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Conductivity in a disordered one-dimensional system of interacting fermions
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Dynamical conductivity in a disordered one-dimensional model of interacting fermions is studied numeri-
cally at high temperatures and in the weak-interaction regime in order to find a signature of many-body
localization and vanishing dc transport coefficients. On the contrary, we find in the regime of moderately strong
local disorder that the dc conductivity oy scales linearly with the interaction strength while being exponentially
dependent on the disorder. According to the behavior of the charge stiffness evaluated at the fixed number of
particles, the absence of the many-body localization seems related to an increase in the effective localization

length with the interaction.
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The interplay of correlations and disorder in fermionic
systems is one of the challenging open questions in the solid-
state physics. The phenomenon of Anderson localization of
single-electron eigenstates' is by now well understood in
systems of noninteracting (NI) fermions. In particular, in
one-dimensional (1D) systems all states become localized?
for arbitrary small disorder® and hence there is no dc linear
transport response at any temperature 7=0. However, it had
been long ago realized* that correlations among electrons as
introduced via Coulomb electron-electron repulsion could
qualitatively change transport properties of the system.

So far, firm results and conclusions have been reached for
the 7=0 ground state of 1D tight-binding fermionic system
with a diagonal Anderson disorder. In particular, it has been
shown by the density-matrix renormalization-group (DMRG)
numerical studies™® that in spite of correlations the many-
body (MB) states remain localized, preventing the dc trans-
port. The 7> 0 behavior appears to be much harder to deal
with”® and, at present, the existence of MB localization be-
yond the ground state is controversial.”

Since a finite-temperature phase transition'®!! between
the MB insulator at T<<T™ and a conductor at 7> T* implies
a qualitative change in character of MB states across the
eigenspectrum'! it is as relevant and highly nontrivial to
study systems at high 7— .12 In this context, recent studies
of energy-level statistics,'? the effective hopping in the con-
figuration space'? and the decay of correlation functions'*
indicate a possible MB localization at very large disorder
strength W.'3 The conclusions from the scaling analysis of
the conductivity of such models appear similar,'’ as well as
the time evolution and the entanglement of wave functions is
concerned.'®

On the other hand, recent direct numerical evaluation of
the 7>0 transport coefficients in disordered anisotropic
XXZ model'” (model being equivalent in 1D to a tight-
binding fermionic system with nearest-neighbor interaction)
does not show any indication of a crossover to a MB local-
ization at low T or at larger W. This questions the conductor-
insulator phase diagram and the relation to above mentioned
studies.

Our aim is to extend previous numerical study'” of trans-
port properties of the 1D disordered system, modeled by the
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t-V model of spinless fermions, in order to explore the phase
diagram at high 7" with respect to the dc conductivity oy. In
contrast to most previous works, in which the interaction
strength A=V/(2¢) has been mainly kept fixed and possible
MB localization has been considered at large disorder values
W, we start with a disordered system of NI electrons
(A=0), characterized by the vanishing dc transport at all T,
i.e., 0p=0. By increasing gradually, at fixed W, the repulsive
interaction A>0 we monitor a possible conductor-insulator
transition in o. Dealing with a finite-size system, instead of
a singular behavior we expect that the conductor-insulator
transition should manifest itself as a crossover in o vs A.
This crossover can be then used as a signature of a qualita-
tive (gradual or abrupt) change in MB states with respect to
the dc transport in the thermodynamic limit 7'— .

As the prototype model for the interplay of correlations
and disorder we study the disordered 1D #-V model. The
Hamiltonian represents a tight-binding band of spinless fer-
mions on a chain, the repulsion occurs between nearest
neighbors while the disorder is in site energies,

H=—t2 (C;!-+1Ci+H.C.)+VE ni+]n[+2 EN;. (1)

By choosing site energies randomly in the interval
-W<¢&<W, we obtain in the NI limit V=0 the Anderson-
localization model. In order to avoid the interaction-induced
Mott-type insulator at A=V/(2¢) > 1, we restrict our study to
the regime A <1 [note that for A=1 the model (1) can be
mapped on the isotropic Heisenberg model in a random
field]. We assume the chain with periodic boundary condi-
tions and L sites. Furthermore, t=1 is used as the unit of
energy.

