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We investigate the vibrational modes and infrared spectra of the exceptionally stable isovalent X@Si16 �X
=Ti, Zr, and Hf� nanoparticles, making use of first-principles density-functional theory. Our results predict the
existence of high-intensity modes of low frequency. An estimate of the electron-phonon coupling strength � is
also provided based on a single-molecule method introduced recently. The large value of � combined with
predicted stability of bulk materials assembled with these nanoparticles suggest that these materials, when
appropriately doped, may exhibit high-temperature superconducting properties.
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I. INTRODUCTION

The X@Si16 �X=Ti, Zr, and Hf� nanoparticles are the
most stable neutral silicon clusters known to date. These
metal-silicon clusters were predicted theoretically in 2001
�Ref. 1� and their stability has been confirmed experimen-
tally using laser ablation2 or magnetron cosputtering3 tech-
niques. Recently we investigated the possibility of using
these nanotemplates to synthesize stable molecular solids.4,5

Our results predict the formation of stable, wide band-gap
materials crystallizing in hcp structures in which the nano-
particles bind weakly while maintaining their structural in-
tegrity. We also identified the “double-magic” nature of the
isolated nanoparticles, which translate into low-chemical re-
activity, large highest occupied molecular orbital-lowest un-
occupied molecular orbital gaps and a self- organization of
one-electron energy shells similar to a sphericallike jellium
super atom, thus providing crucial hints toward the design of
feasible new cluster assembled materials. In this work we use
first-principles computer simulations within density func-
tional theory to investigate the vibrational modes and infra-
red spectra of the isolated X@Si16 �X=Ti, Zr, and Hf� clus-
ters. These results further extend our previous theoretical
characterization,5 which can be used in conjunction with ex-
periments to help identify these nanoparticles in the
laboratory.6,7

Furthermore, making use of the vibrational spectra of
these 17-atom clusters, we provide an estimate of the
electron-phonon interaction strength � of hypothetical super-
conductors assembled using these nanoparticles. Indeed, the
recent discovery of superconductivity in boron-doped
diamond8,9 has once again revived the interest in covalent
superconductors. Despite the low-superconducting transition
temperature Tc�4 K this result helped consolidating an in-
creasingly unified approach to the understanding of super-
conductivity in covalent materials.10,11 Covalent materials in
appropriate conditions, such as intercalated graphite,12,13

high-pressure silicon14 and germanium, carbon nanotubes,15

alkali-doped fullerides,16,17 and magnesium diboride18 are all
superconductors. These materials have a lower Tc than the
cuprates19 but contrary to the cuprates case, the theoretical
understanding of the superconducting mechanism in these
materials seems solid. The Migdal-Eliashberg20–22 theory of

phonon mediated superconductivity coupled to modern
electronic-structure density-functional theory �DFT� has
been successfully applied to such covalent superconductors.
As a consequence the field is now at a point where theorists
can benefit from valuable insights of experiments and experi-
ments can be designed to target materials with predesigned
properties defined theoretically. Furthermore, molecular frag-
ments can be used to estimate the electron-phonon coupling
strength and even estimate Tc in hypothetical
superconductors,23,24 as we shall do in this work.

The paper is organized as follows: in Sec. II details of the
method and simulations carried out are provided. Results and
discussion are left to Sec. III whereas main conclusions and
future prospects are postponed to Sec. IV.

II. METHODS

All ab initio calculations were performed within the gen-
eralized gradient approximation25 to DFT using norm-
conserving pseudopotentials26 and a plane-wave basis.27,28

An energy cut-off of 30.0 Hartree �816 eV� was used
throughout, leading to well converged forces within 0.02 eV/
Bohr.

A. Vibrational modes

The vibrational modes of frequency � are obtained via a
periodic displacement in time of each nuclei I

uI�t� = uIe
i�t.

This leads to the following eigenvalue equation:

− �2MIuI = �
J

�2E�R�
�RI � RJ

uJ

which involves second derivatives of the ground-state energy
E�R� with respect to all N nuclei positions RI �I=1, . . . ,N�.
Solving these equations leads to a set of frequencies ����
=0, . . . ,3N� and corresponding normal modes u�=u�,�

� e� in-
volving the collective displacements of the nuclei ��
=0, . . . ,N� along the Cartesian directions ��=x ,y ,z�.

B. Infrared spectrum

The absolute infrared intensity of the mode � is given by29
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I�
IR = K� �

�,�,�
Z�,�,�

� u�,�
� �2

with �=1, . . . ,N and � ,�=x ,y ,z. For intensities in
�D /Å�2amu−1 and Z in atomic units, K=4.2056�104. The
Born effective charge tensor Z� is the second-order deriva-
tive of the energy with respect to both the electric field G
and the nuclei displacement R�

Z�,�,�
� =

�2E

�G� � R�,�
·

The second derivatives of the ground-state energy, with re-
spect to atomic displacements and/or homogeneous electric
fields are computed using density-functional perturbation
theory �DFPT�.30,31

C. Estimates of the electron-phonon coupling strength

Phonon mediated superconductivity is currently best de-
scribed by the Eliashberg equations20–22 which themselves
are extensions of the BCS theory.32 The key quantity in this
theory is the electron-phonon spectral function �2F. Assum-
ing an isotropic gap function this quantity is given by

�2F��� =
1

N↑�	F� �
�,nk,n�k�

�gnk,n�k�
� �2

� 
�	F − 	nk�
�	F − 	n�k��
�� − �k−k�
� � , �1�

where N↑�	F� is the density of states �DOS� per spin at the
Fermi level 	F. The sum is done over all the phonon modes
�, electron bands n ,n� and wave vectors k ,k�. The matrix
elements gnk,n�k�

� encode the scattering of an electron from a
state nk to the state n�k� while emitting or absorbing a pho-
non of frequency �, mode � and wave vector k−k� while the
first two delta functions restrict the scattering to electrons in
the Fermi surface. The double sum over the Brillouin zone in
Eq. �1� requires a large number of matrix elements. There-
fore in general an accurate calculation of �2F is computa-
tionally very demanding. There are, however, some approxi-
mations that can be made which do not sacrifice most of the
physics. The electron-phonon interaction is generally short
ranged. In molecular solids, in particular, the dispersion of
both the phonons and the electrons may be small. It is hence
reasonable to consider only the coupling of the electrons to
the intramolecular modes. This approach has been previously
applied in several molecular systems using different metrics
for the electron-phonon interaction strength.17,23,24 Consider-
ing only intramolecