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We study the recently introduced Z2 pump consisting of a family of one-dimensional bulk insulators with
time-reversal restriction on the pumping cycle. We find that the scattering matrices of these pumps are dichoto-
mized by a topological index. We show that the class of pumps characterized by a nontrivial topological index
allows, in contrast to its topologically trivial counterpart, for the noiseless pumping of quantized spin, even in
the absence of spin conservation. This distinction sheds light on the Z2 classification of two-dimensional
time-reversal invariant insulators.
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I. INTRODUCTION

The idea to pump spin through a mesoscopic device at
zero bias by cyclic variation in two system parameters is
very appealing due to its promise of precise and reversible
flow control.1 Optimal pumps which operate noiseless, trans-
ferring quantized spin in a cycle are particularly relevant for
potential applications.2 In this Rapid Communication, we
propose the concept of an optimal topological spin pump,
composed of a bulk insulator. We show that the ability to
pump quantized noiseless spin is a hallmark of the nontrivial
topological invariant characterizing a quantum spin-Hall sys-
tem.

The discovery of the quantum Hall effect introduced an
interesting new way to classify different states of matter.
Unlike more familiar phases, a quantum Hall state does not
break any symmetry and cannot be described by a local-
order parameter. Rather, it differs from a regular two-
dimensional insulator by topological invariants, known as
Chern numbers, which reflect the global structure of its
ground-state wave function.3,4 This topological classification
of states of matter found recently an exciting extension to
two-dimensional time-reversal invariant bulk insulators.5–7 In
accordance with the Chern numbers used to classify quantum
Hall systems,6 these systems can be characterized by a Z2
topological index, based on the properties of their bulk
ground state. The group of insulators described by a non-
trivial Z2 index are known as quantum spin-Hall systems.

In analogy to the quantum Hall state, it is possible to gain
insight into this topological classification by studying a
pump formed by placing the two-dimensional system on a
cylinder threaded by a magnetic flux.8,9 The resulting system
can be mapped onto a set of one-dimensional time-dependent
Hamiltonians by identifying the magnetic flux with time.
This mapping defines a Z2 pump.7 Nonetheless, in the ab-
sence of spin rotation invariance, the physical meaning of the
pumped Z2 charge remains elusive. In this Rapid Communi-
cation, we study the scattering matrix of the open one-
dimensional pump constructed in this way. We find that map-
ping the two-dimensional insulating system onto a one-
dimensional pump establishes a Z2 classification of the
scattering matrix. The resulting one-dimensional pumps are
dichotomized. The family of scattering matrices belonging to
the topological nontrivial class allows, in contrast to its to-

pological trivial counterpart, for the noiseless pumping of a
quantized spin, even in the absence of spin conservation. We
illustrate these ideas by two examples.

II. Z2 INDEX

We consider a family of one-dimensional Hamiltonians of
noninteracting electrons with a bulk energy gap that depend
continuously on a cyclic pumping parameter t, H�t+T�
=H�t�, and satisfy

H�− t� = �yH
T�t��y , �1�

where �i are the Pauli matrices. These systems can be
viewed as a mapping of the set of two-dimensional time-
reversal invariant insulators placed on a cylinder, where t
corresponds to a magnetic flux threading the cylinder. In-
deed, Eq. �1� implies time-reversal invariance of the corre-
sponding two-dimensional system, as is evident upon identi-
fication �kx , t�→ �kx ,ky�. In the context of pumping, Eq. �1�
ensures the existence of two time-reversal invariant moments
�TRIMs� t1=0 and t2=T /2, at which H�ti�=�yH

T�ti��y,
where i=1,2. Upon coupling the one-dimensional system to
two single-channel leads, the open system is described in
terms of a time-dependent 4�4 unitary scattering matrix.
Provided the system exceeds the attenuation length associ-
ated with the bulk energy gap, the transmission vanishes, and
the scattering matrix is block diagonal. Each block, r̂�, is a
unitary 2�2 reflection matrix in spin space, where the index
�=L ,R refers to the left and the right lead, respectively. The
average spin injected into lead � during a cycle can be ex-
pressed in terms of the spin current,
s��=Im tr��dr� /dt��� r�

†�,10 see Eq. �7� below. It can be readily
verified that s�� is invariant under gauge transformations r̂�

→ei���t�r̂�. This allows us to restrict our analysis to the
U�2� /U�1��SU�2� particle-hole symmetric part of r̂� which
we denote by r̃�.

