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We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional
�2D� electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our
perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an
effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit
Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and
V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-
order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of
quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to
obtain an effective Hamiltonian to third order in the coupling strength kR� of V, which can be straightforwardly
diagonalized via an additional unitary transformation. We also apply our approach to other types of effective
parabolic confinement, e.g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of
our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level gn factors in the
presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that
spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple
transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of
an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure
makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
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I. INTRODUCTION

For a wide range of systems studied in quantum transport
the starting point of the sample fabrication is a two-
dimensional electron gas �2DEG�. Various nanostructures are
defined in the 2DEG by using either metallic gates to expel
electrons or by etching into the electron gas.1 Quantum wires
can be formed using both methods and in some cases the
wire confinement can be assumed parabolic.

Since the seminal experiments showing conductance
quantization2,3 in narrow gate-tunable constrictions acting as
quantum wires �or quantum point contacts� defined in
2DEGs, these structures have been extensively used to inves-
tigate a rich variety of physical phenomena, e.g., the 0.7
anomaly and analogs.4,5 Spin orbit interaction has also been
investigated experimentally6,7 in parallel quantum wires,
where universal conductance fluctuations are suppressed.
More recently, ballistic spin resonance due to an intrinsically
oscillating spin-orbit field has been experimentally realized
in a quantum wire.8 The observation of the “one-dimensional
spin-orbit gap” in quantum wires has also been reported
recently.9 Both of these experiments highlight the use of
spin-orbit effects in quantum wires as a means to control the
spin of carriers, an important ingredient for potential spin-
tronic applications.

Bulk semiconductors lacking an inversion center in the
crystal lattice have a built-in spin-orbit interaction, the so-
called Dresselhaus term.10 Heterostructures in which the
2DEG is formed by an asymmetric confining potential also

exhibit the Rashba spin-orbit interaction.11 As shown experi-
mentally, the Rashba coupling strength can be tuned via
proper gating of the structure,12,13 which makes the Rashba
interaction very appealing for potential technological appli-
cations involving spin control. More recently, yet a new type
of spin-orbit interaction has been found in symmetric two-
dimensional quantum structures with two subbands: the
intersubband-induced spin-orbit coupling.14,15 Interestingly,
this new spin-orbit interaction gives rise to nonzero intrinsic
spin Hall effect.16

Here we consider a parabolically confined asymmetric
�narrow� quantum well with only the lowest occupied sub-
band and in the presence of both the Dresselhaus and the
Rashba terms

H =
1

2m�
�px

2 + py
2� +

�

�
�py�x − px�y� +

�

�
�px�x − py�y�

+
1

2
m��0

2y2, �1�

where m� is the electron effective mass, �0 characterizes the
strength of the parabolic confinement, px�y� is the momentum
operator in the x�y� direction, and � and � are the Rashba
and the Dresselhaus coupling strengths, respectively. Similar
systems have been studied before in the presence of Landau-
level quantization, using either variational �Hartree-Fock�
methods,17 second order perturbation18,19 or by obtaining the
energy spectrum in terms of perturbation series.20 However,
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we are unaware of any analytical solution for both Rashba
and Dresselhaus that goes beyond second-order perturbation
for multiple levels, i.e., not just treating the two lowest or-
bital levels as in Ref. 21.� We note that in the absence of
magnetic fields the spectrum of 2D electrons with both the
�linear-in-momentum� Rashba and Dresselhaus interactions
is known; for nonzero magnetic fields only particular cases
are solvable but the general solution is not known. The above
model Hamiltonian has also been investigated in connection
with the Zitterbewegung of injected spin-polarized wave
packets in quantum wells and wires.22,23

We have developed a perturbative scheme to diagonalize
our Hamiltonian Eq. �1� based on separating it into terms that
can be treated exactly �effective Jaynes-Cummings model�
plus a perturbative term. In Sec. II we derive the perturbative
scheme in the case of a parabolic quantum wire with Rashba
spin-orbit coupling and in Sec. III we extend it to include
both the Rashba and Dresselhaus interactions. These results
are then applied in Sec. IV to magnetotransport in �i� quan-
tum wires with Rashba coupling and �ii� 2DEGs in a perpen-
dicular magnetic field in the presence of both Rashba and
Dresselhaus couplings. Both of these systems can be mapped
onto the Hamiltonian in Eq. �1� and the general analytical
results derived straightforwardly used. For �i� the approxi-
mate eigenvalues allow us to obtain beating patterns that
directly relate to the Shubnikov-de Haas oscillations, by sim-
ply finding the roots of transcendental equations. This can be
used to more easily extract the Rasbha coupling strength
from experimental data.6 For �ii� we derive an expression for
the effective g factor of Landau levels. Interestingly, we find
that when the g factor is small enough, the spin-orbit effects
cancel out exactly for certain values of the Rashba and
Dresselhaus couplings.

II. PURE RASHBA SPIN-ORBIT COUPLING

When only the Rashba term is present the Hamiltonian of
the system is

HR =
1

2m�
�px

2 + py
2� +

1

2
m��0

2y2 +
�

�
�py�x − px�y� . �2�

It is convenient to introduce the standard ladder operator
which yields the new Hamiltonian

HR =
px

2

2m�
+ ��0a†a −

�kRpx

m�
�y +

i�2kR

�2m��
�a† − a��x, �3�

where we have introduced the Rashba wave vector kR= m��

�2 ,
the oscillator length �=�� /m��0, and the energy is mea-
sured relative to ��0 /2. The system is translationally invari-
ant along the wire �i.e., �px ,HR�=0� so we seek eigensolu-
tions of HR which are plane waves in this direction and
hence eigenvectors of px with eigenvalues �k,

HR =
1

2
k2 + a†a − kRk�y +

ikR

�2
�a† − a��x. �4�

The energy in Eq. �4� is measured in units of ��0, and mo-
menta �both �k and �kR� in l−1. At a first glance, the above

Hamiltonian looks like a shifted harmonic oscillator; how-
ever, since �x and �y do not commute, an exact solution is
not known.

