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The tensor product representation of quantum states leads to a promising variational approach to study
quantum phase and quantum phase transitions, especially topological ordered phases which are impossible to
handle with conventional methods due to their long-range entanglement. However, an important issue arises
when we use tensor product states �TPSs� as variational states to find the ground state of a Hamiltonian: can
arbitrary variations in the tensors that represent ground state of a Hamiltonian be induced by local perturbations
to the Hamiltonian? Starting from a tensor product state which is the exact ground state of a Hamiltonian with
Z2 topological order, we show that, surprisingly, not all variations in the tensors correspond to the variation in
the ground state caused by local perturbations of the Hamiltonian. Even in the absence of any symmetry
requirement of the perturbed Hamiltonian, one necessary condition for the variations in the tensors to be
physical is that they respect certain Z2 symmetry. We support this claim by calculating explicitly the change in
topological entanglement entropy with different variations in the tensors. This finding will provide important
guidance to numerical variational study of topological phase and phase transitions. It is also a crucial step in
using TPS to study universal properties of a quantum phase and its topological order.
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I. INTRODUCTION

The central task in the study of quantum many-body sys-
tems is the classification of possible phases of matter and the
understanding of phase transitions between them. Of particu-
lar interest is the study of systems at zero temperature, where
a whole distinct realm of quantum effects emerge, and that
is what we will focus on in this paper. Landau’s general
principle for understanding continuous phase transitions
based on symmetry breaking and local order parameter1 does
not apply to all phases and phase transitions. Topological
order,2,3 in particular, is not related to any symmetry proper-
ties and topological phase transitions may happen between
systems with the same4–7 or incompatible8 symmetries. It has
been the subject of intensive research and will be the central
topic of this paper. Aside from the lack of a qualitative un-
derstanding, what makes the problem harder is the fact that
for quantum systems whose components strongly interact
with each other, direct numerical approach is limited due to
strong entanglement among the particles. Generically, the
space required for description of a quantum system grows
exponentially with system size, hence limiting direct numeri-
cal simulations to systems usually too small for any practical
purpose.

Recently, insights into quantum many-body systems from
both condensed-matter physics and quantum information sci-
ence have led to the discovery of the tensor product repre-
sentation of quantum states �also called the projected en-
tangled pair states�,9–13 which provides a promising
variational approach to study zero-temperature quantum
phase and phase transitions. Representing quantum many-
body states with a network of tensors, tensor product states
�TPSs� are proven to be efficient for the study of one-

dimensional quantum systems.14–16 The higher-dimensional
generalization of this approach may not be as efficient, yet
study has shown that it reproduces many known results and
may be used to study systems not solvable in any conven-
tional way.17–19 The strength of the approach lies in the fact
TPS can describe long-range entanglement that are present in
a large class of topologically ordered states.20,21 So the varia-
tional approach based on TPS can include both topologically
ordered states and symmetry-breaking states and can produce
a phase diagram that contains both types of states. In con-
trast, the conventional mean-field/variational approaches are
based on states with no long-range entanglement, which ex-
clude the topologically ordered states from the very begin-
ning. We also note that the entanglement of a simple TPS
satisfies an area law,22 which coincides with the scaling of
entanglement in the ground state of most known noncritical
systems.23

In the variational approach based on TPS, we try to find a
TPS which minimizes the average energy of a local Hamil-
tonian. As we change the Hamiltonian by adding perturba-
tion, the tensors in the TPS are also changed in order to
minimize the average energy for the new Hamiltonian. While
local physical perturbations can always be reflected by varia-
tions in the tensors, the other direction of this problem re-
mains unclear: can an arbitrary variation in the tensor be
induced by a local perturbation of the Hamiltonian?

This is a very important question if we want to discuss
phase based on states. Because phase is defined as a region in
Hamiltonian space, where any two points H1, H2 within the
region can be connected by a smooth path without encounter
singularities �i.e., phase transitions�. So the question about
tensor and phase becomes, which set of states in Hilbert
space correspond to such a region in Hamiltonian space and
which set of tensors in the tensor space represent these states.
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Starting from one point in the phase region, we would like to
know what kind of variations in the tensors corresponds to
local perturbations to the Hamiltonian.

We can discuss this important question in more concrete
setting. Assume a TPS �T minimizing the average energy of
a Hamiltonian H has a property. We would like to ask if the
property is a universal property of a phase, or just a special
property of H. If the property is a universal property of a
phase, then the ground state �T+��T for the perturbed
Hamiltonian H+�H still has the same property. If the prop-
erty is a special property of H, the ground state for the per-
turbed Hamiltonian will lose this property. It is the collection
of universal properties that defines a phase. So a study of
universal properties is a study of phases. If all the variations
in the tensors can be induced by local perturbations of the
Hamiltonian, then we can study the stability of a property
against local perturbation �H of the Hamiltonian by studying
the stability of a property against variations in the tensors.
This will give us a powerful tool to study phases using TPS.

Unfortunately, it turns out that not all variations in the
tensors can be induced by local perturbations of the Hamil-
tonian, as we show in this paper. For a generic TPS, which
satisfies a condition called injectivity,24 tensor variations in-
deed correspond to Hamiltonian perturbations. However, this
is not true in the general case, as we show in this paper with
a special system with topological order. So it is not easy to
study universal properties and phases using TPS. In order to
use TPS to study phases and phases transitions, we need to
find the subset of variations in tensors that are physical, i.e.,
corresponding to local perturbations of the Hamiltonian.

