing these results for the spec-
tral functions, that the particle-hole asymmetry in the system
would introduce nonmonotonic changes in the Kondo tem-
perature. In Fig. 12 we illustrate this point. Panel �b� shows
the associated Kondo temperature for the system parameters
of Fig. 10�a�, where the coupling to the side dots is asym-
metric �with a value of �v=0.025�. As suggested by the in-
creasing width of the zero-energy peak in Fig. 10�a�, TK in-
creases with �, re-establishing the Kondo state that was
absent in the full Dicke regime �for �=0�, while larger values
eventually reduce TK, although not to zero. Similarly, the
asymmetry in side dot level location illustrated in Fig. 11�a�,
results in a rapid increase of TK with V�, shown in panel �a�,
so that the system has an order of magnitude larger Kondo
temperature for V��0.05, before dropping for larger V� val-
ues.

An additional important source of particle-hole asymme-
try is the bare level position of QD1. In order to explore how
it affects our results, we allow the level �1 to be different
from U /2. For convenience, we keep �1=−0.25 and change
U, which allows not only to explore the effect of the particle-
hole asymmetry but also the effect of larger values of U.
Figure 13 shows the spectral function vs. energy for �
=0.01 and various values of U. The curve for U=0.5, corre-
sponding to the symmetric case studied in Sec. I, exhibits
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two peaks symmetrically placed about the Fermi level, as
well as Hubbard bands located near �1 and �1+U, as can be
seen in the inset of the figure. As U increases, one clearly
observes that the curves no longer display particle-hole sym-
metry. We observe a decreasing height of the central peak, as
well as a minor shift in position, while its width remains
almost unchanged with increasing U. More interesting, we
notice that the satellite peak below the Fermi level is sup-
pressed and shifted toward �=0 while the corresponding
peak on the positive side is nearly unchanged. This is a clear
consequence of breaking particle-hole symmetry in the prob-
lem.

We have also investigated the role of nonvanishing Cou-
lomb interactions in the side dots QD2 and QD3. To that
effect, the problem is addressed using NRG for the three
quantum dot complex treated as a cluster impurity, as de-
scribed in Sec. III, and with the inclusion of a nonzero Cou-
lomb interaction U2=U3=U�. Figure 14 presents the spectral
function for different values of U�, for QD2 and QD3 levels

placed asymmetrically about the Fermi level ��=0.01�. For
U�=0 the system is particle-hole symmetric �as �1=−U /2�,
as also shown in Fig. 3. For increasing U�, however, the
asymmetry in the spectral function is evident, strongly shift-
ing and suppressing the Kondo resonance near the Fermi
level. This indicates the important role that Coulomb inter-
actions in the nearby dots have in the overall correlations
present in the system and suggests that the observation of the
Dicke effect is indeed a delicate undertaking.

C. Conductance

We now turn our attention to the effect on the conduc-
tance of the system of the various features discussed above.
It is clear that the details of the density of states at the Fermi
level are directly connected to the zero-temperature transport
properties in linear response. In the zero-bias limit, the con-
ductance of the system can be obtained by the Landauer
formula, G= �2e2 /h��−�

� −Im�T������f��� /���d�, where
f��� is the Fermi distribution function and, in the present
case, T���=�0Gdd���. At T=0 the conductance reduces to
G= �2e2 /h�	�0�1�EF�. From the density of states in Fig. 3
and 5 we observe that for all values of V� and ��0, the DOS
always exhibits a Kondo peak at the Fermi level �which be-
comes very narrow and sharp as �→0�. Since the conduc-
tance of the system is proportional to the density of states of
DQ1, this results in unitary conductance �2e2 /h� for all val-
ues of V� and ��0, discontinuously dropping to zero at �
=0. The above behavior is explained by the complete local-
ization of the subtunneling state for �=0. In this case the
state has no projection on the central quantum dot and there-
fore it does not contribute to the conduction. Similarly, one
would expect vanishing conductance for small bias as long
as �=0.35

An interesting result of the particle-hole asymmetry, as we
have seen in the previous section, is to shift the Kondo reso-
nance away from the Fermi level, as well as to change its
amplitude. This has direct impact on the linear conductance
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of the structure. Figure 15 illustrates this behavior for differ-
ent asymmetries �notice in fact that although �v and �� are
constant in this figure, increasing V� or � value increases the
asymmetry of the structure�. In both cases, the conductance
is indeed found to change drastically with the appropriate
parameter. It is interesting that asymmetry in the QD2 and
QD3 level position �for ��=0.025� and increasing dot cou-
pling V� results in a strong suppression of the linear conduc-
tance, even as the Kondo temperature of the system �Fig.
12�a�� is increasing. On the other hand, the enhancement of
TK that we see for the coupling asymmetry ��v=0.025� in
Fig. 12�b�, does produce a rapid increase in conductance for
larger � values.

IV. CONCLUSIONS

In summary, we have investigated the interplay of Dicke
and Kondo effects in a central strongly interacting quantum

dot coupled to a conduction band and two localized levels
provided by additional nearly noninteracting dots. We study
in detail the Kondo regime of the system, by applying a
numerical renormalization group analysis to a finite-U multi-
impurity Anderson Hamiltonian model. We find that the sys-
tem displays a squeezed Kondo resonance as we tune the
single particle levels of the side-coupled dots toward the
Fermi level. In the strict Dicke limit of degenerate single-
particle levels, the Kondo singlet disappears, as its Kondo
temperature vanishes. This behavior is found to be closely
related to the formation of a local singlet state involving the
�coupled� orbitals of the interacting dot and the supertunnel-
ing state �the symmetric combination of the single particle
levels of the two side coupled dots�. This local singlet results
in the suppression of the Kondo screening, which is detri-
mental to the conductance of the system. We have further
explored the consequences of system asymmetries, intro-
duced by different couplings, level locations and Coulomb
interactions. These are found to strongly affect the spectral
density and the conductance through the structure. We be-
lieve that our study not only clarifies the relevant picture of
an interacting system coupled to side quantum dots and con-
duction band but it also provides important guidelines for
experimental realization of these ideas.
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