Our goal is to construct a perturbation expansion in the
small parameter kR but note that the product kRk need not be
small. It is convenient to rotate the spin operators to obtain a
new Hamiltonian where the effective magnetic field due to
the momentum along the wire couples to �z

H̃R = e−i�/4�xHRei�/4�x

=
1

2
k2 + a†a − kRk�z +

ikR

�8
��+�a† − a� − h.c.� , �5�

where �+=�x+ i�y. Important features of the spectrum and
the strategy of the following perturbative expansion are best
explained in terms of the zeroth-order Hamiltonian

H̃0 =
1

2
k2 + a†a − kRk�z. �6�

The kets �k ,n ,s� are eigenstates of H̃0. These are also simul-
taneous eigenstates of a†a and �z with eigenvalues n
=0,1 , . . . and s= �1, respectively. The eigenvalues 	ns

0 �k�
− 1

2k2=n−skRk are plotted in Fig. 1 for kR=0.25. Focusing on
positive wavevectors k
0 one sees that the state �k ,n ,−1�
crosses the state �k ,n+1,+1� at k�= 1

2kR
. This means that non-

degenerate perturbation theory cannot be applied to the terms
containing a†�+ �or their Hermitian conjugate� as they
couple these states. On the other hand, states �k ,n ,+1� never
cross �k ,n+1,−1� and thus the coupling terms a†�−, and
their hermitian conjugate, can be treated perturbatively. The
negative wavevector part of the spectrum is analyzed in the
same manner using the Kramers relation 	ns

0 �−k�=	n,−s
0 �k�,

i.e., for k�0 the spin indices in the above discussion are
reversed.
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FIG. 1. Energy spectrum of the zeroth-order Hamiltonian H̃0

− 1
2k2 �Eq. �6�� for kR=0.25 �first ten wire modes shown�. The

circles and squares indicate the crossings between adjacent and
next-to-adjacent, respectively, opposite-spin oscillator states. Here
k�= 1

2kR
defines the crossing point of the energy dispersions of the

states �k ,n ,−1� and �k ,n+1,+1�.
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The above considerations motivate us to separate the
transverse mode coupling into two parts W and V

W =
ikR

�8
�a†�+ − a�−� , �7�

V =
ikR

�8
�a†�− − a�+� , �8�

where W contains the term that couple states that cross and V
is the part of the coupling that can be treated pertubatively
�i.e., V does not couple states that cross�. It is worth pointing
out that V and W are related via time reversal symmetry, i.e.,
V=T−1WT, where T is the time-reversal operator,24 i.e., their
roles are reversed for the negative k states. The following
approximation scheme does not rest upon time reversal sym-
metry. Time reversal is only used to obtain the negative
wave-vector �k�0� states from the positive ones.

Thus we split the Hamiltonian in Eq. �5� into two parts

H̃R = H̃R,JC + V , �9�

where V is defined in Eq. �8� and H̃R,JC is a Jaynes-
Cummings-type Hamiltonian25,26

H̃R,JC = H̃0 + W =
1

2
k2 + a†a − kRk�z +

ikR

�8
�a†�+ − a�−� ,

�10�

which is exactly diagonalizable. In fact, we show in Appen-
dix A that a generalized coupling of the form ���n̂�a†�+
+h.c.�, with � being some generic complex function of n̂
=a†a, can be diagonalized. This will guide us in determining
which terms to keep and which to discard in the following
perturbative expansion in V.

A. Effective Rashba wire Hamiltonian

We start with defining a new Hamiltonian using the trans-
formation

HR� = eSH̃Re−S, �11�

where S is chosen such that

�S,H̃0 + W� + V = 0 + O�kR
4 � . �12�

This procedure is the same as the usual Schrieffer-Wolff
transformation,27 the only difference is that the zeroth-order
Hamiltonian in Eq. �10� contains a term proportional to the
perturbative parameter kR.28 We find that

S = � − ikRa†�−

�8�1 + 2kRk�
+

kR
2 �za

†2

4�1 + 2kRk�
kR

3 Aka�+a†a

+
kR

3 Bk

3 − 2kRk
a†�+	 − h.c. �13�

In the last line we have introduced the factors Ak and Bk
which depend only on k. Here we do not write out the ex-
plicit forms of Ak and Bk since they will only occur in terms

in the effective Hamiltonian kR
4 �the extra power of kR com-

ing from �S ,V�� and can thus be discarded when certain re-
strictions on k are taken into account. The denominator in the
Bk term vanishes when k=3k� since at that k value it couples
states that are degenerate. In order to treat this term pertur-
batively we make the restriction �3k�−k��kR.

We can then proceed with the usual calculations, i.e.,
knowing the form of S the transformed Hamiltonian is

HR� = H̃0 + W +
1

2
�S,V� +

1

3
�S,�S,V�� + O�kR

4 � . �14�

Inserting Eq. �13� into Eq. �14� we obtain the following exact
result �up to the order indicated� for the Hamiltonian

HR� = H̃0 + W + kR
2 1 − �z�2a†a + 1�

4�1 + 2kRk�

+ kR
3 − i

8�2�1 + 2kRk�
�a†aa†�+ − h.c.� + kR

3 Ck

��
1

3
a�+a†a +

1

8
a†3�−� + h.c.	 , �15�

where Ck is a k-dependent factor. Note that the term propor-
tional to Ck only contains operators that couple states sepa-
rated in energy by at least �� and result in corrections in
eigenenergies kR

6 and can thus be dropped. This results in
the effective Hamiltonian for the Rashba wire

HR,eff =
k2

2
+ n̂ − kRk�z −

kR
2

4

1 + �2n̂ + 1��z

�1 + 2kRk�

+
1

2
��a†�+ + a�−��� , �16�

where the function � is defined as

� � ��n̂� =
− ikR

�2
�1 −

kR
2 n̂

4�1 + 2kRk�	 . �17�

The order of the operators in the last term of Eq. �16� is
important since �a ,���0.

