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The thermoelectric properties of single-quantum-dot �QD� devices have been studied theoretically taking
into account the electron-phonon coupling in the QD. The thermoelectric transport coefficients and the ther-
moelectric efficiency have been calculated in the sequential tunneling regime. It is shown that the thermoelec-
tric properties depend on temperature and on intrinsic properties of the QD: the electron energy spectrum, the
phonon energy, and the electron-phonon coupling strength. Different regimes have been identified. In the weak
electron-phonon coupling regime, it is explicitly shown that the interplay between quantum confinement and
electron-phonon coupling determines the electron thermal conductance and the thermoelectric efficiency of the
device. The figure of merit ZT decreases rapidly with increasing temperature and electron-phonon coupling
strength. When the electron-phonon coupling is strong, it becomes evident that the thermoelectric coefficients
and the thermoelectric efficiency depend primarily on phonons.
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I. INTRODUCTION

A measure of the thermoelectric efficiency of a material is
the dimensionless figure of merit ZT�S2�T /�, where � is
the conductivity, S is the thermopower, � is the thermal con-
ductivity, and T is the absolute temperature. For ZT→�, the
Carnot heat engine efficiency is reached.1,2 Solid-state mate-
rials have typically much lower ZTs. Even the best bulk ther-
moelectric materials have thermoelectric figure of merit ZT
�1. Scientific research and technology are currently oriented
toward identifying materials and structures with ZT�1, that
will allow developing new thermoelectric devices with en-
hanced efficiency in order to contribute to the needs of our
society for energy production.3

Low-dimensional structures are by principle expected to
have better thermoelectric performance compared to the cor-
responding bulk materials due to quantum confinement.4 In-
deed, enhancement of ZT has been demonstrated in superlat-
tices and this has initiated intensive research activity
worldwide in the field of thermoelectrics in superlattices,
thin films, wires, quantum-dot superlattices, and nanocom-
posite materials.5–27 Nanostructures are currently at the cen-
ter of scientific research in the field of thermoelectricity
because they have shown significantly improved thermoelec-
tric performance that has been attributed to the intrinsic ma-
terials properties at the nanoscale and to the related
architectures.28–35

QDs are low-dimensional structures with three-
dimensional �3D� confinement that have dimensions at the
nanoscale �nanocrystals� and they are the basic units of nano-
composite materials. A QD provides a model system to study
the thermoelectric properties at the nanoscale and to explore
the possibilities and the limitations in achieving high values
of ZT. QDs are characterized by discrete energy spectra. The
discontinuous energy spectrum of a QD and the Coulomb-
blockade effect introduce discontinuities in the electron con-
ductance that explains the violation of Wiedemann-Franz law
demonstrated36,37 in this system. In the quantum regime,
where the discreteness of the energy spectrum dominates,
considerable blocking of the electron thermal conductance

has been shown36,38 that depends nearly exponentially on the
ratio of the energy levels spacing over the thermal energy,
�E /kBT. When the thermal conductance is low, the thermo-
electric efficiency, measured by the dimensionless figure of
merit ZT, is high. Giant thermopower and figure of merit
have been predicted in single molecule devices39 and mo-
lecular junctions.40 It has been reported41 that ZT increases
very rapidly with the ratio �E /kBT when the electron-
phonon coupling is weak and it has been emphasized that ZT
of a single-QD device is assigned much smaller values when
the electron-phonon coupling is not weak. Hence, in order to
predict the thermoelectric efficiency of a real QD device and
to interpret experimental observations, it is very important to
take into account electron-phonon coupling. The importance
of inelastic effects in electronic transport at the nanoscale has
been also pointed out in several recent scientific works42–47

and it is theoretically explored here for the thermoelectric
transport properties of QD devices.

