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The density of states near zero energy in a graphene due to strong point defects with random positions are
computed. Instead of focusing on density of states directly, we analyze eigenfunctions of inverse T matrix in
the unitary limit. Based on numerical simulations, we find that the squared magnitudes of eigenfunctions for
the inverse T matrix show random-walk behavior on defect positions. As a result, squared magnitudes of
eigenfunctions have equal a priori probabilities, which further implies that the density of states is characterized
by the well-known Thomas-Porter-type distribution. The numerical findings of Thomas-Porter-type distribution
are further derived in the saddle-point limit of the corresponding replica field theory of inverse T matrix.
Furthermore, the influences of the Thomas-Porter distribution on magnetic and transport properties of a
graphene, due to its divergence near zero energy, are also examined.
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I. INTRODUCTION

Recently, the isolation of single-layer graphene1 has re-
vived much interest in studying two-dimensional �2D� Dirac
fermions. One of the peculiar properties associated with 2D
Dirac fermions is the unusual electronic properties in the
presence of defects and disorders. In the context of cuprate
superconductors, where quasiparticles are also 2D Dirac fer-
mions, disorders have masked the d-wave nature and hin-
dered its discovery. It was later realized that point defects
may change the density of states �DOS� near the Dirac point
and strong point defects may even induce quasilocalized
states or magnetic moments near zero energy in d-wave
superconductors.2 In the case of graphene, it is found that
there is finite density of states due to weak disorders.3 For
strong disorders, it was observed that ferromagnetic state can
be induced by bombarding a graphite with protons.4 The in-
duced magnetism is further confirmed to be resulted from �
electrons.5 This fact, together with recent observation of fer-
romagnetism in disordered graphene,6,7 shows that graphene
with defects could become ferromagnetic. In addition to
magnetism, graphene also reveals anomalous transport prop-
erties in the presence of strong disorders, where in the pres-
ence of vacancies, instead of decreasing, the conductivity is
found to increase.8 These observations clearly indicates that
in the presence of strong disorders, 2D Dirac fermions may
behave very differently from what is expected for clean or
weak disordered graphene.

Experimentally, there are many possible forms of disor-
ders in graphene.9 For large defects such as cracks, they
tend to contain the so-called zigzag edges, where local-
ized states would appear near the edge10 and induce
magnetic behavior.11 In this case, magnetic moments arise
from localized states and interact via Ruderman-Kittel-
Kasuya-Yosida interaction, which tends to make graphene
antiferromagnetic.12 Hence the most possible candidates for
the observed ferromagnetism in graphene are defects of
small sizes or simply point defects. Here the simplest point

defects are single-atom vacancies or hydrogen chemisorption
defects. These kinds of defects generally create complicated
disturbances in graphene and may even form ordered
structures.13 However, for low density of quenched defects,
they can be simulated by a large potential u on a lattice point
without distortion of nearby lattice points.14

Theoretically, extensive studies on a single defect have
been performed on d-wave superconductors.2 It is known
that a zero-energy electronic state would arise near a point
defect with u→� or a circular disk in a 2D Dirac
Hamiltonian.15 Furthermore, the electronic wave function is
semilocalized with amplitude decaying as 1 /r at large dis-
tance r.2,15,16 The semilocalized behavior is clearly revealed
in the observed scanning tunnel microscope images of long-
range ��3��3�R30° superstructure in graphene.17,18 For fi-
nite density of defects, one expects that semilocalized elec-
trons interact strongly and may form an impurity band.2,19

Nonetheless, conflicting results based on either perturbative
or nonperturbative approaches are reported.2 The residual
DOS near zero energy is predicted to be either finite,20

infinite,21,22 or vanishing with different power laws in
energy.2 This issue remains unsolved.

While quasiparticles in both cuprate superconductors and
graphenes are 2D Dirac fermions, the situation is quite dif-
ferent for graphene. For neutral graphene, even though exci-
tonic effects are expected to be large,23 for low energies and
large distances, the screened Coulomb interaction is shown
be long ranged24 with renormalized dielectric constant. Fur-
thermore, the electron itself is the quasiparticle and carries a
definite charge. These differences make graphene behave to-
tally different from that of cuprate superconductors in the
strong disorders. In particular, without being masked by su-
perconductivity, direct manifestation of the impurity band is
possible in graphene. Therefore, investigation on graphene
with strong defects would provide a unique opportunity to
clarify the issue of DOS near zero energy for 2D Dirac fer-
mions with strong disorders. This is recently pointed out in
Ref. 19. In that paper, the wave function for finite density of
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defects is constructed. By using the wave function for two
defects, it is shown that ferromagnetic state is favored
for large distances between two defects. However, for
finite density of defects, the problem of finding DOS is
mapped to an equivalent problem of finding the DOS of a
random matrix. One has to assume that the matrix elements
are independent random numbers to demonstrate the induced
ferromagnetism.19 While the predicted DOS �Wigner semi-
circle law� appears to be consistent with results obtained by
self-consistent Born approximation,25 to confirm that the ob-
served ferromagnetism and anomalous transport properties
of graphene are consequences of the impurity band, one
needs to go beyond self-consistent Born approximation and
to resolve the issue of how the DOS of 2D Dirac fermions
changes in strong disorder limit.