B. Diagonalizing HR,eff

An interesting feature of HR,eff, Eq. �16�, is that it can be
diagonalized via a generalized rotation matrix R�k� �see Ap-
pendix A�, which results in

HR,diag = R†HR,effR = �H+�n̂� 0

0 H−�n̂�
	 , �18�

where H��n̂� are given in Appendix A. The eigenstates of
HR,diag�k� are denoted by �k ,n ,s� and corresponding the
eigenenergies 	ns�k� are given by

	n,↑�k� =
k2

2
+ n −

kR
2 /2

1 + 2kRk
+ �n�k� , �19�

ENERGY SPECTRA FOR QUANTUM WIRES AND TWO-… PHYSICAL REVIEW B 82, 155456 �2010�

155456-3



	n,↓�k� =
k2

2
+ n + 1 −

kR
2 /2

1 + 2kRk
− �n+1�k� . �20�

The generalized Jaynes-Cummings coupling mixes adjacent
transverse states with opposite spin, that cross at k� �indi-
cated by the empty circles in Fig. 1�. This mixing is de-
scribed by �n�k�

�n�k� =
1

2
�
1 − 2kRk −

kR
2 n

1 + 2kRk
�2

+ 2kR
2 n
1 −

kR
2 n

4�1 + 2kRk�
�2	1/2

. �21�

Note that the �n ,s�= �0,↑� state reduces to

	0,↑�k� =
k2

2
− kRk −

kR
2

2�1 + 2kRk�
�22�

which reflects the fact that �0,↑� is an eigenstate of the
Hamiltonian in Eq. �16�.

The above perturbative scheme does not depend on the
fact that both W and V have equal coupling strengths. For
completeness we give the eigenvalues for different coupling
values in Appendix C.

C. Numerical vs analytical results: Rashba case

To better understand the range of validity of the above
approximation scheme, it is instructive to look at the original
Hamiltonian in Eq. �4�. When k=0 the Hamiltonian is easily
diagonalized since it is just a shifted harmonic oscillator. The
eigenstates of HR�0� are ei�/4�y�n ,s�, here �0,n ,s�= �n ,s�,
with eigenvalues

	n,s�0� = n −
kR

2

2
. �23�

Note that only the eigenvalues in Eq. �22� reduce to the exact
solution in Eq. �23�, those in Eqs. �19� and �20� do not. The
magnitude of this deviation can be used to determine the
accuracy of the analytical spectrum. The origin of this devia-
tion is that we have chosen to find an approximation scheme
valid for k
0 but not at k=0. This allowed us to do the
necessary approximations to obtain Eq. �16�, whose maxi-
mum deviation from the exact results occurs at k=0. Com-
paring Eqs. �20�–�22� to Eq. �23� gives the deviation of the
approximate solution and the exact one at k=0. Requiring
that the deviation of the approximate solution and the exact
solution be much smaller than the energy separation of the
transverse states

�	 = �	ns�0� − �n − kR
2 /2�� � 1 �24�

yields the inequality
kR

2 n
2 �1, where we have expanded the

square root in Eq. �21� in powers of kR. Fixing the required
value of the absolute accuracy �, e.g., �=5�10−2 for a 5%
accuracy, determines the number of transverse states that sat-
isfy Eq. �24�. The maximum value of n is

n � nmax �
2�4��1/3

kR
2 , �25�

which gives, e.g., nmax=18�116� for kR=0.25�0.1� and �
=0.05. In practice, this requirement is not very restrictive
since in most cases kR can be quite small and the approxi-
mate solutions are good for a very large number of transverse
modes. More specifically, the values of � in usual III-V
semiconductors range from 2 to 20 meV nm, which means
that the above perturbation scheme applies to wires with �
�1 �m and ��100 nm, respectively.

Since the spin-orbit coupling is usually a small effect the
contribution of the kinetic energy k2 /2 is dominant in 	ns�k�.
To emphasize the details of the spin-orbit coupling we plot
	ns�k�−k2 /2. The analytical solution of the spectrum �solid
lines� and numerical solutions �circles� for different values of
the coupling strength are presented in Figs. 2 and 3. In Fig. 2
the dispersion is plotted for k between 0 and 3k�. The dotted
line shows the position of the maximum value of the Fermi
energy which we arbitrarily choose as EF=0.8�nmax+1 /2�, in
order to ensure that the error of approximation is less that �.
The crossing of opposite spin states separated by 3��0
starting at k3k� are always far above EF. This shows that
the effect of discarding the third-order coupling term does
not affect the accuracy of the spectrum. The same is true for
all other plots that follow and in those we restrict the value
of k below 2k�.

The transverse coupling mixes adjacent states with oppo-
site spin leading to a family of anticrossings, as seen in Fig.
2. This can be compared with Fig. 1 which shows the spec-
trum for kR=0.25 and no transverse coupling. Note how the
anticrossing at k� opens up for higher n leading to effectively
flat bands for the low k part of the spectrum. This can be

-1
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8

9

10

0 0.5 1 1.5 2 2.5 3

ε n
s(

k)
-k

2 /2

k/k*

n=9

n=0

FIG. 2. Eigenenergies of the first ten Rashba wire modes for
kR=0.25 �which yields k�=2�. The solid lines are obtained within
our analytical approximation scheme �Eqs. �19� and �20�� while the
empty circles correspond to the �exact� eigenenergies from a nu-
merical diagonalization of HR in Eq. �4�. The deviation between the
numerical and the approximate analytical spectra cannot be seen on
scale of the plot. The dashed line denotes the Fermi energy EF and
the empty squares show the crossings of the states separated by
3��0.
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seen even more clearly in Fig. 3 for n=50–59 and kR=0.1,
where the dispersion is very flat. This will result in the
minima of 	ns�k� moving from approximately kkR to k
0 for higher values of n.