We present our calculations on the thermoelectric coeffi-
cients and the thermoelectric efficiency in the sequential tun-
neling regime within a linear response theory. The theoretical
model and the formalism developed in previous
works36,38,48,49 have been extended to include electron-
phonon coupling. We concentrate on the quantum regime
where the discreteness of the energy spectrum of the QD
dominates and it results to high values of ZT. In this regime,
deviation from the bulk behavior is expected for phonons. In
bulk, phonons occupy continuous energy states in bands and
they are described by their type and their wave vector. In
low-dimensional structures, phonon dispersion undergoes
strong modification due to quantum confinement. In QD su-
perlattices, it has been demonstrated50 that acoustic-phonons
occupy quasioptical branches which are bands with narrow
energy dispersion that are separated by energy gaps. In the
case of strong 3D confinement the phonon energy spectrum
is discrete.51 Phonon effects in molecular transistors have
been studied theoretically considering phonons being inter-
nal modes that correspond to vibrations of the QD for which
the center of mass is at rest.52 Vibrations directly couple to
the electric charge in the QD. Koch et al.53 have studied the
thermopower of single-molecule devices taking into account
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the coupling between electrons and vibrations. The same
model for phonons has been used in Ref. 54 to study theo-
retically electronic transport in a carbon nanotube QD and to
interpret experimental findings on the conductance.55,56 The
main parameter of the model is the electron-phonon coupling
strength �. This parameter depends on the material of the QD
and the type of phonons. In Ref. 57, � is estimated for polar
semiconductor QDs and it has been shown that strong
electron-phonon coupling may be responsible for the shape
of the conductance resonances measured in scanning tunnel-
ing spectroscopy experiments. Raman spectra could provide
information on phonon properties in QDs devices. It should
be emphasized that for an accurate analysis of experimental
Raman spectra, theoretical calculations should be required to
distinguish phonon confinement effects on Raman spectra
from alloying and strain induced effects.58

In the present work, electron tunneling through a level
coupled to a phonon �local vibration� mode is assumed and
our previous theoretical model has been extended to calcu-
late the thermoelectric properties and efficiency of a QD
transistor in the quantum regime. Due to electron-phonon
coupling, electron tunneling is accompanied by changes in
the number of phonons in the QD. Representative numerical
data are presented for broad range of the parameters of the
model. The transport coefficients and the thermoelectric per-
formance of the single-QD device have been found to de-
pend on temperature and on intrinsic properties of the dot:
the electron-energy spectrum, the phonon energy, and the
electron-phonon coupling strength. The dependence is not
trivial and different regimes have been identified. Analytical
formalism has been derived for the dependence of the ther-
moelectric efficiency of a single-QD device on quantum con-
finement and on the strength of the electron-phonon cou-
pling.

The conclusions for the thermoelectric efficiency are
drawn by taking into account the effects of the discrete en-
ergy spectrum of the QD and of the electron-phonon cou-
pling. The thermal conductance is here approximated by the
electron thermal conductance. The values of ZT calculated
by neglecting the phonon thermal conductivity of the device
provide upper limits in each regime of parameters. In order
to estimate the effect of the phonon thermal conductivity, one
has to take into account phonon conduction through the
whole structure �electrodes, barriers, and QD� and for this
reference to a real device would be needed. The importance
of the phonon thermal conductivity in reducing the ZT of a
single-QD device should depend very much on the properties
of the materials at the tunneling barriers.41 It should be em-
phasized that the structure under investigation could be
proved advantageous compared to other bulk and low-
dimensional structures in providing a mechanism to keep the
phonon thermal contribution low. Phonon conduction could
be blocked at the tunneling barriers. Then, phonon thermal
conductivity would be small and ZT would be optimal. One
way to achieve this would be by selecting barrier materials
with low lattice thermal conductivity. Additional effects such
as phonon confinement in the barriers and/or the dot and
phonon scattering at the interfaces59 would further contribute
to keep the total phonon thermal conductivity low.

