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Using an example of a bilayer of plasmonic nanospheres, we generalize a method of electromagnetic
characterization of metasurfaces �metafilms� recently suggested in the literature. We theoretically demonstrate
that the results of this characterization method are suitable to predict scattering parameters of bilayer metasur-
faces. Further, we develop an original electrodynamic approach which allows one to extract the effective
material parameters of bulk lattices from reflection and transmission coefficients of a single generic metasur-
face. The results of this retrieval are compared with the results of an alternative method based on the quasistatic
homogenization model. The difference between these results is discussed from the point of view of the
electromagnetic interaction of scatterers forming the lattice.
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I. INTRODUCTION

In recent years, a great interest of researchers has been
dedicated to composite electromagnetic structures called
metamaterials �MTMs�. Metamaterials are artificial materials
engineered to achieve advantageous and unusual electromag-
netic properties not normally met in ordinary structures.1 The
most convenient way to describe the electromagnetic behav-
ior of MTMs is the utilization of so-called effective material
parameters, obtained by a homogenization procedure. How-
ever, in the modern scientific literature there is no well-
established method of homogenization and existing solutions
often give controversial and ambiguous results. In this situ-
ation, we consider the development of the clear and handy
homogenization technique as one of the most important
goals of the modern metamaterial science.

Let us assume that an MTM under study can be ad-
equately homogenized in terms of two bulk material param-
eters � and �, perhaps tensors that we somehow retrieved
from scattering parameters of the MTM sample. Since most
part of practical MTM are performed as parallel-plate layers,
we restrict our consideration by the case when the MTM
sample is a layer. We assume that the external sources excit-
ing the layer are located far enough and their field can be
presented as a set of plane waves. Then the scattering param-
eters of the layer are plane-wave reflection R and transmis-
sion T coefficients, which must be obviously related to pa-
rameters � and �. In order to give a condensed description of
bulk electromagnetic properties of the layer, these two pa-
rameters must be independent of the distribution of the inci-
dent electromagnetic field. Otherwise these parameters are
applicable only to same special case of the wave incidence
from which they were retrieved, in other words are redun-
dant. Since the field in the layer is the superposition of plane
waves the concept of useful �nonredundant� material param-
eters implies their independence on the wave vector q for
fixed frequency �. This property in the general theory is
called locality.2

It is well known that the locality of the medium of sepa-
rate particles corresponds to the frequency region in which
the medium unit cell is rather optically small. Let us accept

for simplicity that we deal with lattices whose unit cell pos-
sess both electric and magnetic �p-m� dipole moments and
operate in the range �qa��1. In this range, the value of q is
uniquely related with � for given propagation direction and
wave polarization. Therefore, locality in this range implies
the independence of material parameters � and � on the
angle of the wave incidence to the layer.

Two following consequences of the locality of � and �
were derived in the classical electrodynamics of media:2–4

�1� Passivity. For the temporal dependence e−i�t, it implies
Im����0 and Im����0 at all frequencies, for ej�t the sign
of both Im��� and Im��� should be negative. The violation of
passivity in the energetically inactive media �no generators
of the electromagnetic oscillations at frequency �� means the
violation of the second law of thermodynamics.2

�2� Causality. For media with negligible losses it corre-
sponds to conditions ����� /���1 and ����� /���1. This
practically means that in the frequency regions where losses
are small material parameters obviously grow versus fre-
quency: � Re��� /���0 and � Re��� /���0.

Both passivity and causality can be mathematically uni-
fied in the form of the well-known Kramers-Kronig relations
�see, e.g., in Refs. 2–4�. If these mandatory locality require-
ments are not respected for material parameters retrieved
from R and T coefficients over the essential frequency range
this obviously indicates the dependence of these parameters
on the spatial field distribution, and these extracted material
parameters are redundant.

For media formed by inclusions or their groups located in
a homogeneous nondispersive host medium experiencing an
electric resonance and a magnetic resonance, these two re-
quirements are consistent with Lorentz-type formulas for
bulk material parameters,

� = �0��h +
Ae�e

2

�e
2 − �2 + j��e

� , �1�

� = �0�1 +
Am�2

�m
2 − �2 + j��m

� . �2�
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Here �h is the matrix relative permittivity, Ae ,Am are di-
mensionless positive values independent of the frequency,
�e ,�m are frequencies of electric and magnetic resonances,
respectively, �e ,�m are also positive values with dimension
of frequency �in the initial Lorentz’s model they are constant
and called damping frequencies, in more advanced models
�e ,�m are dependent on ��. The time dependence in Eqs. �1�
and �2� is assumed to be exp�j�t�. Formula �1� follows from
the classical microscopic theory of molecular media. For-
mula �2� describing the artificial magnetism was initially in-
troduced in 1950s by Schelkunoff for bulk arrays of parallel
split-ring resonators �see, e.g., in Ref. 5�. Later it was gen-
eralized to other kinds of artificial magnetic media in both
radio and optical frequency ranges. Formulas �1� and �2� are
applicable also to anisotropic magnetodielectric composites
where they describe resonant components of tensors � and �.
A more detailed discussion of these formulas can be found in
Ref. 1.

