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The Casimir force between two infinitely thin parallel sheets in a setting of N such sheets is found. The finite
two-dimensional conductivities, which describe the dispersive and absorptive properties of each sheet, are
taken into account, whereupon the theory is applied to interacting graphenes. By exploring similarities with
in-plane optical spectra for graphite, the conductivity of graphene is modeled as a combination of Lorentz-type
oscillators. We find that the graphene transparency and the existence of a universal constant conductivity
e2 / �4�� result in the graphene/graphene Casimir interaction at large separations to have the same distance
dependence as the one for perfect conductors but with much smaller magnitude. The Casimir force is also
studied when the graphene system is above a substrate or immersed in a medium. It is found that the response
properties of the environmental materials can strongly affect the graphene interaction.
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I. INTRODUCTION

The Casimir force is a fundamental quantum-mechanical
relativistic phenomenon, which originates from the vacuum
fluctuations of the electromagnetic field. It couples electri-
cally neutral objects with or without permanent electric
and/or magnetic moments. In the case of two perfectly con-
ducting infinite plates, the Casimir force depends only on the
distance and two fundamental constants: Plank’s constant
and the speed of light.1,2

The Casimir force is of particular interest at the nano-
scale. It has been shown that such a force is responsible for
limiting the operation of many nanostructured devices, such
as nanoelectrical-mechanical and microelectrical-mechanical
systems by causing striction, friction, or adhesion.3,4 This has
motivated devising experiments to detect the effect in vari-
ous structures. Sophisticated techniques using torsional pen-
dulum or atomic force microscope have been used to mea-
sure the Casimir force between metallic and dielectric
surfaces with high accuracy.5,6 The stability of many nano-
structured materials, related devices, and experimental set-
tings has also been connected to dispersion forces originating
from the Casimir effect. Graphitic nanostructures, such as
graphenes �a single layer of graphite is graphene�, carbon
nanotubes �cylindrically rolled concentric graphenes�, and
graphene nanoribbons �finite width graphenes� are particular
examples.7,8

Recently, single layers of graphite have been isolated us-
ing micromechanical cleavage.9,10 At present, graphene is
one of the most interesting and most studied materials and
has paved the way for future carbon-based electronics. Many
applications of graphene rely on the ability to continuously
tune its charge carrier density and mobility.11 This has al-
lowed the development of new transistors operating at high
frequencies.12 Other applications are also very promising.
Nanomechanical resonators, for example, are especially at-
tractive due to their mechanical stability and high resonant
frequency.13

Isolated graphenes also raise the possibility of studying
the Casimir force between essentially two-dimensional struc-
tures with peculiar dielectric response properties and thereby

uncovering further insights into the nature of the Casimir
interaction. In addition, graphene/graphene or graphene/
substrate mutual interactions are important components of
many experimental settings. The Casimir force can be calcu-
lated using the Lifshitz theory, which takes into account the
macroscopic dielectric response of the objects.14 This theory
was adapted for the case of two graphene sheets using an
idealistic description of the dielectric permittivity by assum-
ing a Drude-type model.15 Such an approximation, however,
does not take into account the electronic properties specific
to graphene. Researchers have also considered the Casimir
interaction between a graphene and a perfect conductor
within a quantum field theory approach by using a more
realistic representation of the graphene dielectric response,16

where low-momentum electrons were described via the
Dirac model.

The Casimir effects of one infinitely thin sheet,17 two
sheets,18 and one infinitely thin sheet with a nearby charge19

have been studied previously in the context of a hydrody-
namic model or plasma sheet model.20 The goal of this work
is to extend the theory to N parallel infinitely thin sheets at
different separations and different environments, and to take
into account the specific optical properties, characterized by
the conductivity, of each separate sheet. The objective is to
apply the results to the case of parallel graphenes in order to
understand how the distance separation and peculiar charac-
teristics of the graphene and environmental dispersion prop-
erties manifest in their mutual Casimir force. Our method
utilizes a quantum electrodynamical approach based on lin-
ear response theory. An essential part is the explicit calcula-
tion of the dyadic Green’s function for this system and the
inclusion of the finite conductivity of the separate sheets.

The rest of the paper is organized as follow. In Sec. II, the
electromagnetic field induced fluctuation stresses between
two infinitely thin parallel plates is developed via linear re-
sponse theory. In Sec. III, the dyadic Green’s function for
two sheets with frequency-dependent conductivities is found.
In Sec. IV, the Casimir force between two parallel sheets
within N sheets is characterized via recursion relationships
for the reflection coefficients. Finally in Sec. V, the theory is
applied to find the Casimir force between graphenes and be-
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tween graphenes and a substrate. The conclusions are de-
scribed in Sec. VI.

