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We propose the use of entanglement renormalization techniques to study boundary critical phenomena on a
lattice system. The multiscale entanglement renormalization ansatz �MERA�, in its scale invariant version,
offers a very compact approximation to quantum critical ground states. Here we show that, by adding a
boundary to the MERA, an accurate approximation to the ground state of a semi-infinite critical chain with an
open boundary is obtained, from which one can extract boundary scaling operators and their scaling dimen-
sions. As in Wilson’s renormalization-group formulation of the Kondo problem, our construction produces, as
a side result, an effective chain displaying explicit separation of energy scales. We present benchmark results
for the quantum Ising and quantum XX models with free and fixed boundary conditions.
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Recent progress in the understanding of many-body en-
tanglement has lead to novel ways to represent the ground
state of lattice systems. In particular, scale invariant ground
states, corresponding to the fixed points of the renormaliza-
tion group �RG� flow, can be accurately approximated with
the multiscale entanglement renormalization ansatz
�MERA�.1,2 This variational ansatz consists of a set of ten-
sors, known as disentanglers and isometries, that are con-
nected according to a characteristic, self-similar pattern of
layers, see Fig. 1, where each layer corresponds to a different
length scale. Remarkably, the same simple tensor network
�conveniently adapted to the spatial dimensions and geom-
etry of the lattice� can describe a large variety of ground
states by just varying the parameters encoded in the disen-
tanglers and isometries. Indeed, the scale invariant MERA
has been used to describe noncritical RG fixed points of
symmetry-breaking phases and topologically ordered
phases,3 as well as critical RG fixed points, corresponding to
continuous quantum phase transitions.1,2,4–7

In this Rapid Communication, we introduce entanglement
renormalization techniques for the study of boundary critical
phenomena. We propose a MERA with a boundary as an
ansatz for the scale invariant ground state of a semi-infinite
one-dimensional lattice at a quantum critical point. In addi-
tion to the bulk disentangler u and bulk isometry w used to
describe the system in the absence of a boundary, this ansatz
is also characterized by a boundary isometry w⋄, see Fig. 2,
from which the boundary scaling dimensions of the system
can be extracted. The boundary MERA offers a significant
advantage over other numerical methods, such as Wilson’s
numerical RG �NRG� �Ref. 8� and White’s density-matrix
renormalization group,9 which are based on a matrix product
state �MPS�.10 Recall that the presence of an open boundary,
which is felt everywhere in the bulk with a strength that only
decays as a power law of the distance to that boundary, ex-
plicitly breaks translation invariance. As a result, a proper
characterization of boundary critical phenomena requires
simulating large systems with a computational cost that, with
an inhomogeneous MPS, is at least proportional to the sys-
tem size. By exploiting scale invariance, the boundary
MERA can instead address the thermodynamic limit directly,
encoding the ground state in just three tensors �u ,w ,w⋄�.

Bulk MERA. Recall that the scale invariant MERA for an
infinite critical chain without a boundary1,2,4–7 is character-
ized by a unique pair of bulk tensors, namely, a disentangler
u and an isometry w, distributed in layers according to Fig.
1�i�. A layer of disentanglers and isometries defines a real-
space RG transformation that can be used to coarse grain the
original lattice L, producing a sequence of effective lattices
�L ,L� ,L� , . . .�. Under coarse graining, a local operator o
transforms according to the scaling superoperator S, Fig.
1�ii�,

o→
S

o�→
S

o�¯ �1�

A scaling operator �� is a special type of operator that,
under coarse graining, transforms into itself times some scal-
ing factor. The scaling operators �� and scaling dimensions
�� are obtained from the eigenvalue decomposition of the
scaling superoperator S,5,6

S���� = ����, �� � − log3 ��, �2�

where the base 3 of the logarithm reflects the fact that the
coarse-graining transformation maps three sites into one. Re-
call that from the scaling dimensions, which govern the de-
cay of two-point correlators in the bulk, Fig. 1�iii�,