In this paper, we re-examine the density of states of a
graphene due to strong point defects. In particular, we show
that the inverse T matrix for NI point defects can be exactly
mapped to a NI�NI symmetric Euclidean random matrix in
which one cannot treat the matrix elements as independent
random numbers. Instead of focusing on the DOS directly,
we analyze magnitudes distribution for eigenfunctions for
the derived random matrix. Remarkably, we find that squared
magnitudes of eigenfunctions show random-walk behaviors
on defect positions. As a result, the distribution of squared
magnitudes of eigenfunctions for the Euclidean random ma-
trix follows the Porter-Thomas distribution. Further analysis
shows that eigenvalues ��� of the corresponding Euclidean
random matrix also follow the Thomas-Porter distribution26

and the DOS near zero energy for infinite u is

D�E� = nI� 1

8���������E��
e−���E��/2��������E�

dE
� . �1�

Here nI is the density of defects and ����� is the average
of ��� over defect configurations. ��E� is given by
��E�=−

�3
2�D2 E ln�E /D� with D=3t /2 and t being the hopping

amplitude of the electron. This form of the density of states
is valid when �E�� t and we found that �������nI shows
random-walk behavior. The resulting density of states has
strong effects on magnetic and transport properties of
graphene. We re-examine the effect of the long-range Cou-
lomb interaction with renormalized dielectric constant and
show that the resulted DOS supports ferromagnetism for any
finite density of defects. At finite temperature, the linear
extrapolation of magnetization curve indicates that
Tc�600–700 K, in agreement with experimental observa-
tions.

This paper is organized as follows. In Sec. II, we lay
down the theoretical formulation and show that the inverse T
matrix for NI point defects can be exactly mapped to a
NI�NI Euclidean random matrix. In Sec. III, we use both
analytic arguments and numerical simulations to derive the
density of resonant states. In Sec. IV, we reexamine effects of
the screened long-range Coulomb interaction. We show that
the competition between the exchange energy and kinetic
resonant energy leads to ferromagnetism for infinite on-site
potentials. The magnetizations both at zero and finite tem-
peratures are also calculated. In Sec. V, we conclude and

discuss possible effects for weak impurities. Appendix is de-
voted to more rigorous derivation of the Porter-Thomas dis-
tribution in the saddle-point limit.

II. THEORETICAL FORMULATION

We start by setting up the framework for investigating the
effects of defect. It is known that electrons in the � band of
an infinite graphene can be well described by a tight-binding
Hamiltonian H0.1 As shown in Fig. 1, the lattice of graphene
is bipartite. If we label the bipartite lattice points by A and B,
H0 consists of hopping only for nearest A and B with a hop-
ping amplitude t. Hence if defects are located at r�i with
i=1,2 ,3 , . . . ,NI, the wave function � for an electron then
satisfies

	H0 + u

i=1

NI

�r�,r�i��E�r�� = E�E�r�� . �2�

Here and in the following, both r� and r�i are restricted to
points on the honeycomb lattice shown in Fig. 1.

To find the effects of defects on the electronic state, it is
sufficient to calculate the Green’s function G�r� ,r�� ,E�, which
describes the amplitude for the electron to propagate from r��
to r� and satisfies

�E − H�G�r�,r��,E� = �r�,r��, �3�

where H=H0+u
i=1
NI �r�,r�i

. For clean graphene, the Green’s
function will be denoted by G0�r� ,r�� ,E�. In the Fourier k
space, it is convenient to reorganize the wave function into
�A and �B for A and B sublattices. Then G0�k� is the inverse
of the 2�2 matrix, E+ i0+−H0�k�, with H0�k� being given
by

A

AA

AA

A

B

B

BB

B

B

a

A

FIG. 1. Honeycomb lattice of graphene. The lattice is bipartite,
labeled by A and B, with hopping amplitude between nearest A and
B being t�2.7 eV. The lattice constant a=2.46 Å is the distance
between two nearest B points.
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H0�k� = 	 0 	�k�
	��k� 0