As in Refs 36 and 38, we concentrate on the sequential
tunneling regime. Higher-order contributions such as cotun-

neling have not been included in the theoretical model pre-
sented here. It should be noted that cotunneling is not ex-
pected to affect our main conclusions because it dominates
the low-temperature electron transport in the case of rela-
tively large dots where the effects of finite quantum level
spacing can be neglected.60 Moreover, it has been shown
both theoretically60 and experimentally61 that cotunneling in-
fluences the conductance and the thermopower away from
the conductance peak and it is most important in the region
between two conductance peaks. Here, important physical
behavior is indicated near the conductance peak where the
power factor, S2GT, maximizes.

The theoretical model is presented in Sec. II and the re-
sults are presented and discussed in Sec. III where it is also
been given simplified approximate formalism to interpret the
physics of the numerical data. The conclusions are given in
Sec. IV.

II. THEORETICAL MODEL

The single-QD device consists of a QD weakly coupled to
two electron reservoirs via two tunnel barriers. The two res-
ervoirs serve as the source and the drain leads and a third
lead serves as the gate that interacts with electrons electro-
statically. A continuum of electron states is assumed in the
reservoirs that are occupied according to the Fermi-Dirac
distribution

f�E − EF� = �1 + exp�E − EF

kBT
��−1

, �2.1�

where the Fermi energy, EF, in the reservoirs is measured
relative to the local conduction band bottom. Across the two
leads there are applied a bias voltage V and a temperature
difference �T. It is assumed that the left reservoir is at lower
energy under positive bias.

The QD is characterized by discrete electron energy levels
Ep �p=1,2 , . . .�. Degeneracies can be included by multiple
counting of the levels.36,38 In the absence of coupling to the
leads, the states of the QD are denoted by �N ,q� where N is
the number of additional electrons in the QD and q is the
number of excited phonons. The energy of the QD in a state
�N ,q� with respect to the conduction band bottom of the left
reservoir, can be written41,48,49 as

Eq
N = �

p

npEp + U�N� + �eVN + 	
�q + 1
2� , �2.2�

where np is the electron occupation number, � is the part of
the bias voltage V that drops across the QD and 	
 is the
phonon energy. The electrostatic energy U�N� of the dot with
charge Q=−Ne is

U�N� = �Ne�2/2C − N�ext, �2.3�

where C is the effective capacitance between the QD and the
reservoir leads and �ext is the contribution of external
charges and it is externally controlled via the gate bias.48

Phonons are internal modes that correspond to vibrations
of the QD for which the center of mass is at rest. Vibrations
directly couple with the electric charge in the QD. The
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electron-phonon coupling term can be eliminated by a ca-
nonical transformation of the Hamiltonian.52 This yields a
renormalization of the parameters Ep, U. In the weak-
coupling regime between the QD and the reservoir leads,
electron tunneling introduces transitions between the states
of the QD: �N ,q�→ �N� ,q��.

The total rate for a transition �N ,q�→ �N� ,q�� is denoted

by Wq→q�
N→N�. First-order perturbation theory yields sequential

tunneling processes �N ,q�→ �N1,q�� with total rates

Wq→q�
N→N+1 = �

a=L,R
fa	Eq�

N+1 − Eq
N
�q→q�;a

N→N+1, �2.4�

Wq→q�
N→N−1 = �

a=L,R
�1 − fa	Eq

N − Eq�
N−1
��q→q�;a

N→N−1, �2.5�

where the summations are over the left �L� and right �R�
reservoir leads. The bare transition rates are obtained by Fer-
mi’s golden rule

�q→q�;a
N→N1 =

2�

	
�a�a

pMq→q�;a
N→N12, �2.6�

where �a is the density of states in the lead � and �p
a is the

tunnel rate from level p to reservoir �. �he density of states
is here assumed independent of the transition energies and
the charge of the dot.