For clarity, we will always refer to small changes in the
Hamiltonian as “perturbation” and to those in the tensors as
“variation.” Without any efficient method to solve for exact
TPS representation of ground states of quantum many-body
systems, finding the subset of the variations in the tensors
that can be induced by local perturbation of Hamiltonian is
in general very difficult.

We want to, in particular, study this problem for topologi-
cally ordered phases. As TPS can give a simple description
of a large class of topological ordered states, we expect that
it might provide a powerful tool for studying topological
phases in general. As we know, topologically ordered phases
are proven to be stable against any local perturbations of the
Hamiltonian.3,25,26 That is, the topological properties, such as
ground state degeneracy3 and quasiparticle statistics,27,28 are
robust under any local perturbation to the Hamiltonian. So in
the TPS approach to topologically ordered phase, it is natural
to ask: are those topological properties robust against any
variation in tensors, that is, for any tensor which represents a
topologically ordered state, is the topological order robust
against arbitrary variation in the tensors? Surprisingly, we
find that this is not true.

We focus on the Z2 topological order represented by an
ideal TPS in this paper and study how the topological order
of the state changes as we vary certain parameters in the
representing tensors. We characterize topological order by
calculating the topological entanglement entropy Stp �Refs.
29 and 30� for the state and observe that topological order
�i.e., the topological entanglement entropy Stp� is stable only
against variations in the tensors that preserve certain Z2 sym-

metry of the tensors. Since the topological order is robust
against any local perturbations of Hamiltonian, this result
shows that not all variations in the tensors correspond to
local perturbations of Hamiltonian. For this Z2 model, we
show that in the generic case Z2 symmetry is a necessary
condition for the variations in tensors to correspond to physi-
cal perturbations of the Hamiltonian. This claim is further
supported by checking stability of the topological Renyi en-
tropy of TPS with Z2 symmetry-preserving variations and Z2
symmetry-breaking variations in the tensors, respectively.

While calculating Stp for a general state is exponentially
hard,31 we find efficient ways to do so for two sets of TPS
near the ideal TPS with Z2 topological order. For a general
TPS, we calculate the topological Renyi entropy by mapping
it to the contraction of a two-dimensional �2D� tensor net-
work, which is accomplished by using the tensor entangle-
ment renormalization algorithm.32 Hence we are able to cal-
culate topological entropy for regions much larger than was
possible previously and determine the topological order of
the state more accurately.

Our result on the stability of topological order will help us
in the TPS-based variational approach to Z2 topological
phase: we should only consider the variations in the tensors
within the subspace of tensors with Z2 symmetry. The Z2
symmetry condition and possibly other conditions will help
us to understand the physical variations in tensors in TPS.
This is crucial in using TPS to study quantum phases and
quantum phase transitions. It may even lead to a classifica-
tion of topological order.

This paper is organized as follows. We start by introduc-
ing an “ideal” lattice spin model with Z2 topological order
and show how the presence of topological order in the
ground-state wave function can be understood nicely with a
physical mechanism called “string-net condensation.” Such a
physical picture naturally gives rise to a simple tensor prod-
uct representation of the wave function, to which we then
add two kinds of local variations, “string tension” and “end
of strings.” By calculating topological entanglement entropy
numerically for the first case and analytically for the second
case, we show how topological order is stable against Z2
preserving variations �string tension� but breaks down imme-
diately when Z2 symmetry is broken �by end of strings�. We
then randomly picked 200 tensors in the neighborhood of the
ideal Z2 TPS and calculate the topological Renyi entropy of
the corresponding states. Tensors with and without Z2 sym-
metry demonstrate totally different behavior as system size
scales up. We discuss in the last section the implications of
our findings in variational studies of topological phase and
phase transitions. The details of the calculations are given in
the appendices.

II. MODELS AND RESULT

A. Spin model with Z2 topological order

We start from an exactly solvable model which has Z2
topological order.33–35 In this section, we give the system
Hamiltonian, find the ground-state wave function and ex-
plain its structure and how that leads to a nontrivial topologi-
cal order which can be detected with topological entangle-
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ment entropy. With these insights about the state we then
present a simple tensor product representation of this wave
function.

The model is defined on a two-dimensional hexagonal
lattice where each link is occupied by a qubit �spin-1/2�. The
Hamiltonian is a sum of commuting projection operators

HZ2

0 = − �
p

�
i�p

Xi − �
v

�
j�v

Zj , �1�

X and Z are qubit Pauli operators defined as X= � 0 1
1 0 � , Z

= � 1 0
0 −1 �. p stands for each hexagon plaquette in the lattice

and �i�pXi is the tensor product of six X operators around
the plaquette. v stands for each vertex and � j�vZj is the
tensor product of three Z operators connected to the vertex.
The ground-state wave function has a nice interpretation us-
ing the “string-net” picture where state �0� corresponds to no
string on a link and state �1� corresponds to the presence of a
string. The vertex term � j�vZj enforces that there are even
number of strings connected to each vertex and hence the
strings form closed loop while the plaquette term �i�pXi
gives dynamics to the closed loops. The ground-state wave
function is an equal weight superposition of all closed loop
configurations on the lattice,

��Z2
� = �

cl

��cl� . �2�

The normalization factor is omitted. If we refer to each
closed loop configuration as a string-net, the appearance of
Z2 topological order in this system has then a natural inter-
pretation as being due to the condensation of string-nets. We
will refer to this model as the ideal Z2 model.