� , �4�

where 	�k�=−t�2eikya2�3 cos�kxa /2�+e−ikya/�3
. More explic-
itly, one finds

GAA
0 = GBB

0 =
1

2
� 1

E + i0+ − �	�k��
+

1

E + i0+ + �	�k��� , �5�

GAB
0 =

	�k�
2�	�k��� 1

E + i0+ − �	�k��
−

1

E + i0+ + �	�k��� ,

GBA
0 =

	��k�
2�	�k��� 1

E + i0+ − �	�k��
−

1

E + i0+ + �	�k��� . �6�

In real space, it is more convenient to use lattice vectors r� to
carry indices for A and B sublattice. Therefore, G is no
longer a 2�2 matrix and can be expressed in terms of G0 as

G�r�,r��,E� = G0�r�,r��,E� + u

i=1

NI

G0�r�,r�i,E�G�r�i,r��,E� . �7�

Clearly, to find G�r� ,r�� ,E�, one needs to find G�r�i ,r�� ,E� in
Eq. �7�. For this purpose, one sets r� to r�i with
i=1,2 ,3 , . . . ,NI in Eq. �7� and solves G�r�i ,r�� ,E� in terms of
G0�r�i ,r���. If we replace the notation G�r�i ,r�� ,E� by Gr�i,r�� with
E being suppressed, we obtain

�
Gr�1,r��

Gr�2,r��

Gr�3,r��

·

·

Gr�NI
,r��

� = 1/u�
1/u − Gr�1,r�1

0 − Gr�1,r�2

0 − Gr�1,r�3

0 · · − Gr�1,r�NI

0

− Gr�2,r�1

0 1/u − Gr�2,r�2

0 − Gr�2,r�3

0 · · − Gr�2,r�NI

0

− Gr�3,r�1

0 − Gr�3,r�2

0 1/u − Gr�3,r�3

0 · · − Gr�3,r�NI

0

· · · · ·

· · · · ·

− Gr�NI
,r�1

0 − Gr�NI
,r�2

0 − Gr�NI
,r�3

0
· · 1/u − Gr�NI

,r�NI

0

�
−1

�
Gr�1,r��

0

Gr�2,r��
0

Gr�3,r��
0

·

·

Gr�NI
,r��

0
� . �8�

Here the matrix on the right-hand side is the T matrix whose inverse determines resonant energies and can be separated into
real and imaginary parts

T−1 =�
1/u − G11 − G12 · · − G1NI

− G21 1/u − G22 · · − G2NI

− G31 − G32 · · − G3NI

· · · · ·

· · · · ·

− GNI1
− GNI2 · · 1/u − GNINI

� − i�
I11 I12 · · I1NI

I21 I22 · · I2NI

I31 I32 · · I3NI

· · · · ·

· · · · ·

INI1
INI2 · · ININI

� , �9�

where Gij and Iij are the real and imaginary parts of Gij
0 . Note

that due to the Kramers-Kronig relation, Gij and Iij are re-
lated by

Iij�E� = P� Gij�E��
E − E�

dE�. �10�

Therefore, real �TR
−1� and imaginary parts �TI

−1� of T−1 can be
diagonalized simultaneously. In particular, their eigenvalues
are also related by the Kramers-Kronig relation

�I�E� = P� �G�E��
E − E�

dE�. �11�

It is thus clear that the resonant energies of the Green’s func-
tion G are determined by zeros of eigenvalues of TR. There-
fore, resonant energies due to defects are determined by

�
1/u − G11 − G12 · · − G1NI

− G21 1/u − G22 · · − G2NI

− G31 − G32 · · − G3NI

· · · · ·

· · · · ·

− GNI1
− GNI2 · · 1/u − GNINI

� = 0. �12�

Note that the above condition is exactly the same as the one
obtained via the constructed wave function for defects19 and
should be compared to the similar equation obtained in the
context of d-wave superconductors.21 Since a graphene
without defect is translationally invariant, one has
Gij

0 =G0�r�i−r� j�. Therefore, diagonal terms in Eq. �9� are iden-
tical and are equal to ��E��1 /u−Re G0�0,E�. Hence if the
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positions of defects are random, solving Eq. �9� is equivalent
to finding eigenvalues of the random matrix

HI =�
0 G12 · · G1NI

G21 0 · · G2NI

G31 G32 · · G3NI

· · · · ·

· · · · ·

GNI1
GNI2 · · 0

� . �13�

Furthermore, if one defines the density of eigenvalues for HI
by

D��� =
1

M



n

��� − �n� �14�

with M being the total number of lattice points and �n being
the nth eigenvalue, the density of resonant states is given by

D�E� = D���E�
�d��E�
dE

� . �15�

Therefore, it is sufficient to find the distribution of eigenval-
ues for HI. We note in passing that if values of �G form a
band after averaging over defect configurations, it implies
that the averaged ��G� is independent of E. Equation �11�
then implies that except for contributions from diagonal
terms Inn, off-diagonal terms do not contribute to the imagi-
nary part of eigenvalues. Hence if values of � form a band,
one has TI