It is often thought that Eqs. �1� and �2� are only possible
dependencies for local material parameters � and �. How-
ever, it is not so. Formulas �1� and �2� follow from the qua-
sistatic theory which is hardly adequate for MTMs because
most part of bulk MTMs operate in the range �qa��0.1.
Meanwhile, the locality limitations can meet dynamic ho-
mogenization models. In works,6,7 examples were presented
when the quasistatic model gives different frequency depen-
dencies for � and � than the dynamic model. The last one,
however, respects the locality of material parameters. In the
present paper the concept of dynamic � and � is developed.
Below we consider a nanostructured MTM operating in the
visible for which homogenization model combining a re-
trieval procedure and a dynamic theory of dipole lattices
gives a specific resonant dispersion which is local but quali-
tatively different from Eqs. �1� and �2�. In precedent
works,8–11 the Maxwell Garnett approximation leading to
Eqs. �1� and �2� has been used for such MTM. In the present
paper, we will see how strongly the dynamic interaction be-
tween clusters of nanoparticles changes the material param-
eters. Namely, we will show that the permittivity of MTM
can resonate at the frequency where the magnetic dipole of
the lattice unit cell resonates and the permeability of MTM
can resonate at the frequency where the electric dipole of the
lattice unit cell resonates. This effect has nothing to do with
the so-called “antiresonance of metamaterials” which is,
definitely, an artifact related to an inadequate retrieval pro-
cedure �see, e.g., in Ref. 12�. The “antiresonance” refers to
the most widely applied method, namely, to the method sug-
gested in Refs. 13 and 14 as an evolution of the classical
method by Nicholson, Ross, and Weir of characterization of
continuous media �see, e.g., in Refs. 15–17�. In this method,
the effective material parameters �eff and �eff are extracted
from the R and T coefficients of a composite slab which is
replaced by a uniformly homogeneous layer of the same
thickness. The application of this simplistic procedure to
MTMs obviously leads to the violation of locality in the
retrieved material parameters which was noticed in Refs. 18
and 19 and later criticized in works.6,7,12,20

The second goal of this paper is to develop the method of
the electromagnetic characterization of metasurfaces �meta-
films�, i.e., resonant composite layers with 1–2 unit cells

across them. In the dominant literature metasurfaces are
treated as if they were bulk media, however as it was prop-
erly noticed in Refs. 21 and 22 this is a special and very
important class of MTMs which requires the special charac-
terization approach.

Effective material parameters for grids of small resonant
inclusions were introduced in works.21,22 Metasurfaces con-
sidered in these works contain one resonant inclusion across
the layer which possess simultaneously electric and magnetic
dipole moments whose resonances can overlap over the fre-
quency axis. Material parameters of metasurfaces correspond
to their replacement by effective current sheets and describe
the interaction of metasurfaces with tangentially averaged
electric and magnetic fields. In general, these material pa-
rameters are called electric and magnetic tangential and nor-
mal surface susceptibilities.21 All these susceptibilities were
defined through jumps of tangential and normal components
of averaged electric and magnetic fields across the physical
metasurface thickness �which was assumed to be very opti-
cally small�. The averaged fields were obtained by averaging
of microscopic fields over periods of the grid at two sides of
the metasurface. The characterization approach suggested in
Ref. 21 was developed in Ref. 22 for monolayers of solid
magnetoelectric particles isotropic in the tangential plane.
Then four scalar parameters give the condensed description
of the metasurface. For two specific angles of incidence �say
0° and 45°�, one simulates R and T coefficients and from
these four complex parameters one extracts four material pa-
rameters.

In this paper, we show that this approach is applicable to
bilayers of resonant electric dipoles, in our example, silver
nanospheres. We consider a bilayer formed by two doubly
periodic planar grids of nanospheres as a metasurface whose
unit cells possess both electric and magnetic moment. The
whole bilayer is then replaced by a sheet of effective electric
and magnetic currents and the method from Ref. 22 is ap-
plied. We show that material parameters of the metasurface
extracted from R and T coefficients simulated for two angles
of incidence are applicable to predict R and T for other inci-
dence angles with suitable accuracy.