For simplicity of discussion, we split each qubit on a link
into two qubits as illustrated in Fig. 1. The string-net con-
densed Z2 wave function on the original lattice can be natu-
rally extended to a state on the new lattice by replacing a 0
link with 00 and a 1 link with 11. This new state is still an

equal weight superposition of all string-nets and hence main-
tains the Z2 topological order. The new system Hamiltonian
can be obtained from the old one by adding a −ZZ term to
each link and expand the plaquette term into a product of X
operators on all twelve qubits around the plaquette,

HZ2
= − �

p
�
i�p

Xi − �
v

�
j�v

Zj − �
l

Zl1
Zl2

, �3�

where l denotes all the links and l1, l2 are the two qubits on
the link. It is easy to see that the new Hamiltonian indeed has
the new string-net condensed state as its ground state. The
topological order of the system can be detected from the
ground-state wave function by calculating the topological en-
tanglement entropy of the state. The mapping to the new
lattice allows this calculation to be carried out exactly in a
few steps, as illustrated below.

According to the definition of topological entanglement
entropy in Ref. 29 �or equivalently defined in Ref. 30�, we
take out a simply connected region from the whole lattice
and divide it into three parts A, B, and C as shown in Fig. 1.
By calculating the entanglement entropy for regions A, B, C,
AB, AC, BC, ABC and combining them according to

Stp = SA + SB + SC − SAB − SBC − SAC + SABC, �4�

we arrive at the topological entanglement entropy Stp of the
state, where the entanglement entropy for region A, for ex-
ample, is denoted as SA. The above definition needs to be
applied to regions much larger than the correlation length of
the state. For the state in consideration, the correlation length
is zero and the calculation gives the right result for whatever
regions we take. We divide the regions by cutting through the
pair of qubits on boundary links as illustrated in Fig. 1. For a
region with n outgoing links on the boundary, there are 2n−1

orthogonal boundary configurations due to the closed-loop
constraint of the wave function. Tracing out each boundary
configuration contributes equally and independently to the
entropy of the region and hence S=n−1, which includes one
term proportional to the length of the boundary n and one
constant term −1. The combination in the definition of Stp
makes sure that the boundary terms of different regions can-
cel out with each other, so topological entanglement entropy
for the state is then Stp=−1.

This globally entangled state has yet a surprisingly simple
local representation using the tensor product language. A ten-
sor product state of two-dimensional lattice model is repre-
sented by associating with each lattice site m a set of s ten-
sors T�k�

m ����¯�, k=1,2 , . . . ,s, where s is the dimension of
local Hilbert space at site m. k is called the physical index of
the tensor. ���, the inner indices of the tensors, connect to
each other and form a graph. The wave function �unnormal-
ized� is then given by

�	� = �
k1,k2,. . .,km,. . .

C�T�k1�
1 T�k2�

2 . . . T�km�
m . . .��k1k2 . . . km. . .� ,

�5�

where C denotes tensor contraction of the inner indices ac-
cording to the connection graph. We omit the inner indices
here. �We will in most cases ignore normalization of wave

FIG. 1. Hexagonal lattice where each link is occupied by two
qubits. The three gray regions are configurations used for calculat-
ing topological entanglement entropy. Qubits on the boundaries are
drawn explicitly while others are omitted for clarity. Notice that
regions are always separated by breaking links in half. For Z2 model
with string tension, numerical calculation for Stp is done for the
three gray regions while for Z2 model with end of strings, analyti-
cally calculation is possible for any region.
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function in the following discussion and mention specifically
when normalization is needed.� The tensors representing the
ground state of the ideal Z2 model can be given as follows.
We group every three qubits connected to the same vertex
together and assign a rank-3 tensor to each of the eight
physical basis states of the three qubits. Now every physical
index k in Eq. �5� is represented with three bits n1n2n3. The
eight tensors are

T�000��000� = 1 T�011��011� = 1,

T�101��101� = 1 T�110��110� = 1, �6�

all other terms are zero.
The physical indices �n1n2n3� correspond to the out-of-

plane gray links in Fig. 2. The inner indices �i1i2i3� corre-
spond to the in-plane links in Fig. 2. The inner and physical
indices all have dimension two and are given in the same
order as shown in Fig. 2. Hence the inner indices truthfully
reflect the configuration of the physical space and only con-
figurations with even number of strings at each vertex are
allowed. It can then be checked that only string-net configu-
rations have nonzero amplitude in this representation and the
amplitude are actually all equal. Therefore, the tensors given
in Fig. 6 indeed represent a string-net condensed state—the
ideal Z2 ground state.

This set of tensors serves as a starting point for our varia-
tional study of topological phase transitions and we wish to
know what kind of variations in the tensors correspond to
physical perturbations of the Hamiltonian. We will study first
two specific cases in the following two sections.

B. Z2 model with string tension

Suppose that we want to know how magnetic field in the
Z direction might affect topological order. The perturbed
Hamiltonian reads

H = HZ2
+ 
�

k

Zk

= − �
p

�
i�p

Xi − �
v

�
j�v

Zj − �
l

Zl1
Zl2

+ 
�
k

Zk. �7�

The Zk term commute with the vertex and link term � j�vZj,
Zl1

Zl2
in the unperturbed Hamiltonian, so the closed-loop

constraint is maintained. The ground-state wave function is
still a superposition of string-net configurations but with dif-
ferent weight. The magnetic field adds energy to each string
segment, therefore one reasonable guess about the ground
state is that each string-net configuration has weight expo-
nential in its total length of string,

��Z2

g � = �
cl

g−L��cl�/2��cl� , �8�

where the summation is over all string-net configurations and
L��cl� is the total string length of a configuration. When g is
positive, this variational wave function has been extensively
studied in Refs. 36 and 37 by mapping to an Ising model
where the corresponding Hamiltonian perturbation from the
Z2 model is obtained and topological entropy of the state is
calculated. It is found that topological order of the state is
stable as g deviates from 1 and the perturbation in Hamil-
tonian can indeed be local. Here, we study this wave func-
tion from the tensor point of view and reach similar conclu-
sions. The parameter g in our TPS can be complex in
general.