−1=−Im G0�0,E�I. Since Im G0�0,E�
E, this re-
sult implies that the inverse of lifetime for resonant states is
proportional to E, consistent with experimental
observation.27

III. DENSITY OF RESONANT STATES

In the last section, it is shown that the density of resonant
states is determined by the spectrum of HI. Since each ele-
ment, Gij, depends on positions of defects, they fluctuate ran-
domly. In the simplest approximation, one treats each ele-
ment as an independent random number. The density of
states is characterized by the Wigner semicircle law.19 As
indicated earlier, this approximation appears to be equivalent
to the self-consistent Born approximation.25 A closer exami-
nation of HI shows that the dependence of each matrix ele-
ment on the position r�i makes them correlated. Hence one
cannot treat each element as an independent random number.
Indeed, it was realized in different context by Mezard et al.28

that such random matrices form distinct classes known as
Euclidean random matrices, whose spectrum depends on the
functional form of the matrix element on r�i.

It is generally difficult to find the exact spectrum for any
given Euclidean random matrices. For defects on graphene,
however, it turns out that the spectrum of HI follows a simple
form known as the Porter-Thomas distribution.26 In this sec-
tion, we shall focus on the study of the spectrum by numeri-
cal simulation. An analytical derivation based on saddle-
point approximation will be relayed to the Appendix.

We start by noting that since one expects that the energies
of resonant states are close to zero, as a first step, we can
approximate each matrix element by Gij�E=0�. We shall see
later that the error due to this approximation is small for
E�0. In this approximation, by using Eqs. �5� and �6�, one
finds GAA�r ,E=0�=GBB�r ,E=0�=0 and GBA�j , i�=GAB

� �i , j�.
Hence HI is a symmetric matrix. Furthermore, since in the
second quantization form, HI=
ijGijcAi

† cBj
+H.c., we find that

HI goes to −HI under the particle-hole transformation:
cAi

† →−cAi
and cBj

→cBj

† . Therefore, the spectrum is particle-
hole symmetric, i.e., D�−��=D���. In addition of being
particle-hole symmetric, HI itself also supports energy states
exactly at zero energy due to the unbalance in the number of
lattice points in A and B.29 Since the number of zero-energy
states is equal to �NA−NB�, if lattice points are randomly
assigned to A or B, one finds �NA−NB���NI and hence their
contribution is negligible in the limit of M→� with NI /M
being fixed at the defect density nI. Therefore, in the follow-
ing, we shall focus on density of resonant states for the case
with NA=NB to avoid complications due to extra zero energy
states.

For high density of defects, because the positions of de-
fects sample sufficient lattice points, HI can be diagonalized
by Fourier transformation. Hence eigenvalues of HI are pro-
portional to the Fourier transformation of Gij. We find that

D��� 
� � d2q

�2��2��	� −
1

�	�q��� + �	� +
1

�	�q���� .

�16�

In this case, because 0� �	�q���3t, we obtain ��1 /3t.
Therefore, there is no resonant defect state near zero energy
for sufficient high density of defects.

For low density of defects, the separation between any
two defects is large. In this case, by using Eqs. �5� and �6�,
we find that for 0
 �E�r /v�1,21

GAA�r,E� = GBB�r,E� =
�3a2

2�v2cos	4�x

3a
�E ln

r�E�
v

, �17�

GAB�r,E� = GBA�r,E� =
�3a

2�v

1

r/a
sin	4�x

3a
� . �18�

Here v=3ta /2. While for E=0, as we indicated earlier,
GAA�r ,E=0�=GBB�r ,E=0�=0 but GAB�r ,E=0� is given by
Eq. �18�. For r=0, we obtain

GAA�0,E� = GBB�0,E� =
�3a2

2�v2E ln
a�E�

v
. �19�

To motivate it, instead of focusing on DOS directly as done
in the d-wave superconductors,2,21 we analyze the distribu-
tion of the eigenfunction amplitudes ���r�i� of HI at a fixed
eigenvalue �

P����2� =
1

M



i

�����2 − ����r�i��2� . �20�

Here ���r�i� is normalized so that
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i

����r�i��2 = 1. �21�

Hence if there is no bias on partitioning ���2, one
expects ���2 follows the Boltzmann-type distribution,
P����2�
e−����2. Indeed, in the limit M→�, Porter and
Thomas26 derived the following distribution:

P�t� =
1

2�s�s�
e−�s/2�s��, �22�

where s= ���2 and �s� is the average of ���2. The same distri-
bution can also be derived in the nonlinear sigma model.30

The Porter-Thomas distribution, however, is not universal
and is valid only when the system is sufficiently chaotic.31