����r����r��� =
1

�r − r��2��
, �3�

one can extract the critical exponents of the model. In fact,
most of the data that characterizes the conformal-field theory
�CFT� �Ref. 11� associated to a critical chain can be extracted
from the scale invariant MERA.6

Boundary MERA. In order to represent the ground state of
a semi-infinite, quantum critical spin chain, we propose to
use the ansatz described in Fig. 2�i�, which is obtained by
adding a boundary, made of copies of a boundary isometry
w⋄, to a section of the scale invariant MERA used for the
bulk. Importantly, the tensors �u ,w� are the same that are
used to describe the bulk in the absence of a boundary. As a
result, the boundary MERA defines a real-space RG transfor-
mation that, off the boundary, is identical to that of the bulk
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MERA, Eq. �1�. However, a local operator o⋄ at the bound-
ary transforms according to the boundary scaling superop-
erator S⋄, that depends only on the isometry w⋄, Fig. 2�ii�,

o⋄→
S⋄

o⋄�→
S⋄

o⋄�¯ �4�

This allows us to identify a new set of scaling operators,
namely, the boundary scaling operators ��

⋄ and correspond-
ing scaling dimensions ��

⋄ , which are obtained from the ei-
genvalue decomposition of S⋄,

S⋄���
⋄� = ��

⋄��
⋄ , ��

⋄ � − log3 ��
⋄ . �5�

As argued in Fig. 2�iii�, a correlator between a boundary
scaling operator ��

⋄ and a bulk scaling operator �� reads

���
⋄�0����r�� 	

C��

r��
⋄+��

. �6�

Recall that in a critical system without a boundary the ex-
pectation value of any scaling operator �other than the iden-
tity I� vanishes, ����r��bulk=0, whereas in the presence of a
boundary the same expectation value decays as a power law
with the distance to the boundary, as described by a bound-
ary CFT �BCFT�.11,12 This characteristic feature of boundary
critical phenomena is readily reproduced by taking ��

⋄ to be
the identity operator I⋄ �with vanishing scaling dimension� in
Eq. �6�,

����r�� 	
C0�

r��
. �7�

Effective lattice. Additional insight into the boundary
MERA is obtained by using the bulk disentanglers and isom-
etries to transform the original critical lattice L into an ef-

fective lattice L̃ by means of an inhomogeneous coarse
graining. Let

H = h⋄�0� + 

r=0

�

h�r,r + 1� �8�

be the Hamiltonian on L, where h⋄ is a boundary term and
h�r ,r+1��h is a �constant� two-site interaction term. The
assumption that H is a fixed-point Hamiltonian implies that h
is a �two-site6� scaling operator with scaling dimension �
=2. Let

K�t,t+1� � 

r=rt

rt+1−1

h�r,r + 1�, rt � �3t − 1�/2 �9�

be an operator that collects the 3t two-site terms h included
in the interval of sites �rt ,rt+1� of L. Then the effective lattice

L̃ with sites labeled by t� �0,1 ,2 , . . . ,��, results from

coarse graining L in such a way that site t� L̃ corresponds
to O�3t� sites of L, see Fig. 3�i�. Under the inhomogeneous
coarse graining, the original Hamiltonian becomes

H̃ = h̃⋄�0,1� + 

t=1

�

	1−th̃�t,t + 1� , �10�

where h̃⋄�0,1� corresponds to h⋄�0�+h�0,1� in Eq. �8�, 	 is
just the scaling factor �	=3� and the two-site term

	1−th̃�t , t+1� results from coarse graining K�t,t+1�. For in-

stance, h̃�1,2� comes from coarse graining K�1,2��h�1,2�
+h�2,3�+h�3,4� as in Fig. 3�ii�; the term 3−1h̃�2,3� comes
from coarse graining K�2,3� into 3−1K�1,2�, Fig. 3�iii�, and then

K�1,2� into h̃ as before; more generally, K�t,t+1� is first coarse

grained into 31−tK�1,2� and then K�1,2� again into h̃. To under-

FIG. 1. �Color online� �i� Scale invariant MERA, as character-
ized by a bulk disentangler u and bulk isometry w. �ii� Scaling
superoperator S for one-site local operators o, in terms of the bulk
isometry w. �iii� Computation of a two-point correlator
����r����r��� for a scaling operator �� and selected sites r and r�,
Eq. �3�. After log3��r−r��� coarse-graining transformations, the two
copies of �� become nearest neighbors and fuse into the identity
with unit amplitude �by normalization of ���. Each coarse-graining
step multiplies �� by 3−��, resulting in a power-law decay �see Ref.
6 for details�.