II. FLUCTUATION FORCES

In classical electrodynamics, the force is calculated using
the Maxwell stress tensor for the electromagnetic pressure

TJ =
1

4�
�EE −

1

2
E21J + BB −

1

2
B21J� , �1�

where E and B are the electric and magnetic fields, respec-

tively, and 1J is the unit matrix. In order to present a formal-
ism to find the Casimir stresses, we consider the radiation-
matter interaction Hamiltonian within the dipole
approximation described by

�H = −� d3r�P�r,t� · E�r,t� , �2�

where P is the polarization.
The quantum mechanical description is performed by

simply substituting the classical fields with a symmetrized
product21 of quantum-mechanical operators �denoted by hats
in what follows�. Then, using linear response theory,22 the
perturbed electric fields due to an external polarization
source field become

�E�r,t� = �
−�

t

dt�� d3rGJ�r,r�,t − t�� · �P�r�,t�� , �3�

GJ�r,r�,t − t�� =
i

�
��Ê�r,t�,Ê�r�,t���	 , �4�

where �Ô	=Tr��̂Ô�, �̂=exp��F0− Ĥ0� /kBT� is the statistical
matrix operator in the canonical ensemble, F0 is the free

energy, Ĥ0 is the unperturbed Hamiltonian, GJ is the Dyadic
Green’s function, kB is Boltzmann’s constant, and T is the

temperature. Note that GJ�r ,r� , t , t��=GJ�r−r� , t− t�� from the
homogeneity of space-time.

Define the structure functions SJEE and SJBB using Fourier
transforms as follows:

1

2
��Ê�r,t�Ê�r�,t��� + Ê�r�,t��Ê�r,t�	

=� d�

2�
SJEE�r,r�,��e−i��t−t��,

1

2
��B̂�r,t�B̂�r�,t��� + B̂�r�,t��B̂�r,t�	

=� d�

2�
SJBB�r,r�,��e−i��t−t��. �5�

Then using the fluctuation dissipation theorem,23,24 one can

express the structure function SJEE in terms of the imaginary
part of the frequency-dependent Green’s function at finite
temperature as

SJEE�r,r�,�� = � � ImGJ�r,r�,��coth� ��

2kBT
� . �6�

Similarly, the correlations in the magnetic field may be found
from Faraday’s law by taking the curl of the electric field.

These are expressed in terms of the function SJBB by

SJBB�r,r�,�� = �
c2

�2Im � � GJ�r,r�,�� � �� coth� ��

2kBT
� ,

�7�

where ��� is the curl taken on the Green’s function with
respect to the prime coordinates. Therefore, from Eqs. �1�
and �5�–�7� the temperature-dependent quantum electromag-
netic stress is found via the Green’s function25

TJ =
1

4�
�TJ1 + TJ2 −

1J

2
Tr�TJ1 + TJ2�� ,

TJ1 = lim
r→r�

� SJEE�r,r�,��
d�

2�
,

TJ2 = lim
r→r�

� SJBB�r,r�,��
d�

2�
. �8�

Finally, the identity coth�x�=
n=−�
� x

x2+n2�2 allows one to ob-
tain

TJ1 = lim
r→r�

kBT 

n=−�

�

GJ�r,r�,i�n� ,

TJ2 = lim
r→r�

kBT 

n=−�

�
c2

�i�n�2� � GJ�r,r�,i�n� � ��, �9�

where �n=2�nkBT /� are the Matsubara frequencies.

III. GREEN’S FUNCTION FOR THREE LAYERS

In order to find the Casimir force from Eq. �8� for a spe-
cific structure, one needs to calculate the Green’s function.
The Green’s function obeys the following equation:

�� � � � −
�2

c2 �GJ�r,r�,�� = 4�
�2

c2 1J��r − r�� , �10�

which is found from the solution of Maxwell’s equations.26

The system under consideration consists of parallel, infi-
nitely thin sheets located in a vacuum. Each sheet is posi-
tioned at the boundary between two adjacent layers, and it is
specified by a two-dimensional, isotropic conductivity

�J j,j+1 = 
� j,j+1 0 0

0 � j,j+1 0

0 0 0
� , �11�

where j , j+1 is the boundary between two adjacent layers.
� j,j+1 accounts for the specific finite absorptive and disper-
sive optical properties of each sheet.
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In general, the Green’s function may be split in two terms

GJ lj = GJ0
j + GJ s

lj , �12�

where GJ lj is the Green’s function in region l with a source in

region j, GJ0
j is the free Green’s function from a pointlike

source placed in layer j without any boundaries, and GJ s
lj is

the scattering Green’s function in region l with a source in
region j. The free Green’s function is later dropped from the
calculation of the stress tensor since the Casimir effect does
not exist in homogeneous space.