Since the matrix element Gij decays slowly �1 /r�, �� at each
point r�i is determined by all other defects with random posi-
tions. In other words, HI is a random hopping model in
which �i characterizes density of random walkers on defect
position r�i. Since the probability for finding a random walker
at the traveling distance r is proportional to e−r2/2�r2�, by com-
parison with Eq. �22�, one expects that the Porter-Thomas
distribution works for HI with � playing the role of distance.
More explicitly, for a random walker described by r��t�, one
finds �r2�
 t at time t. Here t characterizes the number of
attempts in a random walk. By analogy, NI would be the
number of attempts. Therefore, we expect

����2� 
 �nI. �23�

Based on Eq. �18�, we perform extensive numerical analysis
on the statistics of eigenstates of HI. To see if there is corre-
lation between distribution and localization of ��, we also
analyze the participation number p=1 /
i���r�i��4 and find the
distribution for different participation numbers. Figure 2
shows the statistics of wave function amplitudes for a typical
defect configuration. It is clear that regardless of whether the
eigenfunction is localized or not, distribution of amplitudes

follows the Porter-Thomas distribution for all participation
numbers.

For different �, in addition to Eq. �21�, partition of eigen-
function amplitudes � has an addition constraint



ij

�i�HI�ij� j = � , �24�

where �HI�ij =Gij for i� j and �HI�ii=0. It is clear that for
different �, �
��. Hence by replacing � by ���� in Eq. �22�
with appropriate normalization, we expect that the distribu-
tion for � also follows the Porter-Thomas distribution

D��� = nI� 1

8���������
e−����/2������. �25�

Here according to Eq. �23�, we expect �����
�nI. The
proportional constant will be determined numerically. The
normalization D in Eq. �25� is chosen by requiring
�−�

� d�D���=nI. Note that for later use in the calculation of
magnetization, the normalization of D has to be done by
taking into account the presence of Dirac band.

Figure 3�a� shows a typical spectrum of our numerical
simulations of the spectrum averaged over 1000 defect con-
figurations. It shows that the spectrum can be well described
by the Porter-Thomas distribution. Figure 3�b� shows the fit-
ted parameter ��� versus density of defects. It indicates that
��� follows a simple form of nI by �����nI. Once one
knows the spectrum of HI, by using Eq. �19�, the density
of resonant energies can be found by setting
�=1 /u−GAA/BB�0,E�. This results in Eq. �1�. In the inset of
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FIG. 2. �Color online� Participation number �p=1 /
i���r�i��4�
and histogram of ����2 of different �’s and p’s �indicated by sub-
indices of �� for a typical defect configuration simulated with
NI=1000 and M =1000�1000, i.e., nI=0.001. Here solid lines are
the fitted Boltzmann distributions.
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FIG. 3. �Color online� �a� Averaged spectrum of HI �with
Gij�E=0� as the matrix element� over 1000 defect configurations.
Here nI=1000, M =1000�1000 and we have set t=1. Black circles
are numerical results while the red line is the fitted Porter-Thomas
distribution with D���=2.17e−45.438��� /����. Inset: The correspond-
ing density of electronic states for u=�. �b� Random-walk behavior
of �: the dependence of ��� on the defect density �nI shows linear
behavior with a slope 0.464. Here open circles are numerical results
obtained by the fitted Porter-Thomas distribution while the red line
is the linear curve of slope 0.464. There is a small error offset by
−0.0038.
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Fig. 3�a�, we show the corresponding electronic DOS for
u=�. It is clear that the DOS diverges at E=0.

We close this section by checking the validity of
setting E=0 in Gij�E�. For a given finite E, because
�=1 /u−G�0,E�, there is only one value of � corresponding
to the given E. Hence for a given E, only the spectrum at
�=1 /u−G�0,E� is correct. To get the whole spectrum, it is
necessary to vary E and obtain the spectrum at each ��E� one
by one. Note that by using Eqs. �5� and �6�, one finds that
Gij�−E�=−Gij�E� and hence the resulting spectrum is still
particle-hole symmetric. In Fig. 4, we show the comparison
of the spectrum for HI by using Gij�E� and Gij�E=0�. It is
clear that the difference is small and both spectra follow the
Porter-Thomas distribution, in agreement with the derivation
in the Appendix that is based on saddle-point approximation.

IV. EFFECTS OF COULOMB INTERACTION AND
FERROMAGNETISM

In this section, we discuss effects of the Coulomb inter-
action due to the change of density of states. To include the
effects of Coulomb interaction, we note that for neutral
graphene, even though excitonic effects are expected to be
large,23 for low energies and long distances, screening can be
taken into consideration by the renormalization of v and the
dielectric constant �.24 Hence for low density of defects in
which separation between any two defects is large, one needs
to replace v by vR in Eqs. �17� and �18�. This would effec-
tively replace the hopping amplitude t by tR.