III. RASHBA AND DRESSELHAUS COUPLINGS

In addition to the Rashba spin-orbit coupling, there is also
the Dresselhaus spin-orbit coupling present in quantum het-
erostructures formed from semiconductors having bulk in-
version asymmetry. The Dresselhaus spin-orbit coupling is
present in III-V and II-VI material compounds, although its
relative strength as compared to the Rashba coupling can
vary. Using the same units of energy and length as in Eq. �4�
the Rashba and Dresselhaus spin-orbit couplings �see Eq.
�1�� in our quantum wire can be written as

HRD =
1

2
k2 + a†a − �kR�y − kD�x�k

+
i

�2
�a† − a��kR�x − kD�y� , �26�

where kD is similar to kR with � instead of �. The presence
of the Dresselhaus term leads to extra terms which need to be
taken care of before the procedure of the previous section
can be applied. In the next section the ���� ��� case will be
treated and in the subsequent section we will show how the
���� ��� and ������ cases can be written in the same form
as used in the ���� ��� perturbation calculations.

A. Couplings ���š ���

Let us introduce the angle cos ��kR /�kR
2 +kD

2 and the
rotation operation

kR�y − kD�x = �kR
2 + kD

2 ��y cos � − �x sin ��

= kRDei/2��z�ye
−i/2��z, �27�

where kRD=�kR
2 +kD

2 is the effective spin-orbit coupling. Ap-

plying this spin rotation to the Hamiltonian in Eq. �26�, and
then the rotation used in Eq. �4� that takes ��x ,�y�
→ ��z ,�y�, results in the Hamiltonian

H̄RD � e−i�/4�xe−i/2��zHRDei/2��zei�/4�x

=
1

2
k2 + a†a − kRDk�z +

ikRD

�2
�cos 2��x − sin 2��z�

��a† − a� . �28�

Note that the coupling becomes diagonal in �z when
cos 2�=0. This occurs for values of the spin-orbit angle �
= �

�
4 , which corresponds to the case �= ��. In that case

the exact spectrum reduces to shifted parabolas. The term
proportional to sin 2� can be removed via the unitary trans-
formation

Uz = exp�− iksx̂�z� , �29�

where ks=kRD sin 2� and x̂= 1
�2

�a+a†�. The result of applying

the transformation to the Hamiltonian H̄RD is

H̃RD = Uz
†H̄RDUz

=
1

2
k2 + a†a − kRDk�z −

1

2
�ks�2 +

ikc

�8

���+e−iksx̂�a† − a�e−iksx̂ − h.c.� . �30�

Here kc=kRD cos 2�, along with ks, will play the role of per-
turbation parameters as kR did in Eq. �5�. The above Hamil-
tonian has a similar structure to that in Eq. �5�, being iden-
tical to it when ks=0, i.e., when �=0, �

�
2 . The latter two

values correspond to a pure Dresselhaus �= � ���, where the
sign is determined by the requirement of the perturbation
procedure. The velocity is positive for s=−1 states at k=0,
see Fig. 1. The coupling in Eq. �30� is written in terms of the
exponential operators in order to remove all �z contribution.
Thus, the structure of the transverse coupling in the pure
Rashba case is maintained, i.e., only adjacent states with op-
posite spins are coupled. By rewriting the coupling

e−iksâ�a† − a�e−iksâ = e−i�2ksa
†
a†e−i�2ksa − e−i�2ksa

†
ae−i�2ksa

�31�

and writing the exponential operators as a power series one
can show that the diagonal matrix elements of the operator in
the above equation is zero. The exponential operators add the
complication that states with opposite spins separated by
N��, N�2, are coupled with coupling strength ks

N−1

=kRD
2�N−1� since we have assumed that sin 2��kRD. This as-

sumption limits the possible values of � but the range of
allowed values of � can be extended by repeating above the
arguments around ������ and ���� ���, which will be
shown in the next section.

1. Effective Rashba-Dresselhaus wire Hamiltonian

Now we can proceed as was done with Eq. �11� using the
same form of S but using the substitution kR→kRD in the �z
term and kR→kc in the transverse coupling,

50
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54
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56

57

58

59

60

0 0.5 1 1.5 2

ε n
s(

k)
-k

2 /2

k/k*

n=50

n=59

FIG. 3. Similar to Fig. 2 but for the transverse states correspond-
ing to n=50–59. Here the �Rashba� spin-orbit coupling strength
kR=0.10⇒k�=5. Note that even for such large n’s the deviation of
the analytical solution �lines� from the numerical �circles� can
hardly be distinguished on the scale of the plot.

ENERGY SPECTRA FOR QUANTUM WIRES AND TWO-… PHYSICAL REVIEW B 82, 155456 �2010�

155456-5



HRD� = eSH̃RDe−S. �32�

Using the same arguments as following Eq. �15� we obtain
the effective Rashba and Dresselhaus Hamiltonian for the
wire by discarding all terms that lead to correction of order
�kRD�4:

HRD,eff =
k2

2
+ n̂ − kRDk�z −

�kc�2

4

1 + �2n̂ + 1��z

�1 + 2kRDk�

+
1

2
��RDa†�+ + a�−�RD

† � +
kcks

2

2
��+a†2 + �−a2� ,

�33�

where �RD is defined as

�RD =
− i�kc�2

�2
�1 −

�kc�2a†a

4�1 + 2kRDk�	 . �34�

Equations �33� and �34� have the same form as the corre-
sponding equations for the pure Rashba case, except for the
��+a†2+�−a2� term.

2. Diagonalizing HRD,eff

The goal now is to find a transformation that diagonalizes
Eq. �33�. Instead of finding the exact transformation we will
take advantage of the fact that the rotation operator used in
the pure Rashba case transforms the squared ladder operator
terms into an effective magnetic field term B�n̂��x plus terms
that can be treated perturbatively. This procedure is ex-
plained in Appendix B. The diagonal form of the Rashba and
Dresselhaus Hamiltonian is thus

HRD;diag = R†�R†HRD;effR�R = R†�H+�n̂� B�n̂�

B�n̂� H−�n̂�
	R ,

�35�

where R is the same as in Eq. �18� with renormalized param-
eters �Eq. �33�� and R is the operator that diagonalizes the
2�2 matrix �which commutes with n̂� in Eq. �35�. The quan-
tity B�n̂� is given by

B�n̂� = kcks
2
�n̂�n̂ + 1�

2
�1 − cos ��n̂�� �36�

see Appendices A and B, and the eigenvalues of Eq. �35� are

En,�1 =
	n,↑ + 	n,↓

2
���	n,↑ − 	n,↓�2

4
+ B2�n� . �37�

Note the form is just what one would expect from adding a
magnetic field along the x axis to a system with a magnetic
field, and quantization axis along z.