This part of our paper is tightly related with the problem
formulated in the first part of this section, i.e., with the dy-
namic characterization of a bulk material. This is so because
we consider a bulk lattice as that obtained by repetition of
such generic bilayers. In work,23 it was suggested to use
retrieved susceptibilities of the generic grid �monolayer�
metasurface to predict bulk material parameters of the three-
dimensional lattice. Namely, it was recommended to use spe-
cially derived relations between these susceptibilities and in-
dividual polarizabilities �electric and magnetic� of particles
forming the grid. After that bulk material parameters of the
lattice can be found with the use of the Maxwell Garnett
algorithm.23 Below we show that the first part of this task is
justified also for bilayers. Namely, the extraction of electric
and magnetic polarizabilities of the bilayer unit cell from the
previously retrieved susceptibilities of this metasurface gives
fully adequate results. However, as it has been already men-
tioned above, the second stage of the characterization proce-
dure recommended in Ref. 23, i.e., application of the Max-
well Garnett formulas is not an adequate task for MTMs if
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�ka��1, especially for those formed by clusters of resonant
electric dipoles.

So, in the present work we expand the characterization
procedure suggested in Ref. 22 suggested for a grid of solid
magnetodielectric dipole scatterers to the case when the
metasurface is a grid of regular clusters of electric dipoles
and apply the results to the dynamic retrieval of � and � of a
bulk lattice formed by such clusters.

II. CHARACTERIZATION OF A BILAYER GRID OF
PLASMONIC NANOSPHERES

A. General approach

In works,21,22 authors considered metasurfaces performed
as a planar grid of solid resonant particles. It was shown that
the electromagnetic behavior of these metasurfaces is de-
scribed by two planar tensors called tangential surface sus-
ceptibilities �� ES and �� MS and two scalar values called normal
surface susceptibilities �ES

zz and �MS
zz . These values can be

called characteristic material parameters of these metasur-
faces because they do not depend on the incidence angle.
They are defined through the generalized sheet transition
conditions �GSTCs�,

z0 � H�z=0−
0+

= j���� ES · Et,av�z=0 + z0 � �t��MS
zz Hz,av�z=0,

�3�

z0 � E�z=0−
0+

= j���� MS · Ht,av�z=0 − z0 � �t��ES
zz Ez,av�z=0,

�4�

where the subscript “av” represents the average of the field
quantity on either side of the metafilm, � and � are the
material parameters of the host medium.

The procedure of extracting these material parameters
from R and T coefficients of the metasurface is as follows.
Assume that we have obtained amplitudes and phases of R
and T for the normal incidence �	=0� from broadband mea-
surements or numerical simulations. Then we obtain the sur-
face susceptibilities using the expressions derived in Ref. 22
�for the TM polarized wave�,

�ES
xx =

2j

k

R�0� − T�0� + 1

R�0� − T�0� − 1
, �5�

�MS
yy = −

2j

k

R�0� + T�0� − 1

R�0� + T�0� + 1
, �6�

where k=k0
	�h is the wave number in the host medium

which is assumed to be uniform dielectric space of permit-
tivity �h. Notice that in work,22 signs in front of the expres-
sions in the right-hand side are opposite.

On the base of the boundary conditions �3� and �4�, we
rederived the equations connecting the reflection and trans-
mission coefficients of the grid and surface susceptibilities,
already obtained in Ref. 22. This way we found several mis-
prints in expressions �7�–�10� of paper.22 For the TM polar-
ization the reflection and transmission coefficients for the
incidence angle 	 have been deduced as follows:

R�	� =
�jk/2 cos 	���MS

yy + �ES
xx cos2 	 − 2�ES

zz sin2 	�
1 − �jk/2 cos 	���MS

yy − �ES
xx cos2 	 − 2�ES

zz sin2 	� + �k/2�2�ES
xx ��MS

yy − 2�ES
zz sin2 	�

, �7�

T�	� =
1 − �k/2�2�ES

xx ��MS
yy − 2�ES

zz sin2 	�
1 − �jk/2 cos 	���MS

yy − �ES
xx cos2 	 − 2�ES

zz sin2 	� + �k/2�2�ES
xx ��MS

yy − 2�ES
zz sin2 	�

. �8�

In Eqs. �7� and �8�, there are factors 2 in front of the term
�ES

zz which were missed everywhere in formulas �9� and �10�
of Ref. 22. Also the sign in front of the expression in the
right-hand side of formula �10� from Ref. 22 is inverse.

Characteristic parameters �MS
yy ,�ES

xx can be extracted from
R�0� and T�0� using formulas �5� and �6� whereas �ES

zz can be
found from one of formulas �7� and �8� for any specific angle
	, say 	=45°. However, for better accuracy it is reasonable
to use for this extraction both R�	� and T�	� and apply for-
mula �16� of Ref. 22 which takes form

�ES
zz = −

�MS
yy

sin2 	
−

2j cos 	

k sin2 	

R�	� + T�	� − 1

R�	� + T�	� + 1
. �9�

After obtaining all three scalar surface susceptibilities corre-
sponding to the incidence of a TM polarized wave, we can

calculate the reflection and transmission coefficients for any
angle of incidence of the TM wave. Similarly, one can re-
trieve and utilize three remaining scalar surface susceptibili-
ties describing the TE polarized waves.