As indicated in the introduction, strong disorders in a
graphene are a possible source for the observed ferromag-
netism. To examine whether the Porter-Thomas-type distri-
bution supports ferromagnetism, we first note that the nor-
malization adopted in Eq. �25� has to be corrected by taking
into account the conservation of states. As indicated in Fig.
5, since resonant states replaces states in Dirac band, it re-
quires a cutoff � in the impurity band so that numbers of
states for the impurity band and the Dirac band are equal.
Since number of states for the impurity band per site is nI,
integration of the Dirac band yields �=�� /4vRnI. By in-

cluding the cutoff �, appropriate normalized D� is given by

D���� =
nI

�8������ erf����/2������
e−����/2������. �26�

Here erf is the error function and ��=����. Note that when
v is renormalized to vR, both ����� and �� are renormalized
by the same factor vR /v.

To investigate the magnetism, we note that the electron
wave function �E is related to the eigenfunction � of HI as
follows:19

�E�r�i� = 

j=defect positions

GijAE
j . �27�

Here AE
j is proportional to � j. The normalization of AE

j is
determined by �
i�E

2�r�i��=1. The applicability of the Porter-
Thomas distribution implies that � j �thus AE

j � follows Gauss-
ian statistics.26 Hence we have

�AE
i AE

j � = ��ij . �28�

By expressing Gij =
1

M/2
q�G�q��eiq� ·�r�i−r�j� and using the fact that
GAA�r ,E=0�=GBB�r ,E=0�=0, we find �=1 / �NI�� with

� =
1

M/2

q�

GAB�q��GAB�− q�� . �29�

We shall include the Coulomb interaction by calculating the
exchange energy. For a neutral graphene, it is known that
screened Coulomb interaction is still long-ranged1,24

HC =
e2

8��



i,j,�,��

Ci�
† Ci�

1

�r�i − r� j�
Cj��

† Cj��, �30�

where � is the renormalized dielectric constant and is roughly
2.3�0. To obtain the exchange energy, Eq. �27� is replaced by
Ci�

† =
E,jAE
j Gij�E�CE�

† . By setting any pair of CE�
† CE��� by its

average value �CE�
† CE����, using the fact �AE1

i AE2

j AE2

k AE1

l �
= �AE1

i AE1

l ��AE2

j AE2

k � and approximating Gij�E� by Gij�0�, we
find that the exchange energy is given by
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FIG. 4. �Color online� Comparison of the spectrum of HI deter-
mined by using Gij�E� �open circles� and Gij�E=0� �red crosses� as
matrix elements. Here nI=1000, M =1000�1000, and we have set
t=1. Both spectra can be fitted with the Porter-Thomas distributions
with slightly different �����.
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FIG. 5. Schematic plot of the impurity band and the original
Dirac band. Here the solid lines at center represent the impurity
band when u=�. For a small finite u, the impurity band �repre-
sented by the dash line� is shifted into the Dirac band and
disappears
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Eex = −
e2�n↑

2 + n↓
2�

8���2 B �31�

with

B = 

i,j

1

�r�i − r� j�
	


k=1

NI

GikG jk�2

, �32�

where n�=N� /NI are fractions of electrons in the spin state
�. By approximating Gij�E� by Gij�0� and expressing Gij in
Fourier space, we find

B

M
=

16�nI
2

�3a2M2 

q,q�

1

�q� + q���
GAB�q��GAB�− q��

�GAB�q���GAB�− q��� , �33�

where only the i and j in the same sublattice would contrib-
ute. Since for E�0, Eq. �27� implies GAB diverges near Dirac
points q�D. The main contribution in the integral of B comes
from regions of q�D. By setting q� to any one of the Dirac
points in the factor 1 / �q� +q���, we find

B

M
=

2 + �3

4a
nI

2�2. �34�

In the ferromagnetic state, we have n↑�n↓ with E� being
the corresponding Fermi energy for the spin state �. The net
spin moment is proportional to m�n↑−n↓. Substituting Eq.
�34� back to Eex, we find that the exchange energy per site
due to m is given by

Eex

M
= −

e2m2

16��

2 + �3

4a
nI

2. �35�

For an undoped graphene, E↓=−E↑. In this case, the net
spin m can be expressed as m=2�0

E↑dED��E� while the
change in the total energy in the impurity band per site is
	k=2�0

E↑dEED��E�. The minimization of 	k+Eex /M with
respect to E↑ then leads to

�2 + �3�e2nI

16��a
�

0

��E↑�

D����d� = E↑. �36�

Solving Eq. �36� yields E↑ which in turn determines the mag-
netization per defect at zero temperature. The same calcula-
tion can be easily generalized to any finite temperature T. In
this case, the magnetization is still determined by the mini-
mization of 	k+Eex /M with respect to E↑ except that now m
and 	k are replaced by

m = �
−�

�

dED��E��n↑�E� − n↓�E�
 , �37�

	k = �
−�

�

dED��E��n↑�E� + n↓�E� − 2n0�E�
 , �38�

where n��E�=1 / �e��E+E��+1� are the Fermi-Dirac distribu-
tions for �=↑ or ↓ and n0�E�=1 / �e�E+1� with �=1 /kBT.