3. Numerical vs analytical results: Rashba-Dresselhaus case

Figures 4–6 show the comparison of the analytical �Eq.
�37�� and numerical eigenenergies of the Rashba-Dresselhaus
wire, for different values of kRD and the maximum value of
�=0.126, reflecting that sin 2��kRD. The numerical eigen-
values are obtained by diagonalizing the Rashba-Dresselhaus
wire Hamiltonian in Eq. �26�. The insets in Figs. 4 and 6
zoom in on transverse states n=9 and n=59, respectively. On
this scale the difference between the numerics �circles� and
the analytical solution �solid line� is more evident. The maxi-
mum deviation, closest to k=0, is on the order of 4% for the
highest values of n but it should be noted that the relative
error if further reduced by a factor 59.5. Depending on the
required accuracy, the analytical results may be extended be-
yond the strict requirement that sin 2��kRD.
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FIG. 4. Eigenenergies of the first ten transverse modes of the
Rashba-Dresselhaus wire. Here the spin-orbit coupling strength
kRD=0.25 and �=0.126 �����. The solid lines denote the approxi-
mate analytical solution in Eq. �37� while the empty circles corre-
spond to the numerical diagonalization of the corresponding Hamil-
tonian, Eq. �26�. The inset zooms in on the n=9 dispersion,
showing more clearly the deviation between the analytical and nu-
merical solutions. The maximum deviation is about 4% near k=0.
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FIG. 5. Similar to Fig. 4 with kRD=0.10 and �=0.126 �����.
The deviation of the analytical solution �lines� from the numerical
�circles� is on the order of a few percents, and on the scale of the
plot can hardly be distinguished.
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B. Couplings ���™ ��� and ���É ���

The rotation introduced in Eq. �28� consists of two parts.
The first part has the purpose of rotating the spin-orbit cou-
pling term linear in k along �y, resulting in the same cou-
pling as in the pure Rasbha case. The second rotation simply
transforms �y→�z and does not affect the perturbation
scheme itself. The former rotation works for any value of �,
although the perturbation scheme for the transverse coupling
only works for sin2��kRD. With this in mind the cases ���
��� and ���� ��� can be treated in a similar way.

When ���� ���, it is convenient to parametrize the spin-
orbit angle as �= �

2 +�, where � is a small parameter. The
same steps are taken to arrive at the same equation as in Eq.
�28� apart from the new parameters ks=kRD sin��+2��=
−kRD sin�2�� and kc=kRD cos��+2��=−kRD cos�2��. Since
the spectrum is even in the transverse coupling parameters
kc,s the eigenenergies for ���� ��� are the same as those in
Eq. �37�.

If the couplings are of similar strength, ������, the angle
is parametrized as �= �

4 −�, where � is again a small param-
eter. The Hamiltonian after the rotation is

H̄RD � e−i�/4�xe−i/2��/4−���zHRDei/2��/4−���zei�/4�x

=
1

2
k2 + a†a − kRDk�z +

ikRD

�2
�sin 2��x − cos 2��z�

��a† − a� �38�

which is identical to Eq. �28� apart from the switched roles
of sine and cosine due to the phase difference of � /2. As
before, we can now proceed with proper unitary transforma-
tions in order to arrive at an effective Hamiltonian, which
can be similarly diagonalized to obtain an approximate ana-
lytical expression for the eigenvalues. Figure 7 shows nu-
merical and analytical results for the eigenenergies of the
Rashba-Dresselhaus wire with kRD=0.25 and different values
of �: �=� /2−� and �=� /4−�, with �=0.1. The solid line

and the empty circles denote the �=� /2−� results of the
analytical �Eq. �37�� and numerical solutions, respectively.
The difference between the analytical and the numerical re-
sults are similar to the case with �=�, i.e., they are close to
5% corresponding the estimate given at the end of Sec. II.
The �=� /4−� results look slightly different. The maximum
deviation between the analytical and the numerical results
occurs near k /k�=2, where the contribution of the a2, a†2

terms is the greatest.
This is best understood by looking at Eq. �5�. The phase

shift reverses definition of ks and kc so kckRD
2 and kskRD.

Contributions from higher order terms in the exponential are
thus larger and lead to the deviation around k /k�=2. This
demonstrates that the perturbation scheme for ���� ��� also
works, within the accuracy determined by �, by adjusting the
value of the spin-orbit angle according to ������ and ���
� ���.

IV. MAGNETOTRANSPORT IN RASHBA WIRES AND
EFFECTIVE g FACTORS IN SO COUPLED 2DEGS

In this section we treat two relevant physical problems in
which the approximation scheme developed in the preceding
sections can be applied: �i� magnetotransport in a Rashba
wire and �ii� the calculation of g factors in spin-orbit coupled
�Rashba-Dresselhaus� 2DEGs. In both �i� and �ii� we con-
sider perpendicular magnetic fields.

