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We investigate the Mott transition in the anisotropic kagome lattice Hubbard model using the cellular
dynamical mean-field theory combined with continuous-time quantum Monte Carlo simulations. By calculat-
ing the double occupancy and the density of states, we determine the interaction strength of the first-order Mott
transition and show that it becomes small as the anisotropy increases. We also calculate the spin-correlation
functions and the single-particle spectrum, and reveal that the quasiparticle and magnetic properties change
dramatically around the Mott transition; the spin correlations are strongly enhanced and the quasiparticle bands
are deformed. We conclude that such dramatic changes are due to the enhancement of anisotropy associated
with the relaxation of frustration around the Mott transition.
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Geometrically frustrated electron systems have provided
hot topics in the field of strongly correlated electron systems
and have uncovered various new aspects of the Mott transi-
tion. The discovery of heavy-fermion behavior in LiV2O4
�Refs. 1 and 2� with pyrochlore lattice structure has activated
theoretical studies of electron correlations with geometrical
frustration.3–6 More remarkably, recent experiments on the
triangular lattice organic materials �-�BEDT-TTF�2X have
revealed a spin-liquid ground state in the Mott insulating
phase.7–11

The kagome lattice is another prototype of frustrated sys-
tems, which shares some essential properties with other frus-
trated lattices. The localized electron systems on this lattice
have been intensively studied and many unusual properties
have been found.12 In particular, a spin-liquid state observed
in the herbertsmithite ZnCu3�OH�6Cl2 with kagome lattice
structure13,14 has received considerable attention. A related
spinel oxide Na4Ir3O8 with hyperkagome structure, which is
a three-dimensional analog of kagome lattice, is also pro-
posed as a candidate for the spin liquid.15,16 The issue of
electron correlations on the kagome lattice was addressed by
applying the fluctuation exchange �FLEX� approximation17

and the quantum Monte Carlo �QMC� method18 to the Hub-
bard model. Also in our recent study, we found a heavy
Fermi-liquid state emerging in a metallic phase near the Mott
transition by using the cellular dynamical mean-field theory
�CDMFT�.19 Furthermore, an idea of chirality-spin separa-
tion was proposed to explain low-energy characteristic
properties.20 In spite of such intensive theoretical investiga-
tions, however, the effects of spatial anisotropy have not yet
been addressed. The systematic exploration of the anisotropy
is desired to elucidate how the frustration affects the nature
of Mott transition, the quasiparticle formation, the magnetic
properties, etc. It has indeed been clarified that in a moder-
ately frustrated system on the anisotropic triangular lattice,
the Mott transition shows a reentrant behavior,9,21,22 where
the low-temperature transition is governed by the enhanced
antiferromagnetic �AFM� correlations. This is a unique fea-
ture that may occur neither in the unfrustrated square
lattice23 nor in the fully frustrated triangular lattice.24 This
naturally motivates us to study the effects of frustration on

the Mott transition by systematically controlling the spatial
anisotropy.

In this Rapid Communication, we study the Mott transi-
tion in the Hubbard model on the anisotropic kagome lattice
by means of CDMFT �Ref. 25� combined with the
continuous-time QMC �CT-QMC� method.26 We first treat
the isotropic system to confirm our previous results studied
with a slightly different method.19 As the anisotropy is intro-
duced, electronic properties drastically change around the
Mott transition; the spin correlations are strongly enhanced
and the quasiparticle bands are deformed substantially even
if the system is slightly away from the isotropic point. We
elucidate that such dramatic changes are due to the enhance-
ment of anisotropy driven by the relaxation of frustration
around the Mott transition.