In Fig. 6�a�, we show the magnetization at zero tempera-
ture for u=� with screened and unscreened Coulomb inter-

action by solving Eq. �36�. It is seen that screening reduces
the magnetization. Furthermore, due to the divergent DOS at
E=0, ferromagnetism persists down to zero defect density
and magnetization increases as defect density increases. Fig-
ure 6�b� shows a typical temperature dependence of magne-
tization for nI=O�10−3�. The temperature dependence shows
a quasilinear behavior with a Boltzman tail. To compare with
experiments, we perform the linear extrapolation of magne-
tization curve, which indicates that Tc�600–700 K, in
agreement with experimental observations.32

V. SUMMARY AND DISCUSSION

In summary, in this work we have shown that in the
strong disorder limit, a resonant impurity band is induced in
a graphene. By combining analytic arguments and numerical
calculations, we show that the density of resonant states is
governed by the principle of equal a priori probabilities for
squared magnitudes of eigenfunctions of a Euclidean random
matrix. For large on-site defect potential, the principle of
equal a priori probabilities shows that the density of resonant
states is characterized by the Thomas-Porter distribution and
is divergent near zero energy. Furthermore, we show that the
observed ferromagnetism is due to the combination of
strong disorder and long-range Coulomb interaction. The
linear extrapolation of magnetization curve indicates that
Tc�600–700 K, as observed in experiments.

In addition to the magnetism, the impurity band enhances
the transport.19 This is consistent with experimental
observations8 but is quite different from ordinary impurity
states even though in the calculated participation number of
HI in Fig. 2, some eigenfunctions � are localized. The cru-
cial difference lies in the semilocalized nature of the elec-
tronic states as revealed in Eq. �27�. Here even though AE

j

�thus � j� is localized, due to that G�1 /r, �E will not be

0 0.005 0.01 0.015 0.02
n

I

0

0.1

0.2

0.3

0.4

0.5

m
(µ

B
pe

r
de

fe
ct

)

v
R
=v, ε=ε

0
v

R
=1.3v, ε=2.3ε

0

0 100 200 300 400 500
T (K)

0.1

0.2

0.3

m
(

µ B
pe

r
de

fe
ct

)

v
R
=v, ε=ε

0
v

R
=1.3v, ε=2.3ε

0

FIG. 6. �Color online� Magnetization per defect for u=� with
screened ��=2.3�0, vR=1.3v� and unscreened ��=�0, vR=v� Cou-
lomb interactions. �a� Magnetization versus defect density at zero
temperature. �b� A typical temperature dependence of magnetization
for nI=O�10−3�. There is no sharp transition temperature. However,
by linear extrapolation, one finds that Tc is around 600–700 K.
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exponentially localized around defect positions. The partici-
pation number for �E itself is on the order of �ln M�2, indi-
cating its semilocalized nature.

While so far in this work we only consider the strong
disorder limit, the results also provide some insight into the
weak disorder region. As illustrated in Fig. 5, for weak dis-
orders, u is small, the impurity band is shifted into the Dirac
band. In this case, while the majority weight of the impurity
band disappears, its tail still sweeps through zero energy and
contributes small but finite DOS. As indicated above, these
density of states generally enhances the transport. This ex-
plains why when graphene is made cleaner, the conductivity,
instead of increasing, decreases and appears to approach a
universal constant.1 While the impurity band cannot account
for the exact value of the universal conductivity, our results
serve as a useful starting point for obtaining corrections to
the conductivity.
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APPENDIX: SADDLE-POINT LIMIT AND PORTER-
THOMAS DISTRIBUTION

In this appendix, we shall show that the eigenvalue distri-
bution for HI follows the Porter-Thomas distribution in the
limit of NI→� but with the defect density nI being fixed. We
start by noting that the spectrum of HI can be found by
calculating the resolvent

R�z� = � 1

M
Tr

1

z − HI
� , �A1�

where M is the total number of lattice points and � · � is the
average over the random configurations of defects. Clearly,
we have D���=− 1

� Im R��+ i0+�. As shown in the text, since
the spectrum has particle-hole symmetry, we shall set � to ���
and consider only positive �. The evaluation of R�z� can be
reformulated by a replica field theory28 via the following
identity:

R�z� = lim
n→0

− 1

nM

�

�z
�e−nTr log�z−HI��

= lim
n→0

− 1

nM

�

�z
� 1

det�z − HI�n� . �A2�

The term 1 /det�z−HI�n can be re-expressed by n replica
complex fields �a �a=1,2 ,3 , . . . ,n� as follows

� 1

det�z − HI�n� =�� �
i=1

NI

�
a=1

n

D�e−
ij�i
a��HI�ij�j

a� .