A. Shubnikov-de Haas oscillations

In quantum wires the Shubnikov-de Haas oscillations in
the magnetoresistance �along the wire� arise from the subse-
quent depopulation of the transverse wire modes as the bot-
tom of their bands cross the Fermi energy EF for increasing
magnetic fields.29 This is similar to what happens in 2DEGs
and also in bulk metal systems �see Chapter 11 in Ref. 30�.
Similarly to 2DEGs, in quantum wires Shubnikov-de Haas
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FIG. 6. Similar to Fig. 5 but for the wire modes corresponding
to n=50–59. Here kRD=0.10 and �=0.126 �����. The inset shows
more clearly the deviation of the analytical solution �solid line�
from the numerical one �circles� for the n=59 mode. The maximum
deviation is less than 4% near k=0.
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FIG. 7. Here we plot the numerical and analytical solution for
kRD=0.25 with ��� �solid line and circles� and �� �dashed line
and squares� for levels �5,↑� and �9,↑�. The analytical solution is
the same as that derived for the ��� case. Note that the ��
solution is accurate near k=0 but deviates more for k2k�, see text
for details.
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oscillations allow the extraction of spin-orbit coupling
strengths from the oscillation beating patterns. Following the
prescription in Refs. 6 and 31, below we outline in detail
how magnetoresistance beating patterns can emerge from the
uneven distribution of the positions �in magnetic field� at
which the subsequent bottoms of the transverse bands cross
EF.

Figure 8 shows a plot of the dispersion relation �from Eqs.
�19� and �20�� for a parabolic quantum wire with Rashba
spin-orbit coupling kR=0.135 in the absence of a magnetic
field. Note that here the plot includes the kinetic-energy con-
tribution. Applying a magnetic field B perpendicular to the
2DEG increases the effective confinement of the wire, result-
ing in an effective confinement strength of

� = ��0
2 + �c

2, �39�

where �c=eB /m� is the cyclotron frequency. This raises the
bottom of the bands, thus shifting the spectrum to higher
energies. As the magnetic field increases the highest states
below EF are pushed above EF. This gives rise to a peak in
the magnetoresistance. As the magnetic field is further in-
creased more states cross EF thus leading to oscillations in
the Shubnikov-de Haas signal.32 As was discussed in Sec. II
the minima of 	n,s�k� occur at k0, at least for high enough
n. For lower values of n, where the minima is closer to k
kR, the approximation k0 leads to an error in the roots of
order kR

2 . Hence, further below when we need to determine
the values of B for which the highest energy level crosses EF
we will use 	ns�k=0,B�=EF.6,31

Using the ladder representation the Hamiltonian of a
quantum wire in a perpendicular magnetic field at k=0 �wave
number along the wire� is given by

H = �1 + r2a†a −
�g��
4

m

m0
r�z +

ikR+

2�2
�a†�+ − a�−�

+
ikR−

2�2
�a†�− − a�+� , �40�

where r=�c /�0 and the bare electron mass m0 appears

through m
m0

=
m�B

2e . The coupling coefficients are defined as

kR+ = kR
�1 + r2�1 + r2/�1 + r2�� , �41�

kR− = kR
�1 + r2�1 − r2/�1 + r2�� . �42�

In writing Eq. �40� we assumed a negative g factor. By com-
paring Eqs. �5� and �40� we see that g� plays the same role as
k in the �z term. The relation 	n,s�k�0�=	n,−s�k
0� gives
the spectrum for the opposite signs of the g factor by simply
reversing the spin label, as discussed following Eq. �6� on
how to access the k�0 part of the spectrum. Note that the
coupling strengths above are not identical since the magnetic
field breaks time reversal symmetry. This is in contrast to
Eqs. �7� and �8�. However, as we pointed out following Eq.
�8� this does not affect the approximation scheme we have
developed. The eigenvalues are obtained by substituting the
parameters in Eq. �40� into Eqs. �C2� and �C3� in Appendix
C.

Figure 9 shows the bottom of the energy bands 	ns�k
=0,b� as a function of the magnetic field. As the magnetic
field is increased the k=0 levels subsequently cross EF, thus
depopulating completely the corresponding transverse mode.
These crossings occur at discrete values of r that we denote

by ri, which correspond to magnetic field values Bi=
m��0

e ri.
The black dots in the inset of Fig. 9 shows the first 13 values
of ri corresponding to solutions of 	ns�k=0,ri�=EF /�0 for
different values of �n ,s�. This results in a sequence of roots
�ri�, each corresponding to the specific magnetic field value

Bi=
m��0

e ri.
Plotting the difference between subsequent roots �ri

=ri+1−ri as a function of ri gives rise to the data �black dots�
in Fig. 10. The dashed envelope in Fig. 10 highlights the
beating pattern of the crossings. As discussed in Ref. 6 the
data in Fig. 10 is directly related to the Shubnikov-de Haas
oscillations of the wire: intuitively, the subsequent magnetic
field-induced depopulation of the transverse subbands affects
the resistance of the wire because the number of conducting
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FIG. 8. B=0 eigenenergies of a Rashba wire �Eq. �37�� as a
function of k for a Rashba coupling strength kR=0.135 and EF
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channels is being reduced. Hence the beating pattern describ-
ing the magnetic field positions of the subsequent crossings
of the band bottoms should manifest itself also in the mag-
netoresistance of the wire.

We emphasize that the observed beating pattern arises
from the superposition of the two spin-dependent contribu-
tions that have different frequencies: the Zeeman splitting
and the Rashba coupling. The parameters used in the figure
are kR=0.125, 0.135, and 0.145, g�=−4, and m /m0=0.037,
corresponding to Ga0.23In0.77 As. Assuming ��0=1 meV,
the value kR=0.135 corresponds to a Rashba coupling �
=6.38 meV nm; both are realistic experimental values.6,31

By examining the Shubnikov-de Haas oscillations obtained
in experiments the difference in magnetic field between the
node points can be extracted. The value of the experimental
node separation �in terms of magnetic field� can the used to
extract the spin-orbit coupling from the numerics shown in
Fig. 10, i.e., finding � that will give the node point separa-
tion equal to the experimental value.

Since in our approach the determination of the relevant

intersecting fields Bi=
m��0

e ri is straightforward via the tran-
scendental equation 	ns�k=0,ri�=EF /�0�, we believe the
procedure just outlined should make it simpler to extract of
the Rashba spin-orbit coupling from Shubnikov-de Haas os-
cillations in quantum wires.