FIG. 2. �Color online� �i� Scale invariant MERA with a bound-
ary, as characterized by the bulk tensors u and w of Fig. 1 and a
boundary isometry w⋄. �ii� Scaling superoperator S⋄ for boundary
operators o⋄, in terms of the boundary isometry w⋄. �iii� Computa-
tion of a two-point correlator ���

⋄�0����r�� for a boundary scaling
operator ��

⋄ and a bulk scaling operator ��, Eq. �6�, with r= �3t+1

−1� /2. After t	 log3�r� coarse-graining transformations, ��
⋄ and ��

become nearest neighbors and fuse into the identity with amplitude
C0�.
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stand the origin of the scaling factor 3−t, we notice that under
coarse graining in the bulk, K�t,t+1� �made of 3t terms h�
becomes proportional to K�t−1,t� �made of 3t−1 terms h�,

K�t,t+1�→
RG

3−1K�t−1,t�, �t 
 1� , �11�

where the factor 3−1=3−2�3 is due to the scaling dimension
�=2 of h �factor 3−�=3−2� and the fact that each term h in
K�t−1,t� comes from three terms h in K�t,t+1� �factor 3�. Then,
after t−1 iterations of the RG transformation, K�t,t+1� indeed
becomes

K�t,t+1�→
RG

31−tK�1,2�, �t � 1� . �12�

The Hamiltonian H̃ in Eq. �10� describes a semi-infinite
chain of sites that interact with nearest neighbors with the

same interaction term h̃, which is multiplied by a factor 	1−t

decreasing exponentially fast with the distance to the bound-
ary. Importantly, in spite of the boundary at t=0, the ground

state of H̃ can be well approximated with a homogeneous
MPS, obtained by connecting together copies of the bound-
ary isometry w⋄, Figs. 3�iii–iv�. Moreover, the boundary
scaling dimensions ��

⋄ , which characterize polynomial de-
cays of correlations in L, describe exponential decays of

correlations in L̃,

���
⋄�t���

⋄�t��� 	 e−��
⋄ �t−t��, �13�

thus extending the interpretation of the MERA as a lattice
realization of the holographic principle, as reported in Ref.
13.

The effective Hamiltonian H̃ is of the form derived by
Wilson as part of his resolution of the Kondo problem.8 No-
tice, however, that while Wilson’s derivation was for free
fermions and the limit 	→1 was eventually taken, here we
started with a generic critical Hamiltonian and 	 remains
fixed at 	=3. In a recent paper,14 Okunishi proposed an
interesting generalization of Wilson’s NRG approach that
also considered a generic critical Hamiltonian, although the
scale 	
1 in Eq. �10� was simply introduced “by hand” as
a regulator of the gapless spectrum and made very close to 1
�e.g., 	=1.02� to avoid an “undesired perturbation” in its

degeneracy structure and h̃ was chosen to be simply equal to
h.