In the present paper, we generalize this approach to a
bilayer of silver nanospheres depicted in Fig. 1�a�. Two iden-
tical planar grids of nanospheres forming the metasurface are
double periodic in the case a�2b �distances a and b are
shown in this figure�. Then the unit cell of the metasurface of
area a2 in the tangential �x-y� plane includes four nano-
spheres. It is clear that in this bilayer structure the incident
wave will induce both resonant electric and magnetic polar-
ization. Therefore the unit cell should possess both electric
and magnetic resonant dipole polarizabilities. To explain this
fact in more details, we have to refer to seminal paper8 �ideas
of this paper have been developed in many works, among
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them we have to mention the very recent work24�. Consider a
cluster of four nanospheres lying in a cross section of the
unit cell as shown in Fig. 1�b�. When four plasmonic spheres
arranged in a such way are excited by a time-varying mag-
netic field the electric dipoles induced in them are oriented in
the azimuthal direction and form a discrete analog of a cir-
cular polarization current8 which is shown in Fig. 1�b� as a
circle of radius r. In work,8 clusters of nanospheres located at
the corners of a regular polygone were called effective nano-
rings. Effective nanorings as a design solution of the artificial
magnetism and their variants developed in works9–11 are in
our opinion very promising for obtaining isotropic negative
permeability in the optical range.

An incident plane wave excites both electric and magnetic
modes in the unit cell of the original structure. Every unit
cell can be therefore replaced by a pair of electric and mag-
netic dipoles p and m as shown in Fig. 1�c�. These dipoles
are oriented tangentially for a normally incident wave. Such
a p-m grid can be replaced by an effective sheet with electric
and magnetic currents if a
�, where � is the operation
wavelength.22 So, the structure shown in Fig. 1�a� seems to
be a variant of a magnetodielectric metasurface studied in
Refs. 21 and 22, where solid p-m particles are replaced by
p-m clusters. From R and T coefficients referred to the cen-
tral plane of the structure �shown in Fig. 1�a� by a straight
dashed line�, we apparently can retrieve its characteristic pa-
rameters.

However, these expectations become not so evident if we
take into account two important factors. The first factor is the
rather large optical size of the cluster. In the design of Ref. 8,
the size of the effective nanoring �2r+d in our notations� is
equal to 2r+d
�res /3 in the best possible geometry, where
�res is the wavelength in the host medium at the central fre-
quency of the magnetic resonance band. In this frequency
range arguments in favor of the p-m model of the effective
nanoring �the model replacing an individual cluster by an
electric dipole and a magnetic dipole� become crucial for the
whole concept. The analogy of our structure to a very opti-
cally dense grid of very small solid scatterers22 does not
seem evident anymore.

The second factor concerns the interaction of adjacent
unit cells which is even more important factor for the model
replacing the original structure by an effective planar p-m
grid. Solid spheres of magnetodielectric material operating in

the microwave range which were considered in work22 are
definitely p-m pairs �pairs of electric and magnetic dipoles
referred to the centers of spheres�. First, they are optically
very small �their resonances are due to high permittivity and
permeability of the material of spheres achievable in the
range of radio frequencies�. Second, they are well distanced
from one another and clearly interact as p-m pairs. In the
present structure, the situation is very different. The distance
between the edges of two adjacent effective nanorings �
which is equal to a−b−d is several times smaller than the
distance =b−d between spheres forming the effective
nanoring. In other words, the distance between the edges of
two adjacent clusters is smaller than the cluster size. This
dense package of effective nanorings is necessary to obtain a
considerable magnetic resonance of the whole structure.

It is not evident that splitting the whole structure to effec-
tive nanorings so that the distance between them is smaller
than their size, we can describe the interaction between unit
cells in terms of only p-m dipoles avoiding high-order mul-
tipoles. Notice, that taking into account higher multipoles
would modify the model22 so strongly that the characteriza-
tion procedure will become hardly feasible. To sum up, the
applicability of the simple characterization approach sug-
gested in Ref. 22 to double-periodic bilayers of electric di-
poles is very nontrivial and needs to be checked. It is espe-
cially important to check it in the present case when these
dipoles are plasmonic nanospheres and the expected effect is
the resonant optical magnetism.