The calculation of the force between planar sheets given
in this work is based on a procedure using the generalized
Fresnel reflection coefficients. The method involves the ex-
plicit form of the dyadic Green’s function for a system of
two parallel planar sheets.23,24 Thus we first calculate

GJ�r ,r� ,�� for the three-layer/two-sheet structure shown in
Fig. 1.

Since the system has a planar geometry, we use the gen-

eral dyadic form of GJ in terms of the following orthogonal
functions:27,28

M�k� = � � �ẑ	� and N�k� =
1

k
� � M�k� , �13�

where 	=exp�ik ·r� with k being the wave vector of the
electromagnetic excitations. These functions obey the or-
thogonality relations

� dVM�k� · N�− k�� = 0,

� dVM�k� · M�− k�� = �2��3k�
2 ��k − k�� ,

� dVN�k� · N�− k�� = �2��3k�
2 ��k − k�� , �14�

where k�
2 =kx

2+ky
2 and the integration is carried over space.

The bulk Green’s function is found to be of the following
form:

GJ0
j �r,r�,�� = − 4���r − r��zz +

i�2

c2 � dk�
2

2�k�
2 h

��M�h�M��− h� + N�h�N��− h�� ,

�z − z� 
 0� , �15�

GJ0
j �r,r�,�� = − 4���r − r��zz +

i�2

c2 � dk�
2

2�k�
2 h

��M�− h�M��h� + N�− h�N��h�� ,

�z − z� � 0� , �16�

M�h� = i�kyx̂ − kxŷ�ei�k�·r�+hz�,

M�− h� = i�kyx̂ − kxŷ�ei�k�·r�−hz�,

M��− h� = − i�kyx̂ − kxŷ�e−i�k�·r�� +hz��,

M��h� = − i�kyx̂ − kxŷ�e−i�k�·r�� −hz��, �17�

where h=��2 /c2−k�
2 and r�=xx̂+yŷ. Similarly, N��h�,

N���h� are defined via Eq. �13�.
In this way, the bulk Green’s function is expressed in

terms of a linear combination of transverse electric �M-term�
and transverse magnetic �N-term� modes. The scattering part
of the Green’s function is also sought in terms of the or-
thogonal functions M and N, and it is found from the bound-
ary conditions for the tangential electric and magnetic fields
across each plane.

The continuity of the electric field across each boundary
from Fig. 1 is expressed as

ẑ � �GJ22�r,r�,�� − GJ12�r,r�,��� = 0, �z = 0� ,

ẑ � �GJ32�r,r�,�� − GJ22�r,r�,��� = 0, �z = d� �18�

while the tangential components of the magnetic field give
rise to surface currents, which may be written as

ẑ � �� � GJ22�r,r�,�� − � � GJ12�r,r�,���

=
4�i�

c2 �J1,2 · GJ12�r,r�,��, �z = 0� ,

ẑ � �� � GJ32�r,r�,�� − � � GJ22�r,r�,���

=
4�i�

c2 �J2,3 · GJ32�r,r�,��, �z = d� . �19�

The surface conductivities account for the finite absorption
properties of the infinitely thin sheets in the material. The
solution of the dyadic Green’s function in the different re-
gions may be written in terms of the reflection coefficients
for the transverse �TE� electric waves and the transverse
magnetic �TM� waves. For the system considered in Fig. 1,
these are

FIG. 1. The free space regions denoted as 1,2,3 separated by
two infinitely thin sheets extending in the x-y plane and separated
by a distance d in the z direction. The infinitely thin sheets are
located at z=0 and z=d. The conductivities are also denoted.
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�E
+ = −

2���2,3/�hc2�
1 + 2���2,3/�hc2�

, �E
− = −

2���1,2/�hc2�
1 + 2���1,2/�hc2�

,

�B
+ =

2��2,3h/�
1 + 2��2,3h/�

, �B
− =

2��1,2h/�
1 + 2��1,2h/�

, �20�

where �+� superscript defines the top plate and �−� super-
script defines the bottom plate.29