The matrix elements Mq→q�;a
N→N1 are52,53

Mq→q�;a
N→N−1 = �q1!/q2!�1/2�q2−q1e−�2/2Lq1

q2−q1��2�

� ��− 1�q�−q for q� � q

1 for q� � q
� , �2.7�

where q1=min�q ,q�� and q2=max�q ,q��. The parameter � is
the electron-phonon coupling parameter and can assume val-
ues both smaller and larger than 1. The functions Lm

n �x� de-
note the generalized Laguerre polynomials. There is no de-
pendence on the lead index �. The corresponding matrix
element for a transition N→N+1 can be obtained by using

Mq→q�;a
N→N−1 = Mq�→q;a

N→N+1. �2.8�

The stationary current through the left reservoir is equal to
the total current and it is given by

I = − e�
p=1

�

�
�ni�

�
q,q�

Pq��ni��	Wq→q�;L
N→N+1 − Wq→q�;L

N→N−1
 , �2.9�

where Pq��ni�� is the nonequilibrium probability distribution
for an electron occupation configuration �ni� in the presence
of q phonons. Pq��ni�� is a stationary solution of the kinetic
equation.

�

�t
Pq��ni�� = 0

= �
p

�
q�

	Pq��n1, . . . ,np−1,0,np+1, . . .��np,1Wq�→q
N−1→N

+ Pq��n1, . . . ,np−1,1,np+1, . . .��np,0Wq�→q
N+1→N

− Pq��ni���np,0Wq→q�
N→N+1 − Pq��ni���np,1Wq→q�

N→N−1
 .

�2.10�

The kinetic equation has been solved in the linear regime
similarly as in Refs. 48 and 49. Linearized expressions have
been obtained for the electric current and the heat flux that
lead to the following expressions for the conductance, G, the
thermopower, S and the thermal conductance, �

G = L�0�, �2.11�

S = −
1

eT
�L�0��−1L�1�, �2.12�

� =
1

e2T
	L�2� − L�1��L�0��−1L�1�
 , �2.13�

L��� =
e2

kBT
�
p=1

�

�
N=1

�

�
q,q�

�p
L�p

R

�p
L + �p

R Mq,q�
N,N−1�� − EF����

� Peq
q �N�Feq�Ep/N�	1 − f�� − EF�
 , �2.14�

where �=Ep+U�N�−U�N−1�+	
�q−q��. Peq
q �N� is the

probability that the QD is in the state �N ,q� in equilibrium. It
holds:Peq

q �N�=e−	
q/kBT�1−e−	
/kBT�Peq�N�. Feq�Ep /N� is the
conditional probability in equilibrium that level p is occupied
given that the QD contains N electrons. The above equilib-
rium probabilities are, respectively, defined48 as

Peq�N� = �
�ni�

Peq��ni���N,�
i

ni
, �2.15�

Feq�Ep/N� =
1

Peq�N���ni�
Peq��ni���np,1

�N,�
i

ni
. �2.16�

Peq��ni�� is the Gibbs distribution in the grand canonical en-
semble

Peq��ni�� = Z−1 exp�−
1

kBT
��

i=1

�

Eini + U�N� − NEF�� ,

�2.17�

where N��
i

ni and Z is the partition function

Z = �
�ni�

exp�−
1

kBT
��

i=1

�

Eini + U�N� − NEF�� .

�2.18�

A measure of the thermoelectric energy conversion effi-
ciency is the dimensionless figure of merit ZT

ZT =
S2G

�e + �ph
T . �2.19�

The denominator of the above equation is the thermal con-
ductance that consists of the electron part, �e, and the pho-
non �lattice� part, �ph. The phonon contribution originates
from phonon transport through the device and it has been
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neglected for the reasons discussed in Sec. I. In the calcula-
tions of the electron thermal conductance �e the electron
energy spectrum of the QD and the electron-phonon coupling
are taken into account. To simplify the notation, the electron
thermal conductance is denoted by the symbol �.

