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The nature of electron correlations in bilayer graphene has been investigated. An analytic expression for the
radial distribution function is derived for an ideal electron gas and the corresponding static structure factor is
evaluated. We also estimate the interaction energy of this system. In particular, the functional form of the
pair-correlation function was found to be almost insensitive to the electron density in the experimentally
accessible range. The interlayer bias potential also has a negligible effect on the pair-correlation function. Our
results offer valuable insights into the general behavior of the correlated systems and serve as an essential
starting point for investigation of the fully interacting system.
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Despite intense studies for many decades, the important
role of many-particle correlations in electron liquids,1 par-
ticularly in systems with reduced dimensions, remains a
challenging issue in condensed-matter physics. This subject
has become even more pressing in recent years as the physi-
cal properties of graphene have been unmasked at a rapid
pace.2 Monolayer and bilayer graphene are totally new
classes of two-dimensional electron systems with unusual
band structures and chiral charge carriers. The influence of
electron correlations on various physical properties of the
chiral two-dimensional electron gas in monolayer graphene
has been the subject of several investigations.3–5 These were
all carried out with the aid of established pertubative tech-
niques. On the other hand, our earlier work based on exact
analytical treatment6 indicated that the electron correlations
completely vanish from the two-particle kinetic energy of
monolayer graphene, a fact which was attributed to the spe-
cific spinor structure of the single-particle wave functions
which in turn is a direct manifestation of the chirality of the
massless Dirac fermions in monolayer graphene. Such can-
cellations were not found to occur for electrons in bilayer
graphene6 due to the massive chiral nature of the low-energy
quasiparticles. Clearly, we have a long way to go in order to
find a satisfactory understanding of the role interactions play
in these unique electron systems but it is evident that the
effects of correlations in bilayer graphene is an important
and relevant issue.

In this Rapid Communication, we will lay out the foun-
dation for the process of establishing the behavior of the
correlation function of interacting electrons in bilayer
graphene, which is an essential step for evaluation of the
thermodynamic properties of this system. We derive an ana-
lytic expression for the pair-correlation function �PCF� of an
ideal electron system and use it to compute the correspond-
ing static structure factor as a function of the electron den-
sity. We make a detailed comparison of the PCF with the
same quantity in a traditional two-dimensional electron gas
�2DEG� and compute the exchange energy for the bilayer
graphene system. Evaluation of the PCF with full electron
correlations included is certainly a very arduous task7 and
has not yet been attempted for bilayer graphene. Our present
approach is an important and necessary initial step in de-
scribing a fully correlated system but it already provides

valuable insights into the general behavior of these functions.
Bilayer graphene has a hexagonal Brillouin zone where

the low-energy features are located near two inequivalent
corners, called the K points.8,9 There are four low-energy �
bands for each spin species in the vicinity of each K point. In
unbiased bilayer graphene the second and third of these
bands �called the “low-energy branches”� touch exactly at
the charge-neutrality point, making intrinsic bilayer graphene
a zero-gap semiconductor. There are two more bands �the
“split” branches�, each seperated from the low-energy branch
by the interlayer coupling parameter �1�0.4 eV. We label
these bands as follows: the conduction and valence bands are
given by �=c ,v; the branches are b= l ,s; the valleys are �
=K ,K�; and the spins are �= ↑ ,↓. Adding the electron wave
vector k, we have the complete set of quantum numbers �
= ��� ,b� ,k� ,�� ,���. At half-filling, all eight valence bands
are filled and the eight conduction bands are empty.

Spin- and valley-dependent contributions to the PCF are
defined as1

g����,����
�r1,r2� = 1 −

��	����

† �r1�	����
�r2���2

n����
�r1�n����

�r2�
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where 	����
�r�=	k�,��,b�


�a� is the field operator for an
electron in valley �� with spin ��. The total PCF can be
expressed in terms of these functions as g�r1 ,r2�
=	��,��,��,��

1
16g����,����

�r1 ,r2�.
To evaluate this expression we substitute the well known

form of the single-particle wave functions in bilayer
graphene
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where �� and �� are, respectively, the valley and spin parts
of the wave function, A is the normalization area, and the
functional form of the wave-function components and single-
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particle energies are easily derived from the Schrödinger
equation for the tight-binding Hamiltonian.