Making the definition 
E,B=1−�E,B
+ �E,B

− e2ihd, the scatter-
ing Green’s function in region two is

GJ s
22�r,r�� =

i�2

c2 � dk�
2

2�k�
2 h
� �E

−


E
M�h�M��h�

+
�E

+�E
−e2ihd


E
M�h�M��− h� +

�E
+�E

−e2ihd


E

�M�− h�M��h� +
�E

+e2ihd


E
M�− h�M��− h�

+
�B

−


B
N�h�N��h� +

�B
+�B

−e2ihd


B

�N�h�N��− h� +
�B

+�B
−e2ihd


B
N�− h�N��h�

+
�B

+e2ihd


B
N�− h�N��− h�� . �21�

Similarly, the scattering Green’s function in region one is

GJ s
11�r,r�� =

i�2

c2 � dk�
2

2�k�
2 h
���E

− + ��E
+ + 2�E

−�E
+�e2ihd


E
�

�M�− h�M��− h� + ��B
− + ��B

+ − 2�B
−�B

+�e2ihd


B
�

�N�− h�N��− h�� . �22�

The other scattering Green’s functions are found from the
boundary conditions specified in Eqs. �18� and �19�.

IV. FORCE BETWEEN N PARALLEL SHEETS

The Casimir force per unit area exerted on each planar
sheet, see Fig. 1, is obtained by evaluating the zz component
of the difference in the stress between the regions above and
below that sheet. For example, the force on the bottom one is
calculated by taking

Tb = �Tzz
22�z� − Tzz

11�z��z=0, �23�

where Tb is the force per unit area on the bottom plate, Tzz
22 is

the zz component of the stress in region 2 given a fluctuating
source in region 2, and Tzz

11 is the zz component of the stress
in region 1 given a fluctuating source in region 1. The force
per unit area on the top plate is equal and opposite to that on
the bottom one, i.e., Tt=−Tb. Combining the results in pre-
vious sections with Eq. �23� one obtains

Tb = −
ikBT

2�



n=−�

� �
0

�

h�i�n�k�dk��� e−2ih�i�n�d

�E
+�i�n��E

−�i�n�
− 1�−1

+ � e−2ih�i�n�d

�B
+�i�n��B

−�i�n�
− 1�−1� , �24�

where h�i�n�= i���n /c�2+k�
2 . The expression for Tb can be

used to calculate the temperature-dependent interaction be-
tween any two infinitely thin plates in the vacuum provided
that the explicit conductivities are known. One notes that the
largest contribution30 of Eq. �24� comes from �nd /c�1.
Therefore, when �c / �2�kBTd��1, the sum above is deter-
mined by the large n value terms and it can be transformed
into an integral with differential d�n=2�kBT�dn� /�. For T
=0, such a representation is exact, but for T�300 K, for
example, d should not be larger than the order of microme-
ters. At distances comparable to the thermal quantum coher-
ence wavelength �T=�c / �kBT��7 �m, classical thermal
fluctuations become important and �c / �2�kBTd��1 is not
valid any more. In this case, the n=0 and small n terms in
the sum become important, and the d�n�dn transformation
cannot be justified. Here, we will assume that we are in a
regime where the integral representation is valid.

The result for the system of three layer/two sheet system
can be used to obtain the force per unit area in the case of a
stack of N parallel sheets. Consider the jth layer in Fig. 2.
One realizes that the Casimir force results from the infinite
optical reflecting and transmitting paths due to the scattering
from all the sheets above and below layer j. This is described
by the effective reflection from below � j,E,B

− and from above
� j,E,B

+ in layer j. Then combining Eq. �24� with the condition
�c / �2�kBTd��1 and the integral representation that fol-
lows, the stress on the bottom sheet may be written as

FIG. 2. N infinitely thin sheets located in free space and sepa-
rated by distances dj. The sheets extend in the x-y plane. Their
conductivities and positions along the z axis are also shown.
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Tbj = −
i�

2�2�
0

�

k�dk��
0

�

d�h�i���� e−2ih�i��dj

�Ej
+ �i���Ej

− �i��
− 1�−1

+ � e−2ih�i��dj

�Bj
+ �i���Bj

− �i��
− 1�−1� . �25�

Equations �24� and �25� are exactly the general Lifshitz for-
mula found throughout the literature for various planar sys-
tem, written in terms of the reflection coefficients. The tem-
perature dependence does not appear explicitly in the force
any more. It is accounted for indirectly through the
temperature-dependent optical properties of the sheets. � j,E,B

�

can be found via an iterative procedure using a simple recur-
sion relation. Consider the three layers denoted as �j
−1� , j , �j+1� by themselves. Due to the infinite optical paths
they can be expressed as24,31