B. Polarizabilities of individual nanorings

Following to Refs. 21 and 22, we can retrieve electric and
magnetic polarizabilities of the metasurface �from solid p-m
particles arranged in a square grid with unit-cell area a2�
through the surface susceptibilities. Formulas expressing
these electric and magnetic polarizabilities through surface
susceptibilities are given in Ref. 21,

�ee
xx =

1

a2�ES
xx +

1

4sa3 +
jk3

6�

, �10�

�mm
yy =

1

− a2�MS
yy +

1

4sa3 +
jk3

6�

. �11�

Here s=0.6956 is a quasistatic interaction constant of pla-
nar dipole grid. The term jk3 /6� corresponds to the compen-
sation of radiation losses which are forbidden in regular ar-
rays �see, e.g., in Ref. 3� including two-dimensional arrays.25

It is clear from relations �10� and �11� that the retrieval of
individual polarizabilities suggested in Ref. 21 is a quasi-
static procedure. At the first glance, it is difficult to expect its
applicability for our structure whose unit cells are formed by
clusters of electric dipoles and the size of these clusters is as
large as � /3. However, let us apply formulas �10� and �11� to
our bilayer plasmonic structure and see the result.

To obtain the reflection and transmission coefficients of a
bilayer of silver nanospheres, we performed a full-wave nu-

(a)

b

X

z

r

(b) (c)

p
xm

p
xm

p
xm

p
xm

d
E

x

H
b

δ

Δ

FIG. 1. �Color online� �a� An original structure performed as a
bilayer of nanospheres. �b� An effective nanoring of four plasmonic
spheres. �c� An effective metasurface formed by electric �p� and
magnetic �m� dipoles induced in every unit cell.

DMITRY MORITS AND CONSTANTIN SIMOVSKI PHYSICAL REVIEW B 82, 165114 �2010�

165114-4



merical simulation in high-frequency structure simulator
�HFSS� and then compared the results of formulas �10� and
�11� to results predicted by the model of an individual effec-
tive nanoring presented in Ref. 8.

We used the following geometrical parameters of our
structure �see Fig. 1�: d=32 nm, r=b /	2=38 nm, and a
=96 nm. Permittivity of silver was taken from the Drude
model as in works8,9 �though the Drude model does not meet
known experimental data for silver in the visible� in order to
better compare our results with those obtained in these
works. The plots presented in Fig. 2 reveal the striking agree-
ment between the results of two independent models. This is
a surprising result of this study. The distances b between
spheres in an individual nanorings is comparable with their
diameter d. The distances between the edges of two adjacent
nanorings is significantly smaller than the nanoring radius r.
However, the dipole model keeps adequate, i.e., the p-m di-
polar interaction is dominant in the structure. In other words,

the quasistatic p-m dipole model of extraction21 of polariz-
abilities keeps valid for grids of plasmonic nanoclusters like
shown in Fig. 1�a� and the quasistatic p-m dipole model of
an individual effective nanoring8 keeps adequate as well.

It should be noticed that the description of the bilayer
structure in terms of effective rings is not the only possible
approach. The alternative way is a description in terms of a
superlattice of individual spheres. One can consider such
structure as two double-periodic planar arrays of spheres.
Response of each planar array can be obtained using the
well-known expression for the polarizability of an individual
sphere. The interaction between arrays is then described tak-
ing into account high-order Floquet harmonics because b

�. We have not verified it but we believe that scattering
matrix calculated with this approach will be the same as we
obtained considering the structure as a grid of effective nano-
rings and will also fit numerical simulations. However, in our
opinion, the effective-ring model is more physical in the
sense that the description in terms of electric and magnetic
dipoles is rather clear and understandable. Moreover, this
approach is much more simple and appropriate for practical
use, what is extremely important for description of metama-
terials in general.

C. Applicability of extracted susceptibilities for arbitrary
incidence angles

Figure 3 allows one to compare theoretical and simulated
R and T of our bilayer metasurface for 	=30°. Theoretical
curves were calculated with the use of formulas �7� and �8�
and susceptibilities extracted from R�0�, T�0� and R�45°�,
T�45°� which were obtained in their turn by full-wave simu-
lations in HFSS. In the region below 700 THz, where the
electric and magnetic resonances hold, the compliance be-
tween the theory and simulation is surprisingly good. Notice
that the size of the unit cell a approaches at 700 THz to � /3
and approximations implied by the homogenization model
are quite rough. On the higher frequencies �not shown on the
plot� the results are worse, which is clearly can be explained
by overcoming the limit of applicability of the theory.

We may conclude that utilization of surface
susceptibilities21,22 is a very efficient tool to characterize
resonant grids far beyond the quasistatic limit which is ap-
plicable also for grids formed by clusters of resonant dipoles.