The pumping cycle defined in Eq. �1� provides a mapping
from the periodic time, corresponding to a one-dimensional
loop, S1, to the SU�2� space of particle-hole symmetric re-
flection matrices, r̃�. Since the SU�2� group is topological
equivalent to the three sphere, S3, one may conclude that a
general pumping cycle does not distinguish between differ-
ent topological classes, since all closed contours on S3 can be
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contracted to a single point. �The first homotopy class of S3

is zero, �1�S3�=0�. However, Eq. �1� restricts the mapping
by associating S�T /2+ t�=�yS

T�T /2− t��y. In particular, at
the two TRIM, the SU�2� part of the reflection matrix is
given by r̃��ti�= �1. This restricted mapping has two topo-
logical distinct classes, which may be categorized by

r̃��0�r̃��T/2� = �− 1��1 . �2�

Any loop r̃��t� on the three sphere characterized by �=0 can
be contracted onto a single point while paths with �=1 are
fixed by two distinct points at TRIM and cannot be con-
tracted. Following Eq. �1�, any additional points at which
r̃�=−1 away from the TRIM occur in pairs. We may, there-
fore, equivalently define � as the parity of r̃�=−1 moments
traversed in a cycle. Away from the TRIM, however, these
points are not protected by symmetry and can be removed by
a perturbation larger than the level broadening introduced by
coupling to leads, see Eq. �5�. Hence, in the weak-coupling
limit, we can disregard any such accidental points.

III. TOPOLOGICAL SPIN PUMP

The Z2 classification of the scattering matrix has a direct
effect on the spin pumped during a cycle. We show below
that the family of one-dimensional pumps belonging to the
topological nontrivial class can, in contrast to its topologi-
cally trivial counterpart, operate as optimal pumps. To this
end consider the effective Hamiltonian, H=HL+HR, for the
left and right edge states of the bulk insulator,

H��t� = 	��t� + h���t� · �� , � = L,R . �3�

Here we have employed the fact that left and right edge
states decouple and the Hamiltonian is a sum of two inde-
pendent 2�2 Hermitian matrices in spin space, which can
be parametrized by a unit matrix and the three Pauli matri-
ces, �� . For transparency of the arguments we first consider
	�=0, where the spectrum of Eq. �3� is particle-hole sym-
metric, with eigenvalues ��h���t��� �h� that vary during the
course of a pumping cycle. Using the general expression for
the scattering matrix S=1+2i
W†�H− i
WW†�−1W, where
W is a matrix that describes the coupling between the leads
and the insulator,11 and assuming that the leads couple
equally well to up and down spins, so that W�=w�1, the
reflection matrix of each block is given by

r̂�t� = r̃�t� = ei��t�e���t�·�� , �4�

where we have dropped the lead index � for brevity. Here,

cos ��t� =
h�t�2 − �2

h�t�2 + �2 , sin ��t� =
2�h�t�

h�t�2 + �2 , �5�

where �=
�w�2 is the level broadening due to coupling to
the leads and we introduced the unit vector,

e���t� = h��t�/h�t� , �6�

which defines a time-dependent rotation axis. We note that
while the angle � depends on the level broadening, the vec-
tor e�� is exclusively determined by the effective Hamil-

tonian. Equation �5� shows that whenever the edge state
crosses the Fermi level h�ti�=0, the angle �=
 and the re-
flection matrix is resonant r̂=−1.

Following Ref. 10 we express the spin injected into lead �
during a cycle in terms of the reflection matrix,

S�� =



2

� dts��, s���t� = Im tr	dr̂�

dt
�� r̂�

†
 . �7�

In general, the rotation axis e�� varies during the cycling pro-
cess. As a result, one cannot identify a time-independent axis
along which spin pumped during a cycle is quantized. The
situation, however, changes when the coupling to the leads is
weak. We consider the limit 1 /T���E�, where the level
broadening � is small compared to the gap, yet large com-
pared to the pumping rate, in order to allow for the pump to
relax between cycles. In this limit the angle, Eq. �5�, remains
close to zero, ��t�=O�� /E��, and changes rapidly to 

whenever a gapless edge state appears in the course of a
cycle. The time duration of this transition can be estimated as
�t�� / �dh�ti� /dt���� /E��T�T. In the weak-coupling
limit, �t can be made arbitrarily short in comparison to the
time scale for variations in e��, so that e���t� may be approxi-
mated by its value at the center of the resonance. The class of
pumps with �=1 cross a single resonance at the TRIM.
Hence, in the weak-coupling limit the reflection matrix of a
topologically nontrivial pump describes a rotation around a
fixed axis,

r̂�t� = ei��t�e���ti�·���1 + O	 �

E�


 , �8�

where ti is the TRIM at which the resonance occurs. As a
result, the spin injected into lead � by the class of topologi-
cally nontrivial pumps is quantized,

S� = 
e���ti��1 + O��/E��� , �9�

where the quantization axis is determined by microscopic
details of the system. Conversely, the class of pumps with
�=0 either remains insulating during the entire cycle or
traverses two resonances at the TRIM. In the weak-coupling
limit, the former group can be approximated by a constant
reflection matrix r�t��1 and thus does not pump spin. The
second subgroup crosses two resonances during each pump-
ing cycle. Each such resonance is associated with the value
of the vector e���ti�. The two vectors e���0� and e���T /2�, how-
ever, need not be aligned. As a result, one cannot identify a
time-independent spin direction that would lead to a quan-
tized spin pumped trough an insulator with �=0.