To probe transport response we evaluate the dynamical
conductivity o(w),

1—-e @7 e
o(w) = —Ref dte™(j(t)) (2)

oL 0
with the current operator
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We adopt the view that possible conductor-insulator transi-
tion needs to be a manifestation of the character of MB quan-
tum states'>!>1® (hence not directly related to other thermo-
dynamic quantities). Therefore one may as well restrict the
study to the regime T—o, S—0, where, unlike for low
temperatures when only the bottom of the spectrum is impor-
tant, all MB states contribute with equal weight to o(w),
including those in the middle of the spectrum which appar-
ently have the lowest chance to be localized. In this limit, the
relevant (and nontrivial) quantity is (w)=To(w).

o(w) is calculated by employing the microcanonical-
Lanczos method (MCLM),'”!3 particularly suited for dy-
namical quantities at elevated 7. In the following we present
results for systems with L=16-24 sites and for generic cases
of half filling and quarter filling n=N,/L=1/2,1/4, respec-
tively. A sampling over N,~ 100 random ¢; configurations is
made to obtain the relevant average response.

Finite-size effects should not affect significantly our
analysis in both, the energy and space domains. Concerning
the space domain, we focus on disorder parameters W for
which the Nl-electron localization length &, is much shorter
than the size of the system, & <<L. One may use the estimate
(for V=0) &~28.5/W? which for W=2-4 gives &=7
—1.8<<L. Moreover, the T=0 DMRG calculations show that
the interaction reduces the localization length & compared
with the NI case, whereby & exhibits the power-law behavior
in W with an interaction-dependent exponent.’

The energy resolution of our spectra is much smaller than
the average level spacing associated with the largest
system size L=24 studied. Approximate eigenfunctions
corresponding to 77— limit are converged in M;~ 2000
Lanczos steps, providing the energy resolution of OF
~0.004 (for L=24). In the next step, M,~4000 Lanczos
iterations are used to evaluate (w), leading to an estimation
of the final frequency resolution dw~0.005. Since for the
largest L=24 the studied sector contains N,,~2X 10° MB
states, the average level spacing AE~ 107 < Sw, so the dis-
creteness of the exact eigenspectrum due to finite-system size
plays practically no role in our results.

In Fig. 1 we present typical high-T spectra for &(w),
showing different W=1.5,2,3,4 for fixed A=0.5. Since we
deal with a substantial disorder, &(w) are essentially different
from the weak-scattering Drude-type form. Curves in Fig. 1
reveal maxima at w,,>0. This is well pronounced in the
inset of Fig. 1, where w,, is plotted vs W. w,,=0 only for a
weak disorder W< 1, when o(w) is closer to Drude form.
While the optical sum rule is for 7T— o independent of W
and A,V

c _ T 2 -
J; o-(w)dw—zL(j Y=mtn(1 -n), (4)

the dc value 7,,=a(0), being the central quantity studied fur-
ther on, shows a pronounced variation with W.

In Figs. 2(a) and 2(b) the emphasis is given to the low-w
window, which is relevant for the extraction of the
dc value G, W=2 spectra for the n=1/2 case are smoothed
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FIG. 1. (Color online) Dynamical high-T conductivity ¢(w) for
A=0.5 and different disorders W=1.5,2,3,4 evaluated for a half-
filled system n=1/2 and L=24 sites. Inset: the position w,, of
maxima of o(w) as a function of W.

with an w-dependent damping %= 7y+ (77.,— 77,)tanh?*(w/ w,),
70=0.002 < dw, 7,=0.02, and w;=0.2. Such a damping,
used hereafter, preserves the sensitivity for lowest w— 0 fre-
quencies while smoothing configuration-dependent fluctua-
tions (most pronounced at A—0) at higher w.