III. BULK LATTICE AND ITS CHARACTERIZATION

Now let us consider an infinite three-dimensional lattice
obtained by repetition of the same bilayer with the step a. To
obtain the effective material parameters of such a composite
authors of Ref. 8 suggested to use a quasistatic homogeniza-
tion procedure, i.e., well-known Maxwell Garnett formulas
for � and �. It was shown in Refs. 8 and 9 that with this
approach �and with the use of the Drude model of the per-
mittivity of silver� it is possible to achieve negative perme-
ability. Moreover, even both effective permittivity and per-
meability can be negative in the visible range.

In the work,23 one presented a characterization procedure
of the bulk orthorhombic lattice of solid p-m pairs based on
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FIG. 2. �Color online� �a� Electric and �b� magnetic polarizabil-
ity of an effective ring of four plasmonic spheres with d=32 nm
and r=38 nm. Red curve—extracted from the reflection and trans-
mission coefficients of an individual grid; blue curve—calculated
using the theory from Ref. 8. Real and imaginary parts are shown
by solid and dashed lines, respectively.
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the retrieval of their individual polarizabilities for a single
grid which is generic for the bulk lattice. It was suggested to
put the retrieved �ee and �mm into Maxwell Garnett equa-
tions to find the material parameters of the bulk lattice. This
approach gave good results for the structure composed of a
cubic array of very small magnetodielectric spheres with
very large permittivity and permeability. In the example from
Ref. 23, the lattice constant a was about 30 times smaller
than the wavelength at the resonance of spheres. Is Maxwell
Garnett model adequate also for a lattice of effective nano-
rings with optical sizes � /3? To check it we use a dynamic
procedure of the material parameters retrieval.

A. Dynamic model of an orthorhombic p-m lattice

Our method of extraction of bulk material parameters is
based on a model �suggested in Ref. 6� of an infinite ortho-
rhombic lattice of p-m dipoles �the response of each inclu-
sion is modeled by electric �p� and magnetic �m� dipole
moments�. Let the wave propagate along the crystal axis
which corresponds to the lattice period a and let p-m inclu-
sions be embedded into a dielectric medium with relative

permittivity �h. Neglecting the interaction of adjacent crystal
planes through higher-order Floquet harmonics one can de-
rive the dispersion equation for the wave number q,12

cos qa = cos ka − �1 + 	1 − ���G + X

4
�sin ka , �12�

where k=k0
	�h and it is denoted as

� =
GX cos ka

2 sin2 ka
�4 + GX/2

G + X
cos ka − sin ka� . �13�

Parameters jG and jX are called, respectively, shunt sheet
admittance and series sheet impedance of an individual grid
formed by p-m pairs, where p-dipoles are responsible for
nonzero G and m-dipoles are responsible for nonzero X. In
Ref. 20, it was proved that for an individual p-grid parameter
G is connected to the jump of the tangential magnetic field
across the grid �located, e.g., at the plane z=0�,

HTA�− 0� − HTA�+ 0� = jG
ETA�0�

�
. �14�
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FIG. 3. Reflection and transmission coefficients of the grid of effective nanorings for the TM polarization, angle of incidence is 30°. Solid
line—theoretical results calculated by the use of Eqs. �7� and �8�; dashed line—results of full-wave simulation in HFSS.

DMITRY MORITS AND CONSTANTIN SIMOVSKI PHYSICAL REVIEW B 82, 165114 �2010�

165114-6



Here the index TA �transverse averaging� means the mi-
croscopic field averaging over the unit-cell surface S and � is
the wave impedance of the host medium. Similarly, for the
m-grid parameter X defines the jump of the tangential elec-
tric field across the grid,

ETA�− 0� − ETA�+ 0� = jX�HTA�0� . �15�

The relations �14� and �15� refer to individual grids. It can
be easily shown that in the case of normal incidence GSTCs,
Eqs. �3� and �4�, obtained in Ref. 21 fully coincide with Eqs.
�14� and �15�, there parameters �ES and �MS are connected
with G and X as follows:

G = k�ES, X = − k�MS. �16�

Notice that G and X were derived in the electrodynamic
model of p-m grids developed for the case when these grids
�crystal planes� have the period d satisfying to the restriction
kd�1 and the distance between these grids a satisfies to the
restriction qa�1. Much more restrictive limitation kd
1 is
implied by the quasistatic model.22 The equivalence of sheet
admittance jG and sheet impedance jX to, respectively, �ES
and �MS shows that the quasistatic model keeps valid well
beyond its initial limitations.

The reason of this result is as follows. We consider the
case when the wave propagates normally to crystal planes. A
planar grid of in-phase p-dipoles does not produce magnetic
field in its own plane. A planar grid of in-phase m-dipoles
does not produce electric field in its own plane. Therefore,
there is no p-m interaction �electromagnetic interaction be-
tween p-dipoles and m-dipoles� on the level of an individual
crystal plane. Since the grid is optically rather dense �kd
�1�, the p-p interaction and the m-m interaction are mainly
quasistatic,25 i.e., the same as in the case kd
1. Therefore
the quasistatic model22 turns out to be consistent with the
model of the bulk lattice to describe the response of every
crystal plane.