This weighted superposition can still have a simple tensor
product representation by locally modifying the tensors in
Eq. �6� to

T�000��000� = g T�011��011� = 1,

T�101��101� = 1 T�110��110� = 1, �9�

all other terms are zero.
For �g��1, the weight of each string segment is smaller

by a factor of �g�−1/2 than that of no string, lowering the
weight of string-net configurations exponentially. Physically,
we can imagine this is due to some kind of tension in the
strings. Therefore, we refer to this wave function as Z2 state
with string tension �g�. This state cannot be the exact ground
state of the Hamiltonian given in Eq. �8� but it is possible
that it gives a qualitatively right and quantitatively close ap-
proximation to the ground state and hence might be a good
guess for variational study. One necessary condition for this
conjecture to be true is that the topological order of the state
remains stable with g close to 1, and this is indeed the case
as we will show below by calculating topological entangle-
ment entropy of the state. Our calculation can be done for
any g and when g is positive, our result is consistent with
Refs. 36 and 37.

In general, this computation is intractable. The equality in
Eq. �4� holds only in the limit of infinitely large regions A, B,
and C. Therefore the computation involves diagonalization
of exponentially large matrices, each element of which takes
exponential time to calculate. For Z2 state with string ten-
sion, we circumvent this difficulty by appealing to the spe-

FIG. 2. �Color online� Tensor product representation of Z2

ground state. One tensor is assigned to every three qubits connected
to the same vertex. Tensors TA are on vertices in sublattice A and TB

are in sublattice B. The out-of-plane gray links represent the physi-
cal indices of the qubits. The tensors connect according to the un-
derlying hexagonal lattice.
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cial structure of the tensors in Eq. �9�. In order to find the
entanglement entropy of a region, we map the computation
of the eigenvalues of the reduced density matrix to the con-
traction of a two dimensional tensor network. While con-
tracting general two-dimensional tensor networks is
#P-complete,38,39 the tensor networks we are dealing with
turn out to be of a special type, called the “matchgate”
tensor.40 Matchgate tensors can be contracted efficiently,
which leads to an efficient algorithm for determining the
topological entanglement entropy of this state. The details of
the procedure will be explained in Appendix A.

In the computation, we take the total system size to be
large enough such that it does not affect the result of the
computation. Taking the size of regions A, B, and C to infin-
ity is hard. We manage to carry out the computation for
progressively larger regions as shown in Fig. 1, with 18, 72,
and 162 qubits inside, respectively. The resulting topological
entanglement entropy for g� �1,2� is plotted in Fig. 3. We
do see a trend of sharper transition of Stp from −1 to 0 as the
size of the region is increased. At g close to zero or g very
large when the correlation length is small compared to the
size of the region, the calculated value for Stp is reliable and
we find that it remains stable within a finite range of the ideal
Z2 TPS and goes to zero beyond certain critical string tension
gc. We can decide from the plot the critical point gc to be
around 1.75. We would like to comment that the tensor net-
work representing the norm of the Z2 state with string tension
g is the same as that representing the partition function of
classical Ising model on triangular lattice with coupling con-
stant J at inverse temperature �=ln g / �2J�.36,37 A phase tran-
sition at g=	3 is known for this classical model. Our calcu-
lation for the quantum model confirms this observation and
shows that the quantum phase transition is in fact topologi-
cal.

The stability of topological order at g�1 is a necessary
condition for string tension to correspond to local Hamil-
tonian perturbations. In this particular case, we can actually
find the corresponding perturbations explicitly. The relation
we mentioned above between the Z2 state with string tension
and 2D classical Ising model at finite temperature allows the
construction of a continuous family of parent Hamiltonian

H�g� for the quantum states.22,41–43 The Hamiltonian H�g� is
local, has the state ��Z2

g � as its exact ground state and remains
gapped for g
gc. The Hamiltonian for this variational wave
function is also given in Refs. 36 and 37. Therefore we can
conclude that string tension can be induced by local pertur-
bations of the Hamiltonian and hence is an allowed variation
in the Z2 tensors.

C. Z2 model with end of strings

Another simple model one might want to study is the Z2
model with magnetic field perturbation in the X direction,

H = HZ2
+ 
�

k

Xk

=− �
p

�
i�p

Xi − �
v

�
j�v

Zj − �
l

Zl1
Zl2

+ 
�
k

Xk. �10�

The action of the perturbation operator Xk on Z2 ground state
will flip a link from no string to having a string �or back� and
hence break one or more closed loops. The perturbed ground
state would contain configurations with end of strings. In
tensor language, this seems to allow some odd configurations
to be nonzero. However, as we will see, this is actually not
true. Even though the physical configuration contains end of
strings, the tensor variation could never have odd terms. As
shown by the following example, the appearance of odd
terms in the tensor destroys topological order immediately
and hence cannot be induced by any local Hamiltonian per-
turbation.

Taking the translational and rotational symmetries of the
Hamiltonian into consideration, one might expect that the
following tensors which assign a small and equal weight � to
all odd configurations might represent a good trial wave
function for the ground state,

T�000��000� = 1 T�011��011� = 1,

T�101��101� = 1 T�110��110� = 1,

T�001��001� = � T�010��010� = � ,

T�100��100� = � T�111��111� = � , �11�

all others are zero.
Again the inner indices �i1i2i3� truthfully reflect the con-

figurations of the physical indices �n1n2n3�. When �=0, this
is reduced to the tensors in the ideal Z2 TPS. When � is
nonzero, the wave function contains all possible string con-
figurations, closed loop or open string. The weight of each
string configuration is exponentially small in the number of
end of strings contained,

��Z2

� � = �
sc

�q��sc���sc� , �12�

where the summation is over all possible string configura-
tions and q��sc� is the number of end of strings in a particu-
lar configuration.