As argued above for & <L cases, Fig. 2(a) confirms the
absence of any evident L dependence (at least for A=0.5).
One can make an additional observation that, unlike for
A=0.5, the fluctuations of o(w) even at low frequencies re-
main substantial for the NI case A=0. One finds that these
fluctuations diminish with the increase in the sampling N,
over random-disorder configurations, indicating that the re-
pulsive interaction A >0 suppresses the sensitivity to the par-
ticular disorder configuration. In addition, A=0.5 case in Fig.
2(a) reveals a remarkable linearity, (w)~ &+ ajw|, being
apparently generic'’ for all A>0.

By varying A=0-0.5, the role of the interaction on the
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FIG. 2. (Color online) Low-w part of a(w) for n=1/2: (a)

A=0,0.5, disorder W=2, and different L=16,20,24 and (b) W=3,
L=24, and different A=0-0.5.
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FIG. 3. (Color online) dc conductivity & vs A for half filling
n=1/2 and different W=2,3,4. Dashed lines for A <0.1 are inter-
polations to the theoretically known value Gy(A=0)=0.

MB localization is investigated in Fig. 2(b). Results are
given for fixed disorder W=3, L=24, and n=1/2. Again, the
remarkable linearity &(w) at low @ may be observed being
very reproducible for A >0.1 in spite of very small dc values
0, involved. Even more important, there is no signature of a
presumable qualitative change in &(w) (at least for A>0.1),
which would point to the crossover for finite A from the MB
localization, present at A=0, to a conducting regime ,=>0.

Based on the same numerical analysis of &(w) used for
Figs. 2(a) and 2(b), in Fig. 3 we show the extracted dc values
0y vs A. To suppress the effects of the configuration-
fluctuating component of &(w) as much as possible, @ is
evaluated from a linear fit of (w) in the frequency interval
w<0.1. 0y calculated in this way are given by symbols for
W=2,3,4, respectively. For A <0.1, dashed lines are used in
Fig. 3 to interpolate o to the theoretical value 6)=0 of the
NI A—0 limit.

Results in Fig. 3 are central to this work. In spite of small
values of Gy, in particular, for the W=4 case, the extracted 7
show very consistent behavior. Namely, it is quite evident
that in the interval W=2-4 we do not find any signature of
possible crossover in the behavior &, vs A, which could be
interpreted as the onset of the MB localization for
A<A.W). In fact, the simplest dependence oy A seems
to represent well our results in the investigated regime
2=W=4.

Since the possible MB localization at A>0 should be
more plausible at lower doping, where the condition
&<l1/n is stronger, we investigate the quarter-filling case
n=1/4 as well. Results for &, vs A are, however, even quan-
titatively similar to the n=1/2 case, although, as expected,
somewhat smaller values of &, are obtained.

As presented in Fig. 4, it is instructive to follow the de-
pendence of the dc value &) as function of the disorder W.
We investigate the A=0.5 case for two fillings, n=1/2,1/4,
and the data for W=1,1.5 are included. It is evident
from Fig. 4 that the dependence is exponential, i.e.,
gy~aexp(-bW), with b=1.7,2 for n=1/2,1/4,
respectively.

Figure 4 gives also a clear limitation to our numerical
approach in the regime W> 1. Since the low-w slope a of
o(w) shows weaker dependence on W (aec 1/W from Fig. 1),
a reliable evaluation of 0\ requires a very high resolution
ow<<1. The latter is determined in our MCLM method by
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FIG. 4. (Color online) d, vs W for A=0.5 and fillings
n=1/2,1/4.

M,,M, Lanczos steps but in the final stage also by the MB
level density and the average MB level spacing AE>1/N,,
cexp(—¢L). The reason for this is that macroscopic results
for the transport become plausibly relevant (for A>0 case)
only if dw> AE.