Examples. To demonstrate the validity of the boundary
MERA as an ansatz for boundary critical ground states, we
analyze the critical quantum Ising and quantum XX models
on a semi-infinite chain,

HIsing = 
X�0� − 

r=0

�

�X�r�X�r + 1� + Z�r + 1�� ,

HXX = 
X�0� + 
r=0

�
�X�r�X�r + 1� + Y�r�Y�r + 1�� ,

�14�

where X, Y, and Z are the Pauli matrices and the constant 

determines whether the system has free BC �
=0� or fixed
BC �
= �1�. For each model, bulk tensors u and w are first
computed using the energy minimization algorithm for the
scale invariant MERA discussed in Refs. 6 and 15. Then, for
each choice of 
, H is coarse grained into the effective

Hamiltonian H̃ of Eq. �10� and the boundary isometry w⋄ is
obtained with a simplified version �replacing the MERA with
an MPS� of the same energy minimization algorithm.16 Fig-
ure 4 displays the expectation value �Z�r�� for the Ising
model with both free and fixed BC and shows that the
boundary MERA faithfully reproduces the scaling of observ-
ables in the presence of a boundary, in spite of the fact that
the ansatz uses, arbitrarily close to the boundary, bulk tensors
u and w that have been optimized in the absence of a bound-
ary. Figure 5 shows some boundary scaling dimensions ��

⋄

obtained by diagonalizing the boundary scaling superopera-
tor S⋄, Eq. �5�. They appear organized according to the con-
formal towers of primary fields, as predicted by BCFT.11

These scaling dimensions are remarkably accurate; for the
Ising model the smallest scaling dimensions ���

⋄ �3� are re-
produced with less than 0.2% error while for the quantum
XX model ���

⋄ �2.5� the error is less than 0.4%.
In summary, we have proposed and demonstrated the use

of entanglement renormalization techniques to study bound-
ary critical phenomena. The boundary MERA, encoded in
just three tensors �u ,w ,w⋄�, naturally reproduces the expec-
tation value of bulk scaling operators in the presence of a
boundary, Eq. �7�, while also yielding accurate boundary

FIG. 3. �Color online� �i� The effective lattice L̃ is obtained by
coarse graining L in an inhomogeneous way. Hamiltonian term

K�t,t+1� involving 3t sites in L becomes the term 31−th̃�t , t+1� on L̃.

�ii� Definition of h̃�1,2� in terms of K�1,2�, u, and w. �iii� Applying
one layer of coarse graining to K�2,3� produces 3−1K�1,2�. �iv� Copies

of w⋄ are used to describe the ground state of H̃, Eq. �10�. �v� The
boundary of the MERA can be regarded as a homogeneous MPS on

L̃.
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scaling dimensions, Eq. �5�. Moreover, the success of this
ansatz, which accepts a holographic interpretation,13 unveils
a surprisingly simple relation between the structure of
ground-state wave function of critical spin chains with and
without a boundary since the same bulk tensors �u ,w� are
used in both cases.

The present construction, based only on scale invariance,
can be readily generalized to study two-dimensional lattice

systems with open boundaries, as well as to study systems
with local defects and interfaces between different critical
systems. By considering a different boundary isometry at
each level of coarse graining, it is also possible to study
boundary RG flows �e.g., from free BC to fixed BC�. Finally,
our results provide a numerical route to boundary conformal-
field theory12 that may find applications in areas ranging
from condensed-matter physics �boundary critical behaviors
and quantum impurity problems� to string theory �open
strings and D-branes�.
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quantum XX models with free and fixed BC. The boundary MERA
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formal tower.

EVENBLY et al. PHYSICAL REVIEW B 82, 161107�R� �2010�

RAPID COMMUNICATIONS

161107-4

http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.100.070404
http://dx.doi.org/10.1103/PhysRevB.79.195123
http://dx.doi.org/10.1103/PhysRevB.79.195123
http://dx.doi.org/10.1103/PhysRevB.81.235102
http://dx.doi.org/10.1088/1367-2630/12/2/025007
http://dx.doi.org/10.1088/1367-2630/12/2/025007
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://dx.doi.org/10.1103/PhysRevB.80.113103
http://dx.doi.org/10.1103/PhysRevB.80.113103
http://dx.doi.org/10.1103/PhysRevA.79.052314
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1016/0550-3213(86)90596-1
http://arXiv.org/abs/arXiv:0905.1317
http://dx.doi.org/10.1143/JPSJ.76.063001
http://dx.doi.org/10.1103/PhysRevB.79.144108