III. RESULTS AND DISCUSSION

In this section, we present the results of our calculations
and we discuss the thereby indicated physical behavior. For
this, reference is made to representative numerical results of
extended calculations on the thermoelectric transport proper-
ties of single-QD devices. The plotted results are for QDs
with equidistant energy spectrum and nondegenerate energy
levels. The conclusions can be applied to more general cases
of energy spectra by taking into account the effects of non-
equidistant electron-energy spectrum and of energy degen-
eracies on the thermoelectric coefficients that have been
studied previously.36,38

In the quantum regime, quantum confinement dominates
and a single charging state contributes to transport. The term
with N=Nmin gives the dominant contribution
to the sums over N in Eq. �2.14�, where Nmin is the
integer that minimizes the absolute value of ��N�=EN
+U�N�−U�N−1�−EF. They are defined: ����Nmin�,
�p�Ep−ENmin

, and �qq���+	
�q−q��. Periodic
Coulomb-blockade oscillations have been shown in the cal-
culated transport coefficients when electron-phonon coupling
is neglected.36,38,48,49 The peaks of the conductance, the ther-
mopower and the thermal conductance occur each time an
extra electron enters the QD with periodicity �EF=�E
+e2 /C. Additional sawtooth short-period oscillations of the
thermopower are due to the discreteness of the energy spec-
trum.

The electron-phonon coupling parameter � can be esti-
mated by the ratio �r /�vib, where �r is the shift of the pho-
non potential curve due to the additional electron on the QD
and �vib is the harmonic oscillator length corresponding to
vibrations.53 Since, there is no direct connection between �r
and �vib, parameter � can assume values both smaller and
larger than 1.53 The values of �, of the relevant confinement
energy �E and of the phonon energy 	
 should be known in
order to estimate the energy conversion efficiency of QD
device. �For instance for carbon nanotube QDs estimated54

parameters values are: �E=30 meV, �=1.6, and 	

=11.5 meV.� The thermoelectric coefficients depend on the
magnitude of �. We first discuss the calculated behavior for
values of � smaller than unity. This regime is referred to as
“weak electron-phonon coupling regime.” Then, we discuss
the obtained behavior for values of � comparable to or
greater than unity. This regime is referred to as “strong
electron-phonon coupling regime.”

A. Weak electron-phonon coupling regime

For small values of �, the electron conductance G is prac-
tically not affected by phonons and it holds:G�Go�G �=0.
G is plotted in Fig. 1 for �=0.2. When �E�kBT, the

Coulomb-blockade oscillations of G can be interpreted by
the formula.36,48

G � Go =
e2

kBT
�

1

4 cosh2��/2kBT�
, �3.1�

where �� �L�R

�L+�R .
The electron conductance does not depend on phonons

because electron tunneling does not cause any significant
phonon transitions for weak coupling. Diagonal transitions,
such as �N ,q�→ �N1,q� give the dominant contribution to
G except for very small phonon energies. Phonon transitions
occur when phonon energies are very small and in this case
off-diagonal terms contribute to G. The total conductance
can still be interpreted by Eq. �3.1�.

The thermopower S does not depend on phonon energy
and is nearly the same as that for �=0, i.e., S�So�S �=0
�Fig. 2�. The steps in the Coulomb oscillations are due to the
electron activation-energy spectrum of the QD and they are
distinguishable at low temperatures.49 In the weak-coupling

FIG. 1. �Color online� A period of the conductance, G, versus
Fermi energy, EF, for �E=0.5 e2 /2C and kBT=0.05 e2 /2C �i� for
�=0.2 �thick solid line� where the data for the various phonon
frequencies are not distinguishable on the scale of the figure,
and �ii� for �=2 �solid lines� and phonon energies 	

=0.01,0.1,0.2,0.3,0.4 e2 /2C.

FIG. 2. �Color online� A period of the thermopower, S, versus
Fermi energy, EF, for parameters and lines format as in Fig. 1.
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regime, steps due to phonon-energy states are not observable
because their height is small.