�E,j−1,j,j+1 = �E,j−1,j + tE,j−1,j�E,j,j+1tE,j,j−1e2ihdj

+ tE,j−1j�E,j,j+1tE,j,j−1e4ihdj�E,j,j−1�E,j,j+1 + ¯ ,

�E,j−1,j,j+1 = �E,j−1,j + tE,j−1,j�E,j,j+1tE,j,j−1e2ihdj

�

n=0

�

��E,j,j−1�E,j,j+1e2ihdj�n, �26�

where �E,j−1,j is a single sheet reflection coefficient from
layer j−1 to layer j. Its expression is given in Eq. �20� with
proper substitution of the indices. tE,j−1,j is the coefficient of
transmission for a single sheet from layer j−1 to layer j. For
the case of two thin sheets in the vacuum �or in a medium�
one has tE,j−1,j = tE,j,j−1, �E,j−1,j =�E,j,j−1, and 1+�E,j−1,j
= tE,j−1,j whereupon one obtains

�E,j−1,j,j+1 =
�E,j−1,j + ��E,j,j+1 + 2�E,j,j+1�E,j,j−1�e2ihdj

1 − �E,j,j−1�E,j,j+1e2ihdj
.

�27�

Similarly, one finds the reflection coefficient for the TM
modes given that tB,j−1,j = tB,j,j−1, �B,j−1,j =�B,j,j−1, and 1
−�B,j−1,j = tB,j−1,j

�B,j−1,j,j+1 =
�B,j−1,j + ��B,j,j+1 − 2�B,j,j+1�B,j,j−1�e2ihdj

1 − �B,j,j−1�B,j,j+1e2ihdj
.

�28�

This provides a straightforward method for calculating the
reflection coefficients in any vacuum layer in a stack of N
parallel sheets. Suppose j−1, j , j+1 are a part of the system
shown in Fig. 2. Starting from layer 1, one finds the reflec-
tion coefficients between the first and second layers using
Eq. �20�. Invoking Eqs. �27� and �28� recursively by treating
the first two sheets as one, the reflection coefficient in the
third layer is found. This is repeated until layer j is reached
giving the effective reflection from below. A similar proce-
dure is applied to find the reflection from all sheets from
above layer j but starting from the top N+1 layer in Fig. 2.

As an example of the use of the recursion procedure, a
four layered system will be considered, which corresponds to
the bottom four layers of Fig. 2. Using Eqs. �27� and �28�,
the generalized reflection coefficients in layer 2 are ex-
pressed as

�E2
+ = �E234 =

�E23 + ��E34 + 2�E23�E34�e2ihd3

1 − �E23�E34e
2ihd3

,

�B2
+ = �B234 =

�B23 + ��B34 − 2�B23�B34�e2ihd3

1 − �B23�B34e
2ihd3

,

�E2
− = �E21, �B2

− = �B21 �29�

Note that �E,B,2
− are actually �E,B

− from Eq. �20�, since the
system below layer 2 is the same as the one from Fig. 1. The
reflection coefficients can be substituted in Eq. �25� yielding
the Casimir force per unit area on the bottom plate in the
four layer/three plate system.

It is important to realize that this formalism and the sub-
sequent results can be applied in situations when the infi-
nitely thin sheets are immersed in some media or above a
substrate. Consider the cases when in each layer of Fig. 2
there is some substance characterized by dielectric � j��� and
magnetic � j��� response properties. Then, the Casimir force
can still be calculated using Eqs. �24� and �25�, however,
hj���→�� j���� j����2 /c2−k�

2 and the reflection coeffi-
cients have to correspond to the appropriate boundary
conditions.30,32,33 Since the tangential components of E j are
continuous and the tangential components of B j /� j give the
current enclosed at each graphene surface, we find that for a
single sheet

�Ej,j−1 =
� hj

� j
−

hj−1

� j−1
−

4��� j,j−1

c2 �
� hj

� j
+

hj−1

� j−1
+

4��� j,j−1

c2 � , �30�

�Bj,j−1 =
�� j−1hj − � jhj−1 +

4�� j,j−1hjhj−1

�
�

�� j−1hj + � jhj−1 +
4�� j,j−1hjhj−1

�
� . �31�

Using the iteration described above, one can calculate the
Casimir force in situations when the infinitely thin sheets are
above substrates and/or immersed in some medium.