B. Landau-level g factor

Our approximation scheme can also be used to obtain the
effective g factor of a 2DEG in a perpendicular magnetic
field and in the presence of both Rashba and Dresselhaus
interaction. Again assuming a negative g factor, the Hamil-
tonian of the system is

H =
1

2m
��x

2 + �y
2� −

1

2
�g���BB�z +

�

�
��y�x − �x�y�

+
�

�
��x�x − �y�y� , �43�

where �=p+ eB
2 r� êz. By defining the usual ladder operators

a =
�c

�2�
��x + i�y� , �44�

where �c=�� /eB, the Hamiltonian can be written as

H = ��ca
†a −

�g��
2

�BB�z +
2�

2�2�c

�a†�+ + a�−�

−
i2�

2�2�c

�a†�− − a�+� . �45�

Through the transformation a→ae−i3�/4 and �+→�+e−i�/4

and measuring the energy in terms of the cyclotron energy
��c=�eB /m� we recover the Hamiltonian in Eq. �5� with
renormalized parameters. Due to the magnetic field, the
Hamiltonian in Eq. �45� is no longer symmetric under time
reversal and the Jaynes-Cummings term W and the perturba-
tion term V are no longer transformed into one another under
time reversal but as mentioned before this does not affect the
approximation scheme.

The energy spectrum of the Hamiltonian in Eq. �45� is
obtained by substituting the renormalized coupling param-
eters into Eqs. �C2�–�C4�, in Appendix C. This shows that
the Hamiltonian for a 2DEG in a perpendicular magnetic
field in the presence of Rashba and Dresselhaus couplings is
formally equivalent to a parabolically confined 2DEG with
Rashba interaction. Note that the spectrum for pure Dressel-
haus coupling, �=0, reduces to the known result for 2DEG
in a perpendicular magnetic field and with Dresselhaus
coupling.33

From the energy spectrum 	ns the g factor can be defined
for different Landau levels. We do not include the effects of
electron-electron interaction, e.g., exchange enhancement of
the g factor34 but rather focus on the effect of the spin-orbit
coupling. The g factor of Landau level n is defined as the
difference of Kramers doublets divided by �BB

gn =
	n↑ − 	n↓

�BB
. �46�

In the absence of spin-orbit coupling the g factor is equal to
g� for all Landau levels.

In Fig. 11 we plot the effective g factor for the first four
Landau levels for two values of �g��. The parameter values
are B=2 T, m

m0
=0.037, and �=6 meV nm and different

g-factor values �g��=4 and �g��=1 while � ranges from zero
to 8 meV nm.

For the lower value �g��=1 the effective g factor changes
sign for n�2 for low values of �. As � is raised all the gn’s
cross at a single value of �. Similar crossing behavior is
observed for �g��=4 but the sing of gn remains the same since
for n=0–3. The results shown in Fig. 11 are best understood
by expanding Eq. �46� assuming that � ,����c�c /2. The g
factor then becomes
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FIG. 10. Separation between subsequent roots �ri=ri+1−ri,
plotted as a function of ri. The separation of the node points, e.g.,
r1.0 and r2.5 for the uppermost curve, is determined by the
value � / ��0���.
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gn

�g��
 − 1 +

8
n +
1

2
�

�g��
2

m

m0
� �kD�c�2

1 −
�g��
2

m

m0

−
�kR�c�2

1 +
�g��
2

m

m0
� .

�47�

Note that �g��
2

m
m0

�1 for typical parameters. The above equa-
tion shows two important things. First, the g factor can
change sign when the spin-orbit part exceeds −�g�� which can
occur for high enough values of n or �. Second, the effect of
the spin-orbit interaction is completely canceled when the
Rashba and the Dresselhaus couplings satisfy the condition

�kD�c�2 = �kR�c�2

1 −
�g��
2

m

m0

1 +
�g��
2

m

m0

. �48�

Such crossings are a general feature of having both the
Rashba and the Dresselhaus couplings but the sign change
can only occur for small enough values of �g��.18 Note that if
g�=0, this condition corresponds to �= ��, where the en-
ergy spectrum is known and the spin splitting of Kramers
doublets is zero. The above results may prove useful for
experimentalist to extract spin-orbit coupling strengths via
g-factor measurements.

V. CONCLUSION

We have developed an analytical approximation scheme
suitable for obtaining the energy spectrum of systems with
both the Rashba and Dresselhaus spin-orbit couplings and
parabolic confinement, e.g., due to a magnetic field or elec-
trostatic gating. We have applied our approach to investigate
�i� magnetotransport in quantum wires with the Rashba cou-
pling and �ii� the effective g factor of a 2DEG in a perpen-
dicular magnetic field in the presence of both the Rashba and

the Dresselhaus couplings. In �i� our approximate eigenval-
ues allow us to obtain beating patterns that relate to the
Shubnikov-de Haas oscillations, by simply finding the roots
of transcendental equations. For �ii� we derive a relation for
the Landau-level-dependent effective gn factor. We find that
for small enough bulk g factors the spin-orbit effects drop
out of gn for certain values of the Rashba and Dresselhaus
couplings. We believe our analytical approach should allow
for a more straightforward extraction of spin-orbit coupling
strengths from Shubnikov-de Haas oscillations in wires and
g-factor measurements in 2DEGs.
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APPENDIX A: ROTATION OF GENERALIZED
JAYNES-CUMMINGS

The Hamiltonians in Eqs. �16� and �33� can be written in
the form

Heff = � h1�n̂,k� ��n̂,k�a†

a���n̂,k� h2�n̂,k�
	 , �A1�

where n̂=a†a and the diagonal elements are defined as
h1�a†a ,k�= �+1�Heff�+1� and h2�a†a ,k�= �−1�Heff�−1�. All the
matrix elements depend on k but since it is only a parameter
it is dropped for convenience. The goal is to find a unitary
transformation, or rotation, R that diagonalizes the Hamil-
tonian in Eq. �A1�. If the ladder operator a�a†� is replaced by
a complex number ����� the rotation operator reduces to