The electron thermal conductance � is enhanced due to
electron-phonon coupling even when the coupling is weak.
The enhancement depends on phonon energy. This is shown
in Fig. 3, where � is plotted for �=0.2 for various phonon
energies together with �0�� �=0. It has been previously
shown36,38 that �0 is highly limited by the discrete energy
spectrum of the QD. �0 increases with temperature due to
thermal broadening of the transition probability. Its magni-
tude is determined by the interplay of the thermal energy and

the confinement energy. It increases nearly exponentially
with the ratio of kBT /�E. The enhancement of � relative to
�0 is due to the broadening of the transition probability by
additional possible transitions �N ,q�→ �N1,q�� due to
electron-phonon coupling. Analysis of our numerical data
has indicated that � can be approximated by the sum of two
contributions: ��E that mainly depends on the electron en-
ergy spectrum of the QD and �e−ph that mainly depends on
the electron-phonon coupling

� � ��E + �e−ph, �3.2�

��E = kB�� �E

kBT
�2

e−�E/kBT�
q,q�

Fqq� � ���p
qq�e�qq�/kBT + �n

qq�� − e−�E/kBT��p
qq�e�qq�/kBT − �n

qq��

�
m,m�

Fmm���p
mm�e�mm�/kBT − �n

mm��

�
m,m�

Gmm� � ,

�3.3�

�e−ph = kB�� 1

kBT
�2

�
q,q�

Gqq��qq���qq� − ��qq��� , �3.4�

where

�p
qq� = � 1 for �E � kBT

1

1 + e��p+�qq��/kBT elsewhere � , �3.5�

�n
qq� = � 1 for �E � kBT

e��p+�qq��/kBT

1 + e��p+�qq��/kBT elsewhere � , �3.6�

Fqq� = e−	
q/kBT�1 − e−	
/kBT�
1

1 + e�/kBT Mqq�
2 , �3.7�

Gqq� = Fqq���p
qq�e�−�E+�qq��/kBT +

e�qq�/kBT

1 + e�qq�/kBT + �n
qq�e−�E/kBT� ,

�3.8�

and

��qq�� �

�
q,q�

Gqq��qq�

�
q,q�

Gqq�

. �3.9�

The first term of Eq. �3.2� can be approximated by
�0 :��E��0. As in G, diagonal transitions also dominate in
this term of �. The enhancement of � relative to �0 �Figs. 3
and 4� originates from the second term, �e−ph. This term
depends on the deviation of �qq� for the phonon transitions
q→q� from ��qq�� 	Eq. �3.9�
. ��qq�� can be interpreted as an
average of the sequential tunneling transition energy on the
conductance channels. Due to electron-phonon coupling the
probable transitions are broadened around the average tun-
neling resonance. The additional contribution to the electron
thermal conductance is the sum of all deviations of �qq� from
the average ��qq��. This is zero for the diagonal terms. The
phonon transitions offer extra channels for thermal conduc-
tion resulting to an enhancement of � that maximizes at cer-
tain phonon energy �Fig. 4�.

ZT is plotted in Fig. 5 together with ZT0 ��ZT �=0� for
comparison. In quantum regime, ZT0 has been predicted to
assume very high values due to the discrete energy spectrum
of the QD as interpreted by the following approximate
expression:41

FIG. 3. �Color online� A period of the thermal conductance, �,
versus Fermi energy, EF, for �=0.2 for phonon energies 	

=0.01,0.1,0.2,0.3,0.4 e2 /2C for �E=0.5 e2 /2C and kBT=0.05
e2 /2C. �0 for �=0 �thick solid line� is also shown for reference.
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ZT�=0 = � �

�E
�2

e�E/kBT 	1 + 4 cosh2��/2kBT�e−�E/kBT

4 cosh2��/2kBT�

� �1 − 4��E

�
�sinh��/kBT�e−�E/kBT

+ 4��E

�
�2

sinh2��/kBT�e−2�E/kBT� . �3.10�

Equation �3.10� has a simple form and it can be used to
estimate ZT when quantum confinement dominates. For �E
�kBT, this expression can be further simplified by neglect-
ing the second and third terms in the bracket. For QDs with
�E�kBT, nonequidistant energy spectra and degeneracies, a
more accurate analytical expression for ZT, can be obtained
by replacing in the definition of ZT the analytical expressions
given in Ref. 38 for the transport coefficients G, S, and �.