V. CASIMIR INTERACTION BETWEEN GRAPHENES

Before the graphene planes are considered, it is useful to
calculate the interaction for the limit of infinitely conducting
planar sheets. In that case, the conductivity becomes �→�
yielding �Ej

� →−1 and �Bj
� →1. Thus using Eq. �25� we re-

cover the well-known result1 for the magnitude of the attrac-
tion between two parallel perfectly conducting plates sepa-
rated by a distance d

�T0� =
�c�2

240d4 . �32�
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A. Universal conductivity

Further, we apply the results for infinitely thin sheets ob-
tained in Sec. IV to calculate the Casimir force between two
graphenes. Researchers in the past have considered graphene
as an infinitely thin sheet and have shown that this is a rea-
sonable approximation for distances greater than a few times
the interlayer graphite separation.15,16 The emphasis now is
to specify the graphene conductivity. It has been
predicted34,35 and found experimentally,36 that over a rela-
tively wide range of photon energies �up to 3 eV�, the
graphene conductivity is approximately constant given by
the value of �0=e2 / �4��. This peculiar effect is closely re-
lated to the energy band structure of graphene, as shown in
the Appendix.

Given a constant conductivity �0 for two parallel sheets
separated by a distance d, Eq. �25� may be written in the
following form:

�Tg� =
3�c

16�2d4 

n=1

� � 1

n4��F��0,n� + G��0,n�� ,

F��0,n� =
c

2��0
�� 2��0/c

1 + 2��0/c
,2n + 1,− 1� ,

G��0,n� =
2��0

c
� 1

2n − 1
�1 − � 2��0/c

1 + 2��0/c�
�2n−1���

�33�

where

��x,a,b� = �
0

x

ta−1�1 − t�b−1dt �34�

is the incomplete beta function.37

For graphene, however, 2��0 /c�1. Then Eq. �33� is ap-
proximated by taking the first term in the sum, which reduces
to

�Tg� �
3�c

8�2d4�1 −
c

2��0
ln�1 + 2��0/c�� . �35�

Further expansion of the ln function and inserting �0 gives

�Tg� �
3�c

16�2d4

2��0

c
=

3e2

32�d4 , �36�

where Eq. �36� is the first term of a perturbative expansion
whereupon �0 is small compared to the speed of light. Thus
the leading term in the force does not depend explicitly on
the Plank’s constant and speed of light any more. This is a
remarkable result originating from the particular value of the
graphene conductivity. We note that the approximate result
from Eq. �35� is fairly accurate since it differs by less than
2% from the numerical integration of the exact result Eq.
�25�.

It is also interesting to see the similarities and differences
between Tg and T0. In particular, the distance dependence of
the Casimir force is the same as the one between two perfect
conductors. This is in marked contrast to previous results
within the hydrodynamic approximation for two planes with

dielectric properties described by the plasma model.15 After
comparing the values of the stress, one obtains Tg /T0
�0.00538. Thus the graphene Casimir interaction is much
smaller in magnitude than the interaction between perfect
conductors. This is directly related to the transparency of the
graphene system, reflected in its small constant conductivity
value.

The interaction between a perfectly conducting plate and
graphene can also be calculated via Eq. �25�. In this case the
force is much larger as compared to the one between two
graphenes. Given the constant �0 for graphene and �→� for
a perfect metal, one finds T /T0�0.025.

The general formula from Eq. �25� allows one to consi-
der the Casimir interaction in a system with more than two
parallel graphenes. Here we study the force within a three
plane system. The interaction between two adjacent graphene
planes will now, not only depend on their distance d2,
but will also depend on the distance of the third plane
d3—Fig. 2.

Figure 3 shows the Casimir force per unit area between
the two graphene sheets when the third one is at a certain
separation d3. We find that when d3�d2, the force between
two graphenes separated at d2 is recovered—�T /T0�
→ �Tg /T�. However, for d3�d2, we obtain �T /T0�
�2 ln 2�Tg /T� indicating that when the third graphene is
brought very close, its contribution to the reflection coeffi-
cients is stronger resulting in a larger effective force.

B. Other models for the conductivity

The low-energy graphene band structure has been very
successful in explaining experimentally observed properties
at various temperatures.34,35 Since the Casimir interaction at
larger separations is determined by that regime �correspond-
ing to optical excitations less than 3 eV�, one concludes that
its qualitative features cannot be an exception. Nevertheless,
as the graphenes are brought closer, the presence of the
higher energy bands besides the ones closest to the Fermi
level also needs to be considered.