R0 =� cos
�

2

���

�������
sin

�

2

−
���

�������
sin

�

2
cos

�

2
� . �A2�

Note that the factor ��

�������
can equivalently be written in the

usual phase factor form ei�. The choice of our notation will
help to understand the form of the general rotation matrix
discussed below, see Eq. �A5�. To take into account the com-
mutation properties of the ladder operators in the diagonal-
ization of Eq. �A1�, we start with the form

R =�
1

�1 + X†X
X† 1

�1 + XX†

− 1
�1 + XX†

X
1

�1 + XX†
� , �A3�

where X is an operator that depends only on the ladder op-
erator, to be determined. The diagonalization requires that
the 2�2 spin matrix

Hd = R†HeffR �A4�
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FIG. 11. nth-Landau-level gn factors for two different values of
�g��=4 and �g��=1, as a function of Rashba coupling. Other param-
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=0.037, and �=6 meV nm.
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has zero off-diagonal elements. Using the ansatz X†=
−a†��n̂� and the relation f�n̂�a=af�n̂−1� the diagonalization
is achieved when ��n̂�= 1

�n̂+1
tan��n̂�

2 . and the rotation opera-
tors takes the form

R = ��1 − Q0� + cos
��n̂ − 1�

2
Q0 −

��n̂�
���n̂��

a†

sin
��n̂�

2

�n̂ + 1

sin
��n̂�

2

�n̂ + 1
a

���n̂�
���n̂��

cos
��n̂�

2
� .

�A5�

The diagonalization is achieved when ��n̂�= 1
�n+1

tan��n̂�
2 .

Here we have introduced the operator Q0=a† 1
a†a+1

a. The op-
erator Q0 acts as the complement of the projector into the
oscillator ground-state P0= �0��0�, i.e., Q0�n�= �n� if n
0 and
Q0�0�=0. It does not appear in any of the other matrix ele-
ments since only the operator 1 /�1+X†X gives rise to Q0,
not the other form 1 /�1+XX†. This asymmetry comes from
the fact that �0,+1� is an eigenstate of Eq. �A1� but not of
�0,−1� or of any other state �n
0,s�. The angle operator
��n̂� is defined via the usual relation

cos ��n̂� =
h1�n̂ + 1� − h2�n̂�

��h1�n̂ + 1� − h2�n̂��2 + 4�n̂ + 1����n̂ + 1��2
.

�A6�

The form of the matrix in Eq. �A5� is reminiscent of the form
of Eq. �A2�, the difference coming from the noncommutivity
of a and a† and the operator Q0.

The eigenenergies are determined by the diagonal ele-
ments of Hd, which are given by

�Hd�2,2 =
1

2
��h1�n̂ + 1� − h2�n̂��

− ��h1�n̂ + 1� − h2�n̂��2 + 4�n̂ + 1����n̂ + 1��2� ,

�A7�

�Hd�1,1 = h1�n̂��1 − Q0� +
1

2
��h1�n̂� − h2�n̂ − 1��

+ ��h1�n̂� − h2�n̂ − 1��2 + 4n̂���n̂��2�Q0. �A8�

The two equations above are obtained by algebraic manipu-
lations of Eq. �A4� and collecting all powers of a from
1 /�1+X†X and writing them in terms of Q0�a† 1

a†a+1
a and

1−Q0.

APPENDIX B: ROTATION OF �+a†2+h.c.

The effective Hamiltonian in Eq. �33� cannot be exactly
diagonalized using the rotation in Appendix A. This is due to
the term 1

2 ��+a†2+h.c.�. From the Hamiltonian that results
from the rotation it is easy to discard terms which give cor-
rections O��kRD�4�. Using the property ���n̂�

���n̂�� = i, the trans-
formed second-order coupling is

R†1

2
��+a†2 + �−a2�R

= �n̂�n̂ + 1� sin
��n̂ − 1�

2
sin

��n̂�
2

�x

+ i�z�a† sin
��n̂ − 1�

2
cos

��n̂�
2

− h.c.	
+

1

2
��+�a† cos

��n̂�
2

	2

+ h.c.� . �B1�

As can be seen in Figs. 2 and 3, the only states that cross are
the same transverse states with opposite spin, e.g, when n
=1 the ↑ and ↓ states cross at k3.75 in Fig. 2. Taking
advantage of this behavior we can determine which terms in
Eq. �B1� need to be kept and which can be dropped. The first
term in Eq. �B1� couples states with opposite spin but same n
and the latter two terms couple adjacent transverse states that
do not cross and can be treated perturbatively. They give rise
to corrections in energy O��kRD�4� and can be discarded.
From these considerations the form of the rotated second-
order coupling is

R†kcks
2

2
��+a†2 + �−a2�R

= kcks
2
�n̂�n̂ + 1�

2
�1 − cos ��n̂���x + O�kc

2ks
3� . �B2�

APPENDIX C: THE EIGENENERGIES FOR GENERAL
COUPLING VALUES

For completeness here we provide the eigenvalues of a
generic Hamiltonian of the form

H =
k2

2
+ a†a − X�z + i

Y

2�2
�a†�+ − a�−� + i

Z

2�2
�a†�− − a�+� ,

�C1�

where X, Y, and Z are real numbers and the last term, pro-
portional to Z, is the perturbative coupling. The only restric-
tion on the parameter values are that X
0 and Y and Z
should be of the same order of magnitude although their
numerical value can be different. This type of Hamiltonian
covers all models discussed in this paper. Up to corrections
of the order Z4, the resulting eigenvalues are
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	n,↑�k� =
k2

2
+ n −

Z2/2
1 + 2X

+ �n, �C2�

	n,↓�k� =
k2

2
+ n + 1 −

Z2/2
1 + 2X

− �n+1, �C3�

where

�n =
1

2
�
1 − 2X −

Z2n

1 + 2X
�2

+ 2Y2n�1 −
Z2n

4�1 + 2X�	2�1/2
.

�C4�

When Z=0 the spectrum reduces to the known Jaynes-
Cummings solution.
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