Calculated data for ZT are plotted in Fig. 5 at low-thermal
energy, kBT=0.05 e2 /2C. It can be seen that even at low
temperatures, for some phonon energies, ZT can be signifi-

cantly lower than the value expected by quantum confine-
ment, ZT0. The reason for this can be understood by recalling
the definition of ZT. The nominator of Eq. �2.9� is the power
factor, S2GT, that is a function of G and S and it is nearly
independent of the phonon parameters:S2GT�So

2GoT.
Hence, the decrease in ZT relative to ZT0 is solely due to the
enhancement of � relative to �0 due to the coupling of tun-
neling electrons with phonons. It should be emphasized that
although this decrease, ZT still assumes high values. With
increasing temperature, the difference between ZT and ZT0
becomes smaller and less dependent on phonon energy. It has
been found that for electrons tunneling through discrete tran-
sition energy levels of isolated QDs, ZT is more importantly
limited by increasing thermal energy than by electron-
phonon coupling.

A simple approximate expression has been deduced that
relates the figure of merit, ZT to ZT0�ZT �=0

ZT � aZT0, �3.11�

a = �1 +
�e−ph

��E
�−1

. �3.12�

The coefficient a measures the effect of the electron-phonon
coupling on the thermoelectric efficiency of a QD device that
would be ZT0 if determined by the discrete energy spectrum
of the QD. It measures the reduction in ZT relative to ZT0
and it is plotted in Fig. 6 for various phonon energies. Equa-
tions �3.9�–�3.12� can provide estimations of optimal ZT of a
single-QD device in the weak electron-phonon coupling re-
gime when the electron-energy spectrum, the phonon energy
and the electron-phonon coupling strength are known. The
thereby estimated ZTs should be approached when the pho-
non conduction through the whole device is small.

B. Strong electron-phonon coupling regime

In the strong electron-phonon coupling regime, the con-
ductance G is smaller than G0 and depends on phonon
energy �Fig. 1�. The decrease in Gmax with 	
 is explained
by that the off-diagonal transitions dominate in Eqs.

FIG. 4. �max versus the phonon energy �	
� for �=0.2 �dots�
and �=2 �squares� at kBT=0.05 e2 /2C �solid eye guide line� and
kBT=0.1 e2 /2C �dashed eye guide line�. The horizontal straight
lines are for �=0 and are shown for reference. It is �E=0.5 e2 /2C.

FIG. 5. �Color online� The figure of merit ZT for �=0.2 for
phonon energies 	
=0.01,0.1,0.2,0.3,0.4 e2 /2C at kBT=0.05
e2 /2C. The thick solid curve is ZT0.

FIG. 6. �Color online� Coefficient � for �=0.2, 	

=0.01,0.1,0.2,0.3,0.4 e2 /2C for �E=0.5 e2 /2C and kBT=0.05
e2 /2C.
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�2.11�–�2.14�, i.e., electron tunneling through the resonant
transition level occurs mostly with emission and/or absorp-
tion of phonons. With increasing �, more matrix elements
Mqq� become nonvanishing and more phonon transitions
q→q� take place resulting to broadening of the transition
probability and to lowering of its maximum. Increasing ther-
mal energy makes more transitions possible and results to
enhancement of G and broadening of the Coulomb peaks.

S shows additional fine structure compared to S0 that is
due to phonon transitions �Fig. 2�. In the strong electron-
phonon coupling regime, phononic steps are observable in S
because their height is significant. The features of the phonon
steps within our theoretical model are in agreement with
those described in Ref. 53. The calculated power factor S2GT
decreases with phonon energy mainly due to the correspond-
ing decrease in G.

In the quantum regime and for strong electron-phonon
coupling, the thermal conductance � may be significantly
higher than �0. This enhancement also depends on phonon
energy �Fig. 3�. The enhancement of � is due to the dominant
off-diagonal phonon transitions. The off-diagonal transitions
correspond to additional channels of thermal conduction that
are provided by the phonon transitions upon electron tunnel-
ing. In this regime it holds that

� � �e−ph. �3.13�

This relation reveals the dominant role of the electron-
phonon coupling in determining the thermal conductance and
that the amount of electron quantum confinement in the QD
plays a secondary role in this regime.

The decrease in the power factor and the increase in the
thermal conductance result in significant reduction in ZT
relative to ZT0 and ZTsmall �. It is concluded that ZT of a
single-QD device can be significantly limited when the
electron-phonon coupling within the QD is strong. This can
be clearly seen by comparing the data plotted in Figs. 5 and
7 that correspond to two devices of QDs in the quantum
regime with the same amount of confinement and with dif-

ferent strengths of electron-phonon coupling. The data in
Fig. 5 are for weak coupling ��=0.2� and the data in Fig. 7
are for strong coupling ��=2�. The ZT values of the second
device are more than one order of magnitude lower than the
ZT values of the first device. The difference between the
values of ZT in the two coupling regimes becomes smaller at
higher temperatures. In the strong-coupling regime, ZT has
been found to decrease rapidly with increasing temperature
and it typically assumes values smaller than 1. In Fig. 7, it
can be noticed that ZT decreases first with increasing with
phonon energy 	
 and then it increases again. The decrease
in ZT is explained by the decrease in G with 	
 whereas the
increase is due to the decrease in � with 	
.

An overview of the results on the thermoelectric perfor-
mance as a function of the main parameters of the model is
presented in order to make apparent the different regimes
that have been identified. The maximum of the power factor
S2GTmax and the figure of merit at this maximum, ZT� are
plotted in Figs. 8–10 versus the phonon energy for various
electron-phonon coupling strengths. Data are plotted for four
values of the ratio �E /kBT to show the effect of the interplay
between quantum confinement and thermal energy. High ZTs
are predicted for all phonon energies for small � �weak
electron-phonon coupling� and big values of �E /kBT. In this
regime, QDs with smaller amount of confinement �i.e.,
smaller �E� are predicted to have lower ZT. In Fig. 9, it can
be seen that ZT� decreases with increasing �. It has a mini-
mum at some phonon energy. In the strong-coupling regime,
this minimum is weakly dependent on �E. By comparing the
data in Figs. 9 and 10, it can be seen that ZT is highly
reduced by increasing temperature for all strengths of
electron-phonon coupling.

IV. CONCLUSIONS

The effect of the electron-phonon coupling on the thermo-
electric properties of single QD devices has been investi-
gated. It has been shown that the high thermoelectric effi-
ciency that has been previously predicted for electrons

FIG. 7. �Color online� The figure of merit, ZT, for �E=0.5
e2 /2C and kBT=0.05 e2 /2C �solid lines� for �=2 and 	

=0.01,0.1,0.2,0.3,0.4 e2 /2C. The dashed lines are for a higher
thermal energy kBT=0.1 e2 /2C for the same phonon energies 	
.

FIG. 8. S2GTmax versus phonon energy for various � at kBT
=0.05 e2 /2C and for two cases of quantum confinement in the
quantum regime: �E=0.5 e2 /2C �solid lines� ��E /kBT=10� and
�E=0.3 e2 /2C �dashed lines� ��E /kBT=6�.
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tunneling through the discrete energy levels of the QD per-
sists when the coupling is weak. ZT can be considerably
limited when the electron-phonon coupling is not small. In
the strong coupling regime, ZT typically assumes values
smaller than 1 and it is mainly determined by phonon param-
eters.

The hereby predicted efficiencies are optimal for mini-
mized phonon conductance through the device. It seems

likely that optimal ZT could be achieved in single QD de-
vices by exploiting that the structure is nonhomogeneous and
that the active part is the material of the QD. It would be
particularly challenging to design the structure and to select
the materials of the tunneling barriers so that phonon con-
duction through the device is minimized.

Finally, it should be mentioned that the present model
applies when the QD is isolated and electron tunneling oc-
curs through deltalike transition levels. Deviations are to be
expected when electrons in the QD couple to the electrodes
states or to other states in the surrounding materials.
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