�A3�

Up to now �a is only defined on defect sites. To remove this

constraint, one introduces the field �̂a defined on every lat-

tice site and impose ���̂a�r��−
i�i
a�r�,r�i


. The constraint of the

delta function can be removed by using the identity
��F�=�d�aei�aF. Here �a is the replica field. After integrat-

ing out �i
a and �̂a, the resolvent can be expressed as28

R�z� = − lim
n→0

1

nM

� log Z

�z
, �A4�

where the partition function Z is given by Z=�D�e−S with S
being given by

S = − 

a=1

n



i,j

�a
��r�i�Fij�a�r� j� − nI


i

e−�1/z�

a

��a�r�i��
2
. �A5�

Here Fij =Gij
−1−�ijGii

−1. Note that because G0=1 / �E−H�, we
have that for E�0, Fij =−�H0�ij. In other words, −F has the
same form as the tight-binding Hamiltonian for graphene
except that it only acts on defect sites.

After substituting Z back to R, we find

R�z� = − lim
n→0

nI

nM

� D�
1

z2

a,i

��a�r�i��2e−�1/z�

b

��b�r�i��
2
e−S

� D�e−S

= − lim
n→0

nI

M

� D�
1

z2

i

��1�r�i��2e−�1/z�

b

��b�r�i��
2
e−S

� D�e−S

.

�A6�

Here we have made use of the equivalence among different
replica component a and the equivalence among different
positions r�i in the second equality.

It is clear that in Eq. �A6�, the replica symmetry is broken.
One needs to perform integrations for �1 and �a with a�1

separately. For �1, the integrand can be rewritten as 
ie
−S1

i

with S1
i given by

S1
i =

��1�r�i��2

z
− ln��1�r�i��2 + S . �A7�

Since we shall be interested in z�0, i.e., energy near zero, in
the saddle-point approximation, integration over �1 is domi-
nated by the maximum of S1

i , which is determined by
�

��1
��r�i�

S1
i =0 for all r�i. We find that maximum of S1

i satisfies

��1
0�r�i��2

z
�1 + nIe

−�1/z�

a

��a�r�i��
2� − 1 − �1

0��r�i�

j

Fij�1
0�r� j� = 0.

�A8�

It is clear that for low density, we can expand �1
0

in term of nI. We find ��1
0�r�i��2 /z=1−nIe

−�1/z�
a��a�r�i��
2

−�1
0��r�i�
 jFij�1

0�r� j�+¯. Because Fij is finite, we obtain
�1

0�r�i���z for all r�i. As a result, the integration of �1 in Eq.
�A6� can be approximated as
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1

M
� D�1

1

z2

i

��1�r�i��2e−�1/z�

b

��b�r�i��
2
e−S

�
1

M



i
� 2�

�S1
i ��

z

z2e−zbIi �
1

M



i

e−bz

�z
Ii. �A9�

Here b is a constant that results from Fij and �S1
i �� is the

second derivative of S1
i with respect to �1

0 and is proportional
to 1 /z. Ii is the integration over �a�r�i� with ��1 and is given
by

Ii =� D�a�r�i�e−�1/z� 

a�1

��a�r�i��
2
e−S� = �e−�1/z� 


a�1
��a�r�i��

2��Zn−1� ,

�A10�

where � �� is the average with respect to S� and Zn−1�
=�D�ae−S� with S� being given by

S� = − 

a=2

n



i,j

�a
��r�i�Fij�a�r� j� − nIe

−1

i

e−�1/z�

a

��a�r�i��
2
.

�A11�

It is clear that different a and i are equivalent. Therefore, we
obtain

1

M



i

Ii = �e−�n−1/z���b�r�i��
2
��Zn−1� . �A12�

Combing Eqs. �A9� and �A12� gives the limiting behavior of
the numerator for small z. To obtain the spectrum for small
�, one needs to find the analytical continuation by replacing
z by �+ i0+. Clearly, the factor e−bz /�z only contributes the
real part. Together with the fact that the denominator is
Z=e−nTr log�z−HI�, which goes to one when n approaches zero,
we find that

D��� = nI
e−b�

��
lim

�→0,n→0
Im�e��b�r�i��

2/�+i0+
��Z−1� . �A13�

Both �e1/z��b�r�i��
2
�� and Z−1� can be calculated perturbatively

with finite results in the limit �→0.28 After appropriate nor-
malization, one finds the spectrum of � follows the form

D��� = nIe
−b���� b

4����
. �A14�
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