We consider the Hubbard model on the anisotropic
kagome lattice. Here, we set the lattice geometry as a square
form, where the first Brillouin zone is −��kx ,ky ��.17 The
Hamiltonian reads

H = − t �
�i,j�,�

ci�
† cj� − t� �

�i,j�,�
ci�

† cj� + U�
i

ni↑ni↓, �1�

where ci�
† �cj�� creates �annihilates� an electron with spin �

at site i and ni�=ci�
† ci�. The hopping integrals and the Hub-

bard interaction are denoted by t �t�� and U, respectively.
The system corresponds to the fully frustrated kagome lattice
at t� / t=1, and frustration becomes weaker with decreasing
t� / t. The end member at t� / t=0 is called a decorated square
lattice or Lieb27 lattice. We choose the energy unit as t=1
hereafter. To investigate strong correlations and geometrical
effects, we use CDMFT,25 a cluster extension of DMFT.28

CDMFT has been successfully applied to a lot of frustrated
electron systems so far.19–22,24,29,30

In CDMFT, the original lattice problem is mapped onto an
effective cluster problem. Each unit cell of the anisotropic
kagome lattice has three sites. We thus end up with a three-
site cluster model coupled to a self-consistently determined
medium. Note that in the isotropic kagome lattice Hubbard
model, the cluster size dependence has been discussed and
the results for the three-site cluster CDMFT are in very good
agreement with those for the larger cluster �nine site�

PHYSICAL REVIEW B 82, 161101�R� �2010�

RAPID COMMUNICATIONS

1098-0121/2010/82�16�/161101�4� ©2010 The American Physical Society161101-1

http://dx.doi.org/10.1103/PhysRevB.82.161101


CDMFT.20 Given the Green’s function for the effective me-

dium, Ĝ, we compute the cluster Green’s function Ĝ and the

cluster self-energy �̂ in the effective cluster model, where Ô

denotes a 3�3 matrix. To calculate Ĝ and �̂ in the effective
cluster model, we use the hybridization-expansion CT-QMC
method.26 In this method, a sign problem can appear even in
the half-filled model on the bipartite clusters. The sign prob-
lem strongly depends on the choice of basis set in the local
Hamiltonian. We choose the basis set which diagonalizes the
local hopping matrix t̂loc written in the sublattice basis,

t̂loc = �0 t t

t 0 t�

t t� 0
� . �2�

We find that this choice substantially reduces the sign prob-
lem in QMC simulations. By using this basis set, the QMC
samples which shows a minus sign is reduced to less than
1% of the total QMC samples for the isotropic kagome lat-
tice and for t�=0.6, it is at most 35%. We iterate the DMFT
self-consistent loop until the convergence of this procedure is
achieved within 50 iterations at most. In each iteration, we
typically use 2.5�107 QMC sweeps to reach sufficient com-
putational accuracy at very low temperature, T=0.05.

Let us now investigate the Mott transition on the aniso-
tropic kagome lattice at half filling. In order to find evidence
of the Mott transition, we calculate the U dependence of the
double occupancy Docc.=

1
3�m=1

3 �nm↑nm↓� for various t�. The
double occupancy monotonically decreases with increasing
U and shows a discontinuous jump at the interaction Uc, as
shown in Fig. 1. We also find hysteresis, which signals the
emergence of the first-order Mott transition. In the isotropic
kagome system for t�=1.0, the Mott transition occurs at
fairly large interaction strength Uc�8.4 compared with the
bandwidth W=6. This is consistent with our previous study
using CDMFT combined with Hirsch-Fye QMC.19 In aniso-
tropic cases, the interaction strength Uc becomes small as t�
decreases. The location of the critical end points is roughly
estimated as �U ,T���8.1,0.08�, �7.2,0.08�, and �6.0,0.05�
for t�=1.0, 0.8, and 0.6, respectively. Note that the band-
width W / t=4	2�5.66 for t�=0 and the reduction in W is
less than 6%. Therefore, we can say that the metallic region
shrinks as geometrical frustration is weakened.