These observations have a direct implication on the spin
noise. Following Refs. 12 and 13, the variance of the spin
pumped during a cycle, in a direction e�q, is determined by
the time dependence of the vector n�e�q

·�� =r�t�†�e�q
r�t� and

vanishes for a constant n�e�q
.13 In the weak-coupling limit, the

reflection matrix of a topologically nontrivial pump, Eq. �8�,
describes a rotation around a fixed axis, e���ti�. As a result,
the vector n�e�q

�t� with e�q=e���ti� remains constant during the
course of a pumping cycle. It follows that the topological
nontrivial spin pump allows for the noiseless pumping of
quantized spin. Conversely, a trivial insulator that crosses
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two resonances during a cycle cannot be parametrized by a
time-independent vector. Consequently, the trivial pump in-
evitably operates with generation of finite noise.

The above arguments generalize to finite chemical poten-
tial 	�. Once particle-hole symmetry is broken, the energy
levels cross the chemical potential at two different moments,
h�t��= �	. From Eq. �1� it follows that these occur sym-
metrically around the TRIM, t�= ti��t. By diagonalizing
the Hamiltonian at the crossing point, one can show that the
width of each transition is determined by �, and in the weak-
coupling limit, is associated with a fixed vector e���t��. We
note that due to Eq. �1�, e���t+� and e���t−� are colinear. Hence,
r̂�t� describes a rotation around a fixed axis, and the spin
pumped through a topologically nontrivial pump is noiseless
and quantized in a direction which also depends on 	.

IV. TWO EXAMPLES

To illustrate these ideas we next consider two examples
which demonstrate the difference between the two topologi-
cal classes of pumps. To model a topologically nontrivial
pump we consider the particle-hole symmetric Hamiltonian
H=H0+Vb+Vst+Vso �Refs. 7 and 14� with

H0 = �0�
i,�

�ci,�
† ci+1,� + ci+1,�

† ci,�� ,

Vb = b�t� �
i,�,�

�− 1�i��,�
z ci,�

† ci,�,

Vst = �st�t��
i,�

�− 1�i�ci,�
† ci+1,� + ci+1,�

† ci,�� ,

Vso = �
i,�,�

ie�so�� �,��ci,�
† ci+1,� − ci+1,�

† ci,�� . �10�

Here sums run over N sites and spin indices, and �st�t�
=�0 cos�2
t /T�, b�t�=b0 sin�2
t /T�. To simplify the illus-
tration we choose e�so=esox̂, such that r̂�t� depends only on
two Pauli matrices and can be represented as a point on the
two sphere. Finally, first and last sites are coupled to the
leads via spin-independent hopping elements W�=w�1 while
electrons inside the leads are described by a tight-binding
model, H0 in Eq. �10�.

The transmission and reflection coefficients, t̂RL and r̂L,
are found from the transfer matrix TRL by solving

t̂RL	eikRa�N+2�

eikRa�N+1� 
 = TRL	 1 + r̂L

e−ikLa + eikLar̂L

 , �11�

where kR,L� �
 / �2a� are the Fermi wave vectors in right
and left lead at half filling, and the transfer matrix relates the
states ��N+2 ,�N+1�T=TRL��0 ,�−1�T, and is derived from Eq.
�10�. The resulting t̂RL is exponentially suppressed over the
length associated with the gap. To leading orders in ��
=�st /�0, �b=b /�0, and �e=eso /�0 the reflection matrix is
given by Eq. �4� with

e�� = 	0,
�1

��1
2 + �1

2
,

− �1

��1
2 + �1

2
T

, h =
b

��1
2 + �1

2
. �12�

Here we introduced �1= �Re �1+2��� and �1= �Im �1

+2�e� with �1=��b2+4���+ i�e�2.
Figure 1 shows the time evolution of the reflection matrix,