Direct measurements of the graphene conductivity have
been done at photonic energies below 3 eV so far.36 Experi-

FIG. 3. �Color online� Casimir force per unit area between two
adjacent graphenes in a three layer system �d2 and d3 are defined
according to Fig. 2�.
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ments appropriate for higher regimes have not been currently
reported. At the same time, investigating � theoretically is
one of the issues at the forefront of graphene science. Recent
ab initio calculations indicate that the in-plane optical prop-
erties of graphite and graphene are very similar over a wide
range of frequencies.38,39 Experimentally it was also reported
that the optical conductivity of graphite per graphene sheet is
very close to the universal �0 value of an isolated graphene40

for low optical frequencies. Thus a viable approach for fur-
ther investigating the Casimir force between graphenes is to
use the in-plane optical data of graphite and transpose it to
graphene.

Results from ab initio calculations for graphite have been
mapped to a series of Lorentz oscillators with a Drude term,
whose parameters fit previous graphite measurements41 be-
tween 0.1 and 40 eV. A plot of the in-plane conductivity as a
function of photon energies is shown in Fig. 4�a�. We note
that in the infrared spectrum � of the two systems are
different–insert of Fig. 4�a�. For graphite, the conductivity
exhibits a Drude-type behavior from intraband transitions

while the conductivity for graphene stays constant. This has
also been observed experimentally40 and it can be explained
in terms of the electronic structures of the two systems. The
onset of the Drude-type term in graphite is related to the
splitting of the energy bands and their becoming slightly
parabolic due to the interlayer interaction while the constant
�0 in graphene originates from cancellations occurring be-
tween the intraband and interband transitions due to the lin-
ear in k energy bands as shown in the Appendix. Thus for the
calculations here, we modify the fitted model41 for photon
energies in the infrared region �below 0.05 eV� by requiring
�=�0 �insert of Fig. 4�a��.

For larger photonic energies, the in-plane graphite con-
ductivity is mainly determined by the single-graphene prop-
erties. The Lorentz oscillator model shows that Re��� stays
relatively constant in the low optical regime �up to 3 eV�,
which means that the universal graphene conductivity has
not been affected significantly by the presence of the other
graphene layers. This is in agreement with previous experi-
mental findings.40 Also, the two peaks in Re��� that appear
around 5 and 15 eV are related to �−�� and �−�� electron
transitions for an isolated graphene,38,39 respectively. A siz-
able imaginary part of the conductivity also appears after 3
eV.

Using this model, the force between two parallel
graphenes is found via Eq. �25�. We show the normalized to
perfect conductors force per unit area as a function of dis-
tance in Fig. 4�b�, both when � is taken from the data of
graphite and when �=�0 over the entire range of frequen-
cies. The plot shows that at longer distances the force ap-
proaches the one given with a constant conductivity, but at
shorter distances higher photon frequency modes contribute
to an increasingly larger force. Note that the force itself is
always real, even with a complex conductivity as shown in
Fig. 4�a�. This is directly related to the requirement that
Kramers-Kronig relations be satisfied, which implies real
contributions to the force.

C. Graphenes and other materials

It is interesting to consider the graphene interaction when
other materials can contribute to their mutual force. Many
experimental settings involve graphenes immersed in some
medium or above a substrate. For example, new methods of
synthesis have been demonstrated with graphene dispersion
and exfoliation in inorganic solvents, ionic liquids, or some
other environment.42 Other situations may involve device
construction or handling of graphene on top of substrates,
such as SiC, SiO2, Ni, etc.43

We apply the formalism we have developed to investigate
how the Casimir force depends on the dielectric response
properties of other materials. The force in a two and three
graphene setting for two cases is considered: above a sub-
strate and immersed in some medium. In many experiments,
the substrate is usually of metallic type,43 thus we model its

dielectric function using �s���=1−

ps

2

�2+i��s
, where 
ps is the

plasma frequency and �s is the decay rate. On the other
hand, the medium where graphenes are submerged usually
has a dielectric nature. Therefore, we use the Lorentz oscil-

FIG. 4. �Color online� a� Re and Im parts of the dynamical
conductivity for in-plane graphite. The universal graphene conduc-
tivity �0 is also shown. The insert displays the infrared regime. �b�
The Casimir force between graphenes as a function of distance with
constant and dynamical conductivities. The force is normalized to
the one for perfect conductors.
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lator model for the dielectric function �m���=1−

pm

2

�2−�0
2+i��m

,
where 
pm is the strength of the oscillator, �0 is its position,
and �m is the decay rate.