Now the characterization procedure becomes clear. As in
the previous case, we start from R and T coefficients of an
individual grid for the normal incidence. Formulas �5� and
�6� together with Eq. �16� allow us to extract parameters G
and X. In the next step we find the wave number q solving
the Eq. �12� and find the normalized wave impedance Zw of
the lattice through the auxiliary parameter �, obtained in
Refs. 6 and 7,

� =	G

X
	 cos qa − cos ka − 0.5X sin ka

cos qa − cos ka − 0.5G sin ka
. �17�

Zw = �
�k0 + q

�q + k0�h
. �18�

Bulk material parameters of the composite are expressed
through the wave number and wave impedance as follows:

�l =
q

�Zw
, �l =

qZw

�
. �19�

Index l in these formulas means that parameters found in this
way have to satisfy the locality limitations in all frequency
regions where the strong spatial dispersion is absent.12 This

distinguish bulk material parameters retrieved through the
wave impedance of the homogenized lattice �Eq. �18�� from
nonlocal material parameters resulting from the same wave
number q but the surface impedance as in the standard
Nicholson, Ross, and Weir method of retrieval �see more
details in Ref. 12�.

B. Retrieval of bulk material parameters

Thus, we have two algorithms of extraction of material
parameters of volumetric metamaterial from the reflection
and transmission coefficients of a single grid. The first one is
the quasistatic retrieval suggested in Ref. 23. The second one
suggested in the present paper is dynamic. Both are sche-
matically shown in Fig. 4. In this paper, we will apply these
algorithms to the lattice of effective nanorings introduced in
Ref. 8.

To extract the material parameter, we got the reflection
and transmission coefficients of a single layer of nanorings
using full-wave numerical simulation with HFSS. Then the
effective material parameters of both types of composites
were obtained in compliance to the quasistatic and dynamic
approaches schematically shown in Fig. 4. Their results are
compared in Fig. 5. The dispersion plot presented in Fig.
5�b� helps to outline two resonant stop bands. The first one is
related to the resonance of p-dipoles �nearly 580–625 THz�.
The second one is related to the resonance of m-dipoles
�nearly 635–680 THz�.

First, very important notice we can make from the plots is
that retrieved quasistatic and dynamic material parameters
are causal and passive for the both structures. As we already
said this is a major reference point which tells us that both
procedures give physically adequate results. Meanwhile, for
the both structures the difference between quasistatic and
dynamic effective material parameters is dramatic. First dif-
ference concerns the magnitudes of the electric and magnetic
resonances, which are overestimated in the quasistatic
model. This is very important particularly for the composites
designed to achieve negative effective material parameters.

The next important difference is that the resonances of
electric permittivity and magnetic permeability are not inde-
pendent in the dynamic model. In the dynamic theory, we
take into account the p-m interaction. It is a wave interaction
between p-dipoles and m-dipoles, belonging to different
crystal planes. For the permittivity, the main resonance �580–
625 THz� which is nearly Lorentzian is supplemented with a

R , T

χ
ES
χ
MS,

αee , αmm

εqs , μqs

G X,

q , Z

εdyn, μdyn

FIG. 4. Schematic algorithms of extraction of quasistatic �left�
and dynamic �right� material parameters.
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weaker but rather pronounced resonance which corresponds
to magnetic dipoles resonating at 650 THz. The third reso-
nance of extracted permittivity which occurs above 700 THz
is probably a spacial resonance of the lattice �where particles
are not resonant�. In other words, at frequencies higher than
670–680 THz the strong spatial dispersion appears and the
extracted material parameters have no physical meaning.

The main resonance of permeability is supplemented with
an additional broadband resonance produced by electric di-
poles. Since the resonance bands of electric and magnetic
dipoles of effective nanorings are close to one another, the
overall shape of the frequency dispersion for both material
parameters looks non-Lorentzian. We are not familiar with
similar results in the literature, when both permittivity and
permeability of any natural or artificial material are causal
and passive but non-Lorentzian. The possibility for local ma-
terial parameters to be non-Lorentzian gives us a distinct
insight and seems to be an important result of the study.

Notice that the strong influence of the p-m interaction in
the lattice of effective nanorings is not surprising when we

recall that at 650 THz the lattice period a exceeds one third
of the wavelength in the host medium. Comparing the period
with effective wavelength �eff=2� /q �where q is taken be-
yond the resonance stop band� we can see in Fig. 5�b� that at
630 THz qa=2.5, i.e., a=0.39�eff. However, even for so
large �qa� in the passband 625–635 THz extracted material
parameters are causal and passive.