The above results show that a weak repulsive interaction
in 1D disordered tight-binding systems is capable of destroy-
ing the phenomena of MB localization. At the present stage
of investigations, we do not have a clear analytical or phe-
nomenological explanation for this property. However, we
have so far discussed cases by keeping the fermion density n
fixed. On the other hand, one can investigate the behavior of
the MB states by fixing the number of fermions N, while
changing the system size L. Several such studies have been
reported,'® suggesting that the two-particle localization
length ¢ in the presence of interaction becomes enhanced in
comparison with the single-particle case. Because the con-
text investigated has been rather different, we study here this
effect from the quantity directly relevant to the coherent
charge transport, i.e., from the charge stiffness D. For T>0,
D is defined by?°

D=2 el ©

n

As before, we are focused on the high-7 regime 8— 0, when
all the levels are probed, Z=N,,. In the absence of disorder

and for finite A>0, d=2LTD/ N, remains finite because of
the integrability of the model.?® With disorder switched on

and N, fixed, one expects an exponential suppression of d

with the increase in the system size L, d*exp(~L/¢). Fur-
thermore, for the particular case of NI fermions & should be
independent of N,, i.e., é=§), with &, denoting the single-
fermion localization length.

Since for the localized phase (e.g., for V>0 and 7=0) the
stiffness d is distributed for different realizations of the dis-
order according to the log-normal distribution,’ we present in
Fig. 5 the average d=exp({In d)) vs L, with N,=2, A=1, and
various W=0—4. d is obtained by the full diagonalization
(for N,=2, N,,«L?). It is evident from the figure that, for

larger disorders, W=2, d decays exponentially with L,
which is consistent with the MB localization in the n—0
limit. On the other hand, it is remarkable that the interaction
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FIG. 5. (Color online) Logarithm of the rescaled charge stiffness
d vs L for N,=1,2, A=1, and various W=0-4.

A=1 increases d at large L. It seems from Fig. 5 that a
crossover between the €< &, and &> &, behaviors occurs for
W=2 and L*~40. For strong disorder W=3,4, the cross-
over appears already at L*~ 10. These results suggest that
the increase in & due to interaction may be an argument for
the elimination of the MB localization at high 7 for finite
fermion densities n=1/4,1/2 discussed in this work.

In conclusion, our numerical results reveal a steady and
uniform increase in &, with the repulsive interaction A>0 at
high T and at fixed disorder W, which does not support a
possible MB localization at A>0 in the considered regime.
In order to put our results in broader context, let us comment
the relation to other works. Authors advocating a finite-7T
insulator-conductor transition'! give an estimate for the tran-
sition temperature 7% o 1/(NéN In \), where N is the (single-
particle) density of states and \ a characteristic matrix ele-
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ment for the electron-hole pair creation. For high 7>1 and
weak interaction A<<1 one may translate the estimate'? to a
critical A*oc N oc 1/(NE;). Hence, for larger W>2 we are in
the regime where at least some crossover should be observed
for A~ A*>0. Still, we do not observe any clear sign of the
latter, at least it is not evident enough.

On the other hand, some recent numerical studies using
different criteria, seem to point to the possible conductor-
insulator transition and the MB localization at high T at
much larger W, essentially within the same model with typi-
cally fixed interaction A~ 1.'3-!5 Translating the definitions
of disorder W, their estimates for the onset of localization
would be W>W*~6-10, consistent with the observed
qualitative change in the level statistics.!> It should be ob-
served that such cases correspond to extreme disorder, which
would require within our (or an analogous) approach the ob-
servation (see Fig. 4) of &,<107*. The corresponding reso-
lution Sw<107* and large MB density of states leading to
AExLW/N,< dw may be in principle obtained, e.g., by the
full diagonalization for large enough L. However, the latter is
not reachable by up-to-date numerical methods. Hence, we
cannot exclude such a scenario for the onset of the MB lo-
calization at W>W" but on the other hand, such extreme
disorder would also put limits to its theoretical as well as
experimental verification and relevance.
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