Figure 5�a� shows the force between a single graphene
and the substrate and between graphene and the substrate
when a second graphene is above the first one as a function
of the plasma frequency. The interaction is strongly en-
hanced by the substrate as 
ps increases. For very large
plasma frequency, the results approach that of an ideal metal.
Figure 5�b� shows the force between two graphenes in a two
and three layer system as a function of strength of the Lor-
entz oscillator. The medium has the opposite effect as com-
pared to the substrate. As 
pm increases, the graphene force
is strongly suppressed, thus the interaction is screened. This
is also partly due to the large transparency of the layers
themselves. In fact, for larger 
pm, the mutual Casimir force
is determined by the adjacent graphenes while the role of the
third one is small.

VI. CONCLUSION

We have studied the Casimir force between parallel, infi-
nitely thin sheets in free space. The particular absorption

optical properties are taken into account via the conductivi-
ties of each sheet. The derived expressions rely on general-
ized Fresnel reflection coefficients obtained with an iterative
procedure. This is especially convenient since it is applicable
to a system of N sheets. The theory is applied to the case of
graphene/graphene Casimir interaction in order to study how
this fundamental effect depends on the graphene optical re-
sponse and the distance separation. The graphene conductiv-
ity is described with a model based on the low energy band
structure first. In this case, we find that the Casimir force
obeys the same distance dependence as the force between
two perfect conductors, but it is much smaller in magnitude
due to the graphene transparency. These results are directly
related to the existence of a constant graphene conductivity
�0=e2 / �4�� over the optical range of photon energies. This
universal value translates into a mutual Casimir force that
depends only on the electron charge and the distance.

The graphene conductivity is also calculated using a
model based on ab initio calculations and appropriate for
in-plane graphite optical data. For graphite, � however, has
to be modified in the infrared photon energy region in order
to reflect experimental and theoretical results for the exis-
tence of a constant graphene conductivity. This is important
for the interaction in the limit of large separations. In addi-
tion, the Casimir force is investigated when the graphene
system is positioned above a substrate or immersed in me-
dium as a function of the environmental material dielectric
response characteristics.

Finally, we comment that the graphene conductivity might
be influenced by other factors such as electron-phonon inter-
action, electron correlation effects and the presence of exci-
ton. Efforts to understand and quantify these effects theoreti-
cally have just begun.44 Experimental research is also needed
to validate such studies. Thus it would be interesting to ex-
plore in the future other models for the conductivity of
graphene in relation to their mutual Casimir interaction.

ACKNOWLEDGMENT

We acknowledge financial support from the Department
of Energy under Contract No. DE-FG02-06ER46297.

APPENDIX: CONDUCTIVITY MODEL

The conductivity of graphene can be modeled using the
low-energy electron excitations, which obey a linear momen-
tum energy-dispersion relation �= �vFk, where vF�c /300,
and k is the magnitude of the two-dimensional wave vector.16

Within the Kubo formalism, the conductivity is
expressed35,45 using

���,�� = �intra��,�� + �inter��,�� ,

�intra��,�� = −
ie2

��2�� + i���0

�

�d�� � f���
��

−
� f�− ��

��
� ,

(a)

(b)

FIG. 5. �Color online� �a� Casimir force per unit area between
graphene and a substrate �solid black� and between two graphenes
and a substrate �dashed red� as a function of the substrate plasma
frequency. �b� Casimir force per unit area between two adjacent
graphenes in a two �solid black� and three �dashed red� layer system
in a medium as a function of the Lorentz oscillator strength for the
medium’s dielectric function. Also, d=d2=d3=0.1 �m, �0=3 eV,
and �s=�m=0.1 eV.
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�inter��,�� =
ie2�� + i��

��2 �
0

�

d�
f�− �� − f���

�� + i��2 − 4��/��2 ,

�A1�

where f���=1 / �exp�� /kBT�+�1�� is the Fermi-Dirac distribu-
tion function and � is a damping parameter which accounts
for physical processes contributing to broadening of the op-
tical spectrum. �intra�� ,�� is the intraband contribution to
the conductivity which is found to be

�intra��,�� =
i2e2kBT ln�2�
���� + i��

�A2�

while the interband contribution to the conductivity is calcu-
lated as

�inter��,�� = −
ie2�� + i��

8�kBT
�

0

�

dx
tanh�x�

x2 − ���� + i��/4kBT�2 .

�A3�

In the small temperature limit, Eqs. �A2� and �A3� result in �
being a constant—�0=e2 / �4��. Our sample plot of
��i� ,�� /�0 vs �, however, shows that even at higher tem-
peratures, the conductivity does not differ much from the

universal constant value, Fig. 6. Our calculations also show
that the temperature entering through the conductivity has
little effect on the Casimir force. Indeed, the force at 300 K
differs by less than 1% as compared to the one for 0 K.
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