r̂�t�= r̃�t�, of model, Eq. �10�, with and without spin-orbit
coupling. The inset shows the time dependence of ��t� and
the y component of the vector e���t�, at finite spin-orbit cou-
pling and for different coupling strengths. At the TRIM, t
=0 and T /2, the phase takes the value �=0 and �=
, re-
spectively. Consequently, r̂�t� belongs to the class of pumps
with nontrivial Z2 index �=1, see Eq. �2�. The loops that
represent the time evolution of r̂�t� are, therefore, fixed by
the values at the two TRIM, and cannot be contracted to a
single point by a continuous deformation of the microscopic
Hamiltonian that preserves condition �1�. In the absence of
spin-orbit coupling, r̂�t� follows a geodesic, corresponding to
the rotation around a fixed axis �black curve�. At finite spin-
orbit coupling, the reflection matrices trace out curved loops,
indicating the absence of a fixed rotation axis. At moderately
weak coupling, � /�0=0.1 the reflection matrix follows a
geodesic during most of the cycle �red/light gray curve�,
whose tangent is determined by the spin-orbit vector e�so. In
the limit � /�0→0 the loops converge to a geodesic, imply-
ing that the pump works optimally.

To model a topologically trivial pump we consider Hamil-
tonian �10� with a double spatial periodicity of the time-
dependent parameters,

Vb = b�t� �
n,�,�

�− 1�n��,�
z �c2n,�

† c2n,� + c2n+1,�
† c2n+1,�� ,

Vst = �st�t��
n,�

�− 1�n�c2n+1
† c2n+2 + c2n+2

† c2n+1� . �13�

By solving Eq. �11� to leading order in �� , �b , �e, we find
that r̂ is given by Eq. �4� with

FIG. 1. �Color online� Time evolution of r̂�t� of model, Eq. �10�,
in the absence of spin orbit �black curve�, and for �e /��=0.3 and
� /�0=0.1 �red/light gray curve�. Squares indicate equally spaced
time intervals and illustrate the time duration of the transition to r̂
=−1. The loops cross points �1 at the TRIM 0 and T /2, respec-
tively, corresponding to a nontrivial Z2 index �=1. Inset shows the
time dependence of the y component of e���t� �black curve� and of
��t� for �e /��=0.3 and � /�0=1, 0.1, and 0.01 �dashed-dotted blue,
dashed red, and dotted green lines, respectively�. At � /�0→0, the
transition becomes sharper and r̂�t� describes a rotation around a
fixed axis, e��T� /2�, implying that the pump is optimal.
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e�� = 	0,
���2 + 2�e�2

�2
��2

2 + �2
2

,
2�e�2 − ���2

�2
��2

2 + �2
2 
T

, h =
2b�2

��2
2 + �2

2
.

�14�

Here �2=Re �2− ��b2−��2�, �2=Im �2+4�e, �2

=���b2−��2−4i�e�2+ �2�b��−4i�e�b�, and

�2=���2+4�e2.
Figure 2 shows the time evolution of the reflection matrix,

r̂�t�, for model, Eq. �13�, with �red/light gray curve� and
without �black curve� spin-orbit coupling. The loops cross
two resonances at the TRIM, corresponding to the topologi-
cally trivial class of pumps, �=0, Eq. �2�. In contrast to the
nontrivial class of pumps, these loops are fixed by a single
point. As a result, they can be contracted to this single point

by a continuous deformation of the starting Hamiltonian
without violating condition �1�. This is manifested at finite
spin-orbit coupling, where the loop avoids the north pole, r̂
=1, while remaining fixed to the south pole, r̂=−1, as illus-
trated in the red/light gray curve. The inset shows the time
dependence of the y component of the rotation axis e���t� and
the angle ��t� for finite spin-orbit coupling. The angle
crosses two resonances, �=
, during a pumping cycle,
which correspond to different values of the vector e���ti� �see
blue circles in the inset�. The resulting reflection matrix
traces two loops, which in the limit � /�0→0 converge to
two different geodesics with nonparallel tangents at the
TRIM, indicated by the arrows, see red/light gray curve in
main figure. Hence, in the presence of a finite spin-orbit cou-
pling, the spin pumped during a cycle is not quantized and
the pump operates with the generation of finite noise.

V. CONCLUSIONS

We have studied the class of one-dimensional pumps with
a time-reversal restriction on the pumping cycle, Eq. �1�.
These systems can be viewed as a mapping of two-
dimensional time-reversal invariant bulk insulators placed on
a cylinder, where t corresponds to a magnetic flux threading
the cylinder. We found that the scattering matrices of the
pumps are dichotomized by the Z2 topological index. We
have shown that the class of pumps characterized by a non-
trivial topological index allows, in contrast with its topologi-
cally trivial counterpart, for the noiseless pumping of quan-
tized spin, even if spin is not conserved. This observation
sheds light on the topological classification of two-
dimensional time-reversal invariant insulators.
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