Two important conclusions can be done. First, the quasi-
static approximation which keeps adequate over the whole
resonance band for a single metasurface of effective nano-
rings fails for the three-dimensional lattice. Second, the reso-
nances of permittivity and permeability of the lattice of ef-
fective nanorings are related with one another due to the p-m
interaction.

IV. CONCLUSIONS

This paper concerns the homogenization of metasurfaces
related to the surface averaging approach and the homogeni-
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FIG. 5. �Color online� Effective material parameters of the composite media of effective nanorings of silver spheres with parameters
d=32 nm, r=38 nm, and a=96 nm: �a� effective permittivity and permeability obtained in the quasistatic retrieval procedure �Ref. 23�. �b�
Normalized wave number versus frequency obtained in the dynamic retrieval model. The light line is shown by blue dashed color. �c�
Effective permittivity obtained using the dynamic model. �d� Effective permeability obtained using the dynamic model. Real and imaginary
parts of all parameters are depicted by solid and dashed lines, respectively.
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zation of bulk lattices obtained by repetition of these meta-
surfaces, which is related to the bulk averaging approach.
Using an example of a plasmonc bilayer, we have general-
ized a recently suggested procedure of the electromagnetic
characterization of metasurfaces22 to the case when the unit
cell if formed by a group of resonant dipoles. We have
shown that it is possible to consider such a bilayer as an
array of effective nanorings of plasmonic nanospheres. It
was checked that an individual effective nanoring can be
considered as a group of p-dipoles forming a p-m pair, i.e.,
the pair of resulting electric and magnetic dipoles. High-
order multipoles can be neglected in spite of the small dis-
tances �on the order of the sphere radius� between adjacent
nanospheres in one nanoring and in spite of the small dis-
tances between adjacent effective nanorings �several times
smaller than the size of cluster itself�. The quasistatic ap-
proximation keeps valid with an acceptable accuracy well
beyond the assumed initial quasistatic limit, practically up to
the frequency at which the unit-cell size approaches to
0.34�eff in the host medium.

The important result is that the close periodicity does not
disqualify the effective description of metasurfaces in terms
of the surface susceptibilities. However, the difference be-
tween metasurface and bulk medium layer is dramatic. One
clearly fails to present a bilayer as an effective layer of a
continuous bulk material. For the case of normal incidence,
one can always introduce effective � and � which will be
suitable only for this special case. However, they will not
correctly describe the angular dependence of reflection and
transmission coefficients. We would like to stress that in our
opinion the description of metasurfaces in terms of � and �
is physically incorrect and practically pointless.

For bulk lattices, we have suggested to extract the effec-
tive material parameters from reflection and transmission co-
efficient of a single grid representing a crystal plane of the
lattice. This procedure is an expansion of the recently sug-
gested method23 to the dynamic case when the quasistatic
approximation becomes inapplicable. The reason why the
quasistatic model is not adequate for bulk lattices is the p-m
interaction �that between electric and magnetic dipoles�
which is carried by partial plane waves produced by crystal
planes. It was shown that the suggested method gives effec-

tive material parameters which satisfy the locality condi-
tions. However, the frequency behavior of the dynamic ma-
terial parameters is more complex than simple Lorentzian
dispersion predicted by the quasistatic approximation. Par-
ticularly, the resonances of electric permittivity and magnetic
permeability become coupled with one another.

Now let us better clarify the ultimate aim of our retrieval
process. As we already said, we want to obtain for the p-m
lattice physically adequate material parameters satisfying the
locality principle applicable beyond the quasistatic limita-
tion. The main reason for utilization of these parameters is
that we should be able to describe the electromagnetic prop-
erties of the composite for any angle of incidence. Otherwise
our material parameters are redundant. The limitations of
causality and passivity are necessary conditions of the local-
ity of material parameters, i.e., if they are respected it does
not guarantee that the same parameters keep for the oblique
incidence. However, we hope to prove this in our next study
in the same way as we did for a single grid of effective
nanorings. Our expectation are related not only with locality
limitations satisfied for retrieved material parameters. In this
paper, we have shown that the same surface susceptibilities
describe with acceptable accuracy the electromagnetic be-
havior of the metasurface of effective rings also for the ob-
lique incidence.

The main problem with the application of bulk material
parameters to a boundary problem is related to the necessity
of transition layers. Beyond the quasistatic limit case qa

1 bulk material parameters of a homogenized lattice are
not consistent with Maxwell boundary conditions.12 This in-
consistency can be overcome using transition layers �or tran-
sition sheets� as it was done in Ref. 12 for a lattice of ce-
ramic cylinders and for a lattice of split-ring resonators. For
a lattice of effective nanorings transition layers require a se-
rious separate study.
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