To see how topological order of the state changes as �
varies from 0, we again calculate the topological entangle-

FIG. 3. Topological entanglement entropy Stp of the Z2 model
with string tension calculated for the three gray regions as shown in
Fig. 1. 1 /g is the weight of each string segment relative to vacuum.
Stp remains stable for a finite region away from the ideal Z2 model
and goes sharply to zero at g
1.75.
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ment entropy of the state. In this case, it turned out that
analytical calculation is possible. The detailed procedure is
given in Appendix B. The entanglement entropy and topo-
logical entropy of this variational wave function has been
computed in Ref. 36 and our calculation in terms of the
tensors agrees with this result. We find that for any finite
value of �, when system size goes to infinity, Stp goes to zero.
Hence topological order is unstable under this kind of varia-
tion. At first sight this may be a surprising result, as we are
only changing the tensors locally and we are not expected to
change the global entanglement pattern of the state. How-
ever, when we write out the wave function explicitly we will
see that we have actually induced global changes to the state.
The wave function in Eq. �12� can be expanded in powers of
� as

��Z2

� � = ��Z2
� + �2 �

vi,vj

��Z2

vi,vj� + ¯ , �13�

where the v’s are any vertices in the lattice. ��Z2

vi,vj� is an
excited eigenstate of the Z2 Hamiltonian �Eq. �3�� which
minimizes energy of all local terms except the vertex terms
at vi, v j and is hence an equal-weight superposition of all
configurations with end of strings at vi and v j. Note that end
of strings always appear in pairs. We will call such a pair a
defect in the string-net condensate. vi, v j can be separated by
any distance and the number of local operations needed to
take ��Z2

� to ��Z2

vi,vj� scale with this distance.
On the other hand, with arbitrary local perturbation to the

dynamics, the Hamiltonian reads

H� = HZ2
+ ��

u

hu, �14�

where hu’s are any local operator and � is small. The per-
turbed ground-state wave function will contain terms like
��Z2

vi,vj� but only with weight �distance�vi,vj�. When vi, v j are
separated by a global distance, the weight will be exponen-
tially small. Hence a constant, finite weight �2 for all ��Z2

vi,vj�
as required in Eq. �13� is not possible. Therefore, while we
are only modifying the tensors locally, we introduce global
“defects” to the state, which cannot be the result of any local
perturbation to the Hamiltonian. We can, of course, design a
Hamiltonian H� which has ��Z2

� � as its exact ground state
using the method introduced in Ref. 24 or Refs. 41–43.
However, H� will not be able to smoothly connect to HZ2

as
�→0.

D. Necessary symmetry condition

The two kinds of tensor variations we have studied have
drastically different effects on the topological order of the
state. While the first type corresponds to local perturbations
of the Hamiltonian and keeps topological order intact, the
second type does not have a physical correspondence and
destroys the topological order completely. What leads to
such a difference? Given a general variation in Z2 tensor,
how can we tell if it is allowed?

We observe that the tensor representing the ideal Z2 state
�Eq. �6�� has certain inner symmetry, that is, the tensor is

invariant under some nontrivial operations on the inner indi-
ces, as shown in Fig. 4.

Z does nothing to the tensor when the index is 0 and
changes the sign of the tensor when the index is 1. In the
ideal Z2 tensor, only even configurations of the inner indices
are nonzero. Hence applying Z at the same time to all three
inner indices does not change the tensor. That is, Z � Z � Z is
a symmetry of the tensor. As Z � Z � Z squares to identity, we
will say that the tensor has Z2 symmetry. Note that we can
insert a set of unitary operators U ,U† between any connected
links in a tensor network without affecting the result of ten-
sor contraction and hence the quantity represented by the
tensor network. Therefore, the Z2 symmetry could take any
form which is local unitary equivalent to Z � Z � Z. This Z2
symmetry is closely related to the closed-loop constraint of
the state. Due to this symmetry, the tensor network cannot be
“injective” as defined in Ref. 24.

Adding string tension to the Z2 tensor �Eq. �9�� does not
violate this symmetry, as all the odd terms of inner indices
are still zero. We found that topological order of the state is
stable with small string tension. On the other hand, adding
end of strings �Eq. �11�� breaks this symmetry for any finite
�. In general, assume the variation in the tensor T contains a
Z2 symmetry-breaking term dT of magnitude �. Such a term
would represent an end of string in the tensor network. To
the leading order in �, the wave function would contain
terms on the order of O��2� with dT on two of the sites and
T on the others. In the physical space, this would correspond
to an open string configuration �up to local unitaries at the
ends�. The weight of such a term is O��2� even though the
two sites with dT may be globally apart, hence introducing
global defects to the wave function and breaking topological
order. Such defect terms cannot be created by local perturba-
tion to the Hamiltonian. Therefore, Z2 symmetry breaking
variations to the tensors are not allowed and preserving Z2
symmetry of the tensor is shown to be a necessary condition
for any variation in the ideal Z2 tensor to be physical. This
argument is valid for a generic Z2 breaking variation. There
can be specially designed cases where Z2 breaking variations
does not lead to breakdown of topological order, e.g., when
such variations only occur within a finite region of the sys-
tem or different contributions to the global defects exactly
cancel each other. However, for a random Z2 breaking varia-
tion, topological order will be lost and it cannot correspond
to local perturbation of Hamiltonian.