To see the metal-insulator transition more clearly,

we calculate the density of states �DOS� A���=
− 1

3��m=1
3 Im Gmm��+ i	� by applying the maximum entropy

method �MEM� �Ref. 31� to the imaginary-time QMC data.
In Fig. 2, we show the DOS for t�=1.0, 0.8, and 0.6. We
clearly see that the insulating gap opens around the Fermi
level in the large U region beyond Uc. For t�=1.0, the three
bands are strongly renormalized and the heavy quasiparticle
states having a sharp peak in the DOS emerge near the Fermi
level in the strong correlation regime. A similar peak struc-
ture also appears for t�=0.8, 0.6 in the weaker U region than
that for t�=1.0. We note here that MEM generally has a
tendency to amplify errors so that the results obtained should
be carefully analyzed. We have checked that the results of
DOS obtained by MEM are consistent with those estimated
by the double occupancy, etc., so that they may provide
supplementary information for the Mott transition.

Let us now turn to the magnetic correlations. To see how
frustration affects them around the Mott transition, we calcu-
late the nearest-neighbor �NN� spin-correlation function
�Si

zSi+1
z �. We compute �Si

zSi+1
z � in the effective cluster model.

Here, i denotes a sublattice index. The NN bonds 1-2 and 1-3
are connected by the hopping integral t and the other NN
bond 2-3 is connected by t�. In Fig. 3, we show �Si

zSi+1
z � as a

function of U for several t�. In the isotropic case, �S1
zS2

z�,
�S1

zS3
z�, and �S2

zS3
z� are equivalent and have small negative

FIG. 1. �Color online� Double occupancy as a function of inter-
action strength U for several t� at T=0.05.

FIG. 2. �Color online� Density of states for typical U and t� at
T=0.05.

FIG. 3. �Color online� Nearest-neighbor spin-correlation func-
tion �Si

zSi+1
z � as a function of U for several t�, where the suffix i

specifies a sublattice.
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values for any U. This indicates that the AFM spin correla-
tion is suppressed due to the strong frustration. As finite an-
isotropy is introduced �t�=0.9,0.8,0.7,0.6�, the spin correla-
tions dramatically change near the Mott transition; �S1

zS2
z�

and �S1
zS3

z� show strong AFM correlations while �S2
zS3

z� tends
to be ferromagnetic. These behaviors indicate the tendency
to a ferrimagnetic ordering �or an AFM-type ordering on a
decorated square lattice�. We thus find that magnetic proper-
ties in the system are very sensitive to the anisotropy, whose
effect is particularly enhanced in the vicinity of the Mott
transition point.

The relaxation of frustration strongly affects the formation
of quasiparticle bands. We next investigate the momentum-
resolved spectral weight at the Fermi level A�k ,�=0� in the
metallic phase. Using the cluster self-energy, we obtain the
k-dependent Green’s function,

Gmn�k,�� = eik·�rm−rn�
� + 
 − t̂�k� − �̂����mn
−1 �3�

and A�k ,�=0�=− 1
3��m=1

3 Im Gmm�k ,�=0�. Here, we ap-
proximately compute A�k ,�=0� as A�k ,�=0��
− 1

3��m=1
3 Im Gmm�k , i�n→0�. In Fig. 4, we show color plots

of A�k ,�=0�. Also, shown in Figs. 4�c� and 4�f� is the Fermi
surface deduced from the trajectory of their peaks. In the
isotropic case, A�k ,�=0� for U=4.2 has strong intensity at
the Fermi surface and the profile of the Fermi surface is
consistent with that in the noninteracting case. Near the Mott
transition, for U=8.3, the Fermi surface keeps the same
shape as in the noninteracting case, although the quasiparti-
cle peak in A�k ,�� is somewhat obscured at finite tempera-
tures. In contrast, for t�=0.8, the geometry of the Fermi sur-
face changes near the Mott transition. In the weak-coupling