Substituting Eq. �2� into Eq. �1�, we find that

g����,����
�r� = 1 −

16���,��
���,��

A2n2

� 	
k���b�

k���b�

f�f� cos��k� − k�� · r���
��� · ��

� ��

�3�

with r=r1−r2 and where f� is the occupancy of state �. As
expected, the off-diagonal components of the PCF are con-
stant with unit value. We have also assumed that n���r�
=n /4 �i.e., that electrons are equally distributed between the
valley and spin components and that electron density is uni-
form in space�.

To proceed, we must be careful about how we define the
various densities. The total density of electrons is denoted by
n but we also consider the density of charge carriers �also
called the excess density� ncc=n−n0, which may be either
positive �for electrons� or negative �for holes�. Then, the

sums over occupied wave vector states must be taken inde-
pendently for each combination of band and branch quantum
numbers. Taking the limit of an infinite system �with the
electron density held constant� means that we can replace the
sums over wave vectors with two-dimensional integrals. The
integrals which result from this procedure are not automati-
cally convergent for large wave vectors. Therefore, we must
introduce a cutoff wave vector using some physical reason-
ing. Consideration of the lattice structure shows that each
unit cell contributes four � electrons �one per carbon atom�
so that the density of electrons at half-filling is n0
=8 / �
3a2�, where a�2.46 Å is the lattice constant. There-
fore, we can set the wave vector cutoff � because

A
4�2� d2k =
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8
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=
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8
⇒ � =

2
�


4 3a
,

where N0 is the total number of electrons at half-filling. As
an example, in intrinsic graphene �where the Fermi energy is
exactly at the charge-neutrality point� the valence bands are
all filled and the conduction bands are all empty. Therefore,
the sum over bands and branches in Eq. �3� becomes
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Using the expressions for the wave functions in Eq. �2� and evaluating the elementary integrations over the angles, we arrive
at
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where all terms are evaluated with �=v, and J0�x� and J1�x�
are the zeroth order and first-order cylindrical Bessel func-
tion, respectively. In the case of positively doped graphene
�where the charge carriers are holes and the Fermi energy is
in the valence band�, we assume that for moderate densities
only the low-energy band is depopulated10 so that the lower
integration limit becomes the Fermi wave vector kF=
�ncc,
when b= l. For negatively doped graphene, each squared

term in Eq. �4� gains a contribution from the low-energy
conduction band ��=c , b= l� with the Fermi wave vector
replacing � as the upper limit in this integral.

In order to obtain the PCF, these integrals are evaluated
numerically and the resulting function is plotted in Fig. 1 for
various densities. The behavior of the function is clearly
similar to that in a conventional 2DEG,11 with an exchange
hole with radius approximately 5 Å. The reason that g�0� is
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finite is explained as follows: the PCF evaluated here speci-
fies all-but-two quantum numbers. Therefore for any given
combination of band and branch, there can be an electron at
r=0 with one of three other combinations which does not
violate the Pauli principle. Hence the minimum value of the
PCF is 3/4, as seen in Fig. 1. If we were to calculate the g�r�
for a fully specified combination of valley, spin, band, and
branch then this function would indeed go to zero at the
origin, just as it does for the conventional 2DEG.

The dependence of the PCF on the density is tiny for
physically reasonable values of the excess density. The rea-
son for this tiny variation is that the electrons in the filled
valence bands contribute more to the sum over states than
those in the partially filled conduction band. The PCF con-
tains essentially an average over all particles 1

N	i, �where N
is the total number of electrons and i runs over all filled
states�. The intrinsic density of electrons due to the valence
bands which are filled in the charge-neutral case is
n0�7.6�1015 cm−2, which is much greater than the density
of charge carriers ncc�1014 cm−2 due to the excess density
induced by gating or doping. Therefore when the average
over all states is taken, the effect of the partially filled con-
duction band �or partially empty valence band� is swamped
by the contribution from the filled valence band. This effect
is highlighted by comparison with the noninteracting PCF in
a traditional semiconductor 2DEG �in the lower inset to Fig.
1�. When the 2DEG PCF is plotted for n=1�1013 cm−2, the
exchange hole is much larger than in graphene. But when the
total density 7.6�1015 cm−2 is used the exchange hole is of
a much more similar size.