FIG. 4. �Color online� Symmetry of the Z2 tensor. The tensor
representing the ideal Z2 state is invariant under the action
of Z � Z � Z to its inner indices. The variation in string tension
�Eq. �9�� does not break this symmetry and topological order is
stable. The variation with end of strings �Eq. �11�� breaks this
symmetry and destroys topological order
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The necessity of Z2 symmetry in the generic case is
clearly reflected in the following calculation. We randomly
pick tensors in the neighborhood of the ideal Z2 tensor and
find the topological order of the corresponding state numeri-
cally. To do this, we make use of a generalization of topo-
logical entanglement entropy, the topological entanglement
Renyi entropy.44 Renyi entropy for a reduced density matrix
� of order �, where ��0

S���� =
1

1 − �
log�Tr����� �15�

is a valid measure of entanglement. In the limit of �→1, it
reduces to the usual von Neumann entropy. It was shown in
Ref. 44 that we can replace von Neumann entropy with Re-
nyi entropy in the definition of topological entanglement en-
tropy �Eq. �4�� and still have a valid characterization of to-
pological order. The resulting quantity, topological
entanglement Renyi entropy Stpr, does not depend on �. We
are hence free to choose � for the ease of computation and
we take it to be 2. The calculation of Renyi entropy is
mapped to the contraction of a two-dimensional tensor net-
work which can be computed approximately using the tensor
entanglement renormalization algorithm.32 We take the same
geometry of regions as in Fig. 1 and the Renyi entropies of
different regions are then combined in the same way as in
Eq. �4� to yield Stpr. The details of the computation will be
described in Appendix C. Here we present our result. We
restrict ourselves to a small neighborhood near the Z2 tensor

�T�n1n2n3��i1i2i3� − TZ2�n1n2n3��i1i2i3�� 
 0.1. �16�

We pick 100 tensors with Z2 symmetry and plot how their
topological entanglement Renyi entropy scales with reduced
region size in the left half of Fig. 5 and do the same for 100
tensors without Z2 symmetry in the right half of Fig. 5. We
see that for tensors with Z2 symmetry, Stpr approach −1 very
quickly as we include more and more qubits in the reduced

region while for tensors without Z2 symmetry, Stpr goes to-
ward 0 as the region gets larger. This confirms our statement
that Z2 symmetry is a necessary condition for any generic
variation in Z2 tensor to correspond to physical perturbations
of the Hamiltonian and hence characterize variations within
the topological ordered phase. The plot also suggests that Z2
symmetry might be a sufficient condition.

III. CONCLUSION AND DISCUSSION

Our result on Z2 topological order provides useful per-
spective on the general relation between tensor variation and
Hamiltonian perturbation. First, it is shown that not all varia-
tions in tensor correspond to perturbations to the Hamil-
tonian. For the Z2 model in particular, based on our calcula-
tion of topological entanglement �Renyi� entropy for tensors
in the neighborhood of the ideal Z2 tensor �see Eq. �6��, we
show that, one necessary condition is that the tensor is in-
variant under Z2 symmetry operation Z � Z � Z �or any local
unitary equivalent operator� on its inner indices. A generic
variation which breaks this symmetry cannot be induced by
local perturbation of the Hamiltonian and the tensors no
longer represent state with Z2 topological order. This gives
partial answer to the question of what kind of variations in
the Z2 tensor corresponds to physical perturbations to the
Hamiltonian and hence represents states within the same to-
pological ordered phase. Note that we start with a particular
Hamiltonian in order to better explain the property of the
state. Our result does not depend on this particular form of
this Hamiltonian and remains valid for any local Hamil-
tonian of the Z2 topological ordered state. �Certain unifor-
mity condition of the Hamiltonian must be satisfied, as
pointed out in Ref. 25.� Moreover for simplicity of calcula-
tion, we restricted ourselves to hexagonal lattice in the above
discussion. However, the Z2 symmetry requirement is gener-
ally true for any lattice structure and the symmetry operation
would take the form Z � Z � . . . � Z on all inner indices�or
any local unitary equivalent operator�. We expect that similar
necessary symmetry condition also holds for other quantum
double model with gauge symmetry.35 The generalization to
other gauge symmetries are discussed in more detail in Ap-
pendix D.

This understanding will provide important guidance for
variational studies of topological order using tensor product
states. Suppose that, for example, we want to find a tensor
product state which is the approximate ground state of a
Hamiltonian with Z2 topological order. It is then very impor-
tant to search within the set of variational tensors that have
Z2 symmetry. If the numerical calculation does not carefully
preserve this symmetry, we might result in a tensor without
Z2 invariance. As the Z2 breaking term can be arbitrarily
small, the corresponding tensor product state might still give
good approximation to local properties such as energy, but
will have totally wrong global properties such as topological
order. Then any attempt to decide the phase diagram based
on the state would be misleading.

We would like to comment that, the tensor product ap-
proach allows us to study wave function variation in a gen-
eral setting. While the models we studied, Z2 model with

FIG. 5. �Color online� Topological entanglement Renyi entropy
�Stpr� calculated for the three gray regions as shown in Fig. 1. Size
of regions grow from region 1 to 3. The calculation is done for 200
random tensors in the neighborhood of Z2 tensor. 100 of them have
Z2 symmetry �plotted on the left hand side� while the other 100
have not �plotted on the right hand side�. For tensors with Z2 sym-
metry, Stpr approach −1 very quickly as we include more and more
qubits in the reduced region while for tensors without Z2 symmetry,
Stpr goes toward 0 as the region gets larger.
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string tension or end of string, are well understood in the
“wave-function deformation”36,43 formalism where the wave
function amplitudes have to be positive, the wave function
variations that can be studied using tensors can be negative
and complex in general. In Sec. II D, the random variations
we tested are complex and can be studied with the tensor
entanglement renormalization algorithm with no extra com-
plexity.

Finally we would like to note that the symmetry condi-
tions might not be sufficient. A complete understanding of
the correspondence between Hamiltonian perturbation and
tensor variation would be very much desired as it might lead
to full classification of quantum states and quantum phases
using the tensor language.
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APPENDIX A: CALCULATING Stp FOR Z2 MODEL WITH
STRING TENSION

In this section, we give detailed procedure of how topo-
logical entanglement entropy Stp of Z2 model with string ten-
sion can be calculated using the matchgate tensor technique.
Following the definition in Ref. 29, we take out a region �as
in Fig. 1� from the hexagonal lattice by breaking the m out-
going links in half. Due to the closed-loop constraint on the
wave function, the boundary qubits have only 2m−1 possible
configurations ci. Regrouping terms in the wave function ac-
cording to different boundary configurations, we have �up to
normalization�

��Z2

g � = �
ci

�i��ci

out���ci

in� . �A1�

This wave function is automatically in Schmidt-
decomposition form because for different boundary configu-
rations ci, ��ci

out�’s are orthogonal to each other, and so are
��ci

in�’s. Knowing the norm and all the �i’s would enable us to
calculate entropy of the reduced density matrix of the region.

Define rank-3 tensors T, T0, and T1 with inner dimension
two as

T�000� = g2 T�011� = 1 T�101� = 1 T�110� = 1,

T0�000� = g2 T0�011� = 1,

T1�101� = 1 T1�110� = 1, �A2�

all others are 0.
It can be verified that the contraction of T on all vertices

of the hexagonal lattice gives the norm of ��Z2

g �. To calculate

�i for a particular boundary condition ci, replace tensors at
the boundary with T0 if the boundary qubit is 0 and with T1
if the qubit is 1 and make sure the first inner index is on the
boundary link. Contraction of the new tensor network will
give ��i�2. These three tensors satisfy the conditions as de-
fined in Ref. 40 and are called matchgate tensors. The con-
traction of a tensor network of N matchgate tensors can be
done efficiently �in time N3�. Therefore, for a fixed reduced
region with boundary length m in a system of total size N,
the computation of entanglement entropy takes time polyno-
mial in N but exponential in m.

We start from a small reduced region �dark gray region in
Fig. 1� with a small m, calculate Stp and increase the total
system size N until the change in Stp is negligible �
0.01�.
We repeat this process for different values of g and for pro-
gressively larger reduced regions �lighter gray in Fig. 1�. The
result is plotted in Fig. 3.

APPENDIX B: CALCULATING Stp FOR Z2 MODEL WITH
END OF STRINGS

Now we show how the calculation of Stp can be carried
out for Z2 model with end of strings, analytically. We start
again with the division of the lattice into sections A, B, and C
as in Fig. 1. Without the closed loop constraint, a region with
m boundary links has 2m different boundary configurations.
Rewriting the wave function according to different boundary
configurations ci as

��Z2

� � = �
ci

�i��ci

out���ci

in� , �B1�

we have obtained the Schmidt-decomposed form of the wave
function and all we need to know to calculate entropy are the
�i’s and the norm.

Define rank-3 tensors S, S0, and S1 with inner dimension
two as

S�000� = 1 S�011� = 1 S�101� = 1 S�110� = 1,

S�001� = �2 S�010� = �2 S�100� = �2 S�111� = �2,

S0�000� = 1 S0�011� = 1 S0�001� = �2 S0�010� = �2,

S1�101� = 1 S1�110� = 1 S1�100� = �2 S1�111� = �2,

�B2�

all others are 0.
Contraction of tensor S on every vertex of the lattice

gives the norm of ��Z2

� �. To calculate �i for a particular
boundary condition ci, replace tensors at the boundary with
S0 if the boundary qubit is 0 and with S1 if the qubit is 1 and
make sure the first inner index is on the boundary link. Con-
traction of the new tensor network will give ��i�2. The con-
traction of these two-dimensional tensor networks can be
made efficient by applying a Hadamard transformation
��0�→ ��0�+ �1�� /	2, �1�→ ��0�− �1�� /	2� to each of the three
inner indices of the tensors and transforming them into
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S��000� = 	2�1 + �2� S��111� = 	2�1 − �2� ,

S0��000� = 1 + �2 S0��100� = 1 + �2,

S0��011� = 1 − �2 S0��111� = 1 − �2,

S1��000� = 1 + �2 S1��100� = − 1 − �2,

S1��011� = − 1 + �2 S1��111� = 1 − �2, �B3�

all others are 0.
It is easy to see that the contraction value of this tensor

network can be computed analytically, from which we know
that the entropy of any region with m outgoing links is

S = m −
1

2

�1 + bNi��1 + bNo�
1 + bN � ln

�1 + bNi��1 + bNo�
1 + bN

−
1

2

�1 − bNi��1 − bNo�
1 + bN � ln

�1 − bNi��1 − bNo�
1 + bN , �B4�

where b= �1−�2� / �1+�2� and Ni�No� is the number of verti-
ces inside �outside� the region. N=Ni+No is the total system
size.

Combining the entropy of different regions according to
Eq. �4� and taking the limit Ni→�, N→�, we get Stp

� =0
whenever ��0 for Z2 model with end of strings.

APPENDIX C: CALCULATING Stpr FOR RANDOM
TENSORS IN THE NEIGHBORHOOD OF Z2

Redefining topological entanglement entropy in terms of
Renyi entropy might simplify the calculation. Specifically,
the calculation of Renyi entropy at �=2 for a tensor product
state can be mapped to the contraction of a single tensor
network, which can be computed efficiently in one dimen-
sion and approximated in two or higher dimension.

For example, consider a one-dimensional tensor product
state �also called a matrix product state�. The lowest dark

level in Fig. 6 gives a side view of the state, where horizontal
links represent inner indices along the one-dimensional chain
and vertical links represent physical indices. Renyi entropy
at �=2 is defined as S2���=−log�Tr��2��. To find out Tr��2�,
we stack four copies of the states together as in Fig. 6, con-
nect corresponding physical indices outside the reduced re-
gion between levels 1 and 2, 3 and 4 and connect those
within the reduced region between levels 1 and 4, 2 and 3.
Contraction of this four-layer one-dimensional tensor net-
work gives Tr��2�. For two-dimensional tensor product
states, the generalization is straightforward. The only differ-
ence is that now we have to contract a four-layer two-
dimensional tensor network. To this end, we apply the tensor
entanglement renormalization algorithm.32 Having obtained
the Renyi entropy for different regions, we then combine
them to get Stpr.

APPENDIX D: GAUGE SYMMETRY OF TENSOR
PRODUCT STATES AND TOPOLOGICAL ORDER

This section discusses in general the relation between
gauge symmetries of tensor product states and topological
order, and the implication of our result on other topological
ordered models with gauge symmetry.

For a tensor product state, the network of tensors which
represents the same state is not unique. In particular, if we
change a pair of connected tensors by rotating the basis of
one of the connected inner index with an invertible operator
A and rotating the other connected inner index with operator
A−1, any tensor trace would remain unchanged and hence the
tensor product state remains the same. This corresponds to
inserting a pair of invertible operators A and A−1 onto any
link in the graphical representation of the state. Following
the definition in Ref. 45, this is called a gauge transformation
of the tensor product state, which form a very large group.
Hence the correspondence between the tensor network and
the physical state is many-to-one. As a result, the variation
energy as a function of tensors has a very large symmetry:
the variation energy is invariant under the gauge transforma-
tions.

On the other hand, when we try to find the best descrip-
tion of ground state for a model Hamiltonian by minimizing
energy with respect to the variations in the tensors, the ten-
sors that minimize the average energy may not be invariant
under all the gauge transformations and in general have
much less symmetry. For example, in the ideal Z2 case, the
tensors are only invariant if we insert Z, Z−1 to all the links
in the two-dimensional graph. Generalizing this to any
symmetry group and to any dimension d, we define the
d-dimensional invariant gauge group �d-IGG�. The d-IGG is
nothing but the invariant group of the tensors under gauge
transformations. Thus the minimization of the average en-
ergy leads to a spontaneous symmetry breaking. The d-IGGs
are the unbroken symmetry of the tensors that describe the
ground state. As we change the Hamiltonian, the tensors that
minimize the average energy may have some different sym-
metry structures described by different d-IGGs. As is shown
in Ref. 45, when d equals the dimension of system space

FIG. 6. Tensor network for calculating Renyi entropy ��=2� of
the big site in a one-dimensional tensor product state. The contrac-
tion of the tensor network gives Tr��2�=exp�−S2����, where � is the
reduced density matrix. The lowest level represents the state, where
horizontal links represent inner indices along the one-dimensional
chain and vertical links represent physical indices. Four copies of
the state are stacked together and corresponding physical indices
are connected between the levels. For physical indices outside the
reduced region, the connection is between levels 1 and 2 and levels
3 and 4. For those in the reduced region, the connection is between
levels 1 and 4 and levels 2 and 3.
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dspace, dspace-IGG �such as the Z2 symmetry discussed in this
paper� can be used to determine the topological orders of a
tensor product state. A closely related concept is discussed in
Ref. 46. Therefore, a change in dspace-IGG will in general
represents a change in topological order. Apart from
dspace-IGG, the tensors might also have lower-dimensional
IGGs. For example, if we trivially map every inner index i to
ii�i=0,1� in the Z2 tensor, the tensors still represent the same
state but have a 0-IGG ZZ in additional to its 2-IGG. How-
ever, we believe that such 0-IGGs are not related to the to-
pological order in two dimension and changing them may
not lead to a change in topological order.

Note that in order to use dsapce-IGG of a tensor network to
decide topological order, we only require that the network is
composed of patches of tensors which are invariant under
certain gauge transformations. It is not necessary that every
single tensor is dsapce-IGG invariant. However, in the generic
case, if the single tensors do not have special symmetry
structure, it is not possible to have dspace-IGG invariance on
a bigger patch. As discussed in Ref. 24, such a tensor net-

work will generically satisfy a condition called “injectivity,”
i.e., for a large enough region in the network, when the
single tensors are contracted together to form a new tensor,
the set of tensor vectors labeled by their physical indices will
span the full tensor space of the n outgoing inner indices of
the region. Therefore, the tensor network cannot have non-
trivial dspace-IGG. In order for a bigger patch in the network
to have dspace-IGG invariance, it is in general necessary for
every tensor to be dspace-IGG invariant.

Hence, we believe that the invariance of every tensor un-
der dspace-IGG is a more general necessary condition for ge-
neric variations in the tensor to correspond to physical per-
turbations of the Hamiltonian. Breaking of the dspace-IGG
invariance of the tensors will in general correspond to a
change in topological order. Therefore in a numerical varia-
tional calculation it is very important to preserve the
dspace-IGG invariance. Otherwise we would not be able to
correctly determine the topological order of the resulting
state from the tensors.
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