regime, for U=3.65, the Fermi surface has a shape similar to
that in the noninteracting case. As U increases, for U=7.2,
the shape becomes elongated and quite different from that in
the noninteracting case. It is known that the shape of the
noninteracting Fermi surface is elongated along the kx=ky
direction as t� decreases.17 Therefore, we find that the band
structure of quasiparticles becomes much more anisotropic
due to the enhancement of hopping anisotropy, which is in-
duced by the relaxation of frustration. Note that the k depen-
dence of Ak�0� at the Fermi surface in Fig. 4�e� is due to the
contribution of the upper band rather than the central band
which constructs the Fermi surface. Around the Mott transi-
tion, the contribution of the upper band to the spectral weight
at the Fermi surface with the maximum weight near �kx ,ky�
���� , ��� becomes large while the k dependence of the
spectral weight at the Fermi surface of the central band is
small. This induces the k dependence of Ak�0�. This behavior
is consistent with the previous results by the FLEX
approximation.17

In order to confirm the above scenario, we investigate the
renormalization of hopping integrals. In the low-energy
limit, the Green’s function in the effective cluster model may
be given by

Ĝ��� = Ẑ1/2
�� + 
�1̂ − t̂loc
� − �̂�����−1Ẑ1/2, �4�

where t̂loc
� is the matrix representation of the renormalized

hopping integrals defined by t̂loc
� = Ẑ1/2
t̂loc−Re �̂��=0��Ẑ1/2,

where Ẑ= 
1̂−� Re �̂��� /�� ��=0�−1. In t̂loc
� , the original hop-

ping integral t �t�� is renormalized as t→ t� �t�→ t���. The
renormalized hybridization function is defined similarly:

�̂����= Ẑ1/2�̂���Ẑ1/2.
In Fig. 5, we show the U dependence of the ratio of the

renormalized hopping integrals t�� / t�. In the isotropic case,
t�� / t� is always unity due to the symmetry requirement, giv-
ing rise to strong frustration near the Mott transition. For the
anisotropic cases of t� / t=0.9 and 0.8, t�� / t� does not show
any drastic change in the small U region. However, in the
vicinity of the Mott transition, t�� / t� rapidly decreases, im-
plying that the anisotropy in hopping integrals is consider-
ably enhanced there. As a result, geometrical frustration be-
comes weak. In other words, strong frustration developed in
the nearly isotropic models triggers the strong renormaliza-
tion of anisotropic hopping in the vicinity of the Mott tran-

FIG. 4. �Color online� Momentum-resolved spectral weight at
the Fermi level. In �c� and �f�, we show the Fermi surfaces deduced
from �b� and �e� together with those for the noninteracting case for
reference.

FIG. 5. �Color online� Ratio of the effective hopping integrals
t�� and t� as a function of U in the metallic phase.
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sition. The enhanced anisotropy deforms the band structures
and develops the spin correlations. We thus conclude that the
origin of the dramatic changes found around the Mott tran-
sition is the enhancement of anisotropy in the hopping inte-
gral associated with the relaxation of frustration. We note
that the above mechanism for relaxation of frustration may
be generic for frustrated electron systems in the vicinity of
the Mott transition. For example, the reentrant Mott transi-
tion found for the anisotropic triangular lattice compound9

may be caused by the above mechanism. Namely, if the lat-
tice anisotropy is weak, a metallic state near the Mott tran-
sition keeps the isotropic nature approximately in the weak-
coupling regime �high temperature� and thus behaves as a
fully frustrated model. However, as the temperature is low-
ered, the system enters the strong-coupling regime, where
the anisotropy is enhanced and the AFM correlations are de-
veloped. This may trigger the reentrant Mott transition where
the low-temperature Mott phase is accompanied by enhanced
AFM correlations.

In summary, we have studied the Mott transition in the

Hubbard model on the anisotropic kagome lattice by means
of the CDMFT combined with CT-QMC. For anisotropic lat-
tice systems, we have found that the quasiparticle and mag-
netic properties drastically change around the Mott transi-
tion; the spin correlations get strongly enhanced and the
quasiparticle bands are deformed. It has been elucidated that
these behaviors are due to the relaxation of frustration caused
by the enhancement of anisotropy around the Mott transition.
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