Once we obtain the radial distribution function, the static
structure factor for the system can be derived from the fol-
lowing expression:1

S����,����
�k� = 1 + n��� d2r�g����,����

�r� − 1�e−ik·r,

which is, in principle, an experimentally observable function
via x-ray and neutron diffraction, where the correlation func-

tions are usually extracted from the measured diffraction in-
tensity profile.12 We have evaluated the integral numerically
and the resulting function is plotted in Fig. 2 for several
values of the electron density. We see that the variation with
density is rather small but at low wave vector, S�k� increases
with density �upper left inset� while at high wave vector the
opposite is true �lower right inset�. The structure factor is
almost linear even up to the wave vector cutoff �. This be-
havior has been noticed before in the context of monolayer
graphene.3,7 This is noticeably different from the result for
the conventional 2DEG,11 where the static structure function
is roughly linear at small wave vector but saturates at
S2DEG�k�= 1

2 for k�2kF. We emphasize that the static struc-
ture function of bilayer graphene behaves similarly to the
conventional 2DEG at small wave vector but like monolayer
graphene at large wave vector. This behavior might be ex-
pected when the quadratic-to-linear crossover in the hyper-
bolic band structure is considered.

Finally, we calculate the exchange energy per electron
associated with the exchange-correlation hole

Eint�n� =
n

2
� d2rV�r��g�r� − 1� ,

where V�r� is the Coulomb potential and we use the full g�r�.
This function is linear in the quasiparticle density with
E�0��−2.5 eV.

Let us now turn our attention to the effect of a finite
interlayer bias potential on the radial distribution function.
When an electrostatic potential is applied perpendicularly to
the plane of the graphene, a gap opens at the charge-
neutrality point and the shape of the low-energy bands
changes to a “Mexican hat” form.9 This also changes the
form of the wave functions and causes the Fermi surface to
become ring shaped for small charge-carrier density.13 There-
fore, the integration limits in Eq. �4� change if the Fermi
energy EF�U /2. In that case, integrals relating to partially
filled bands become �0

kFdk→�k−

k+dk with
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FIG. 1. �Color online� �a� The pair-correlation function for sev-
eral values of the electron density. Solid line �black�: ncc=0; dashed
line �red�: ncc=1013 cm−2; dashed-dotted line �green�: ncc=5
�1013 cm−2; and dotted line �blue�: ncc=1014 cm−2. �b� PCF near
the exclusion hole edge. Densities are as in �a�. �c� Comparison
with 2DEG PCF. Dashed line �red�: 2DEG with n=1013 cm−2;
solid line �black�: 2DEG with n=7.6�1015 cm−2; and dotted line
�black�: bilayer with ncc=0.
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FIG. 2. �Color online� The static structure functions for the same
densities as in Fig. 1�a�. The units are r0=�vF /�1�1.65 nm. Main
plot: the whole wave vector range. Upper left inset: the low-wave
vector region. Lower right inset: the wave vector region near the
cutoff.
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On the other hand, if EF�U /2 �which occurs when
kF�U / ��vF�� then kF=
�ncc as before.

We plot the change in the PCF with the introduction of a
bias �g=gU�r�−g0�r� as a function of the interparticle sepa-
ration in Fig. 3. We see that the change is greatest at small
charge-carrier density and large U. However, overall the
change is very small which is predictable since the PCF is
related to the electron wave functions and the interlayer po-
tential only induces a change for E�U�E���. Similarly,

the static structure factor shows only very small deviation
from the U=0 results for finite U.

In conclusion, we have investigated the PCF and the cor-
responding static structure function for an ideal gas of elec-
trons in bilayer graphene and compared it to the same quan-
tity in the traditional 2DEG system. We have found behavior
quite similar to that of the conventional 2DEG at equivalent
density, in that an exchange hole is formed with density-
dependent radius. However, the manifestation of effects due
to the bands, especially the existence of the filled valence
band means that the dependence of these functions on the
density of charge carriers is minimal in the experimentally
accessible range. We have evaluated these functions for the
gapped system as well and found that the effect of the inter-
layer bias potential on these quantities was also negligible.
This general picture will also be true for all Dirac-type sys-
tems which have filled valence bands. In the case when the
many-body correlations are taken into account, we expect
very similar behavior for the dependence on density because
electron-electron interactions do not alter the situation of
filled valence bands. In monolayer graphene, we previously
expected that the functional form of the PCF remain insen-
sitive to electron density in order to explain the observed
behavior of the electron compressibility.6 It is interesting to
observe a similar situation in the case of another Dirac-type
graphene system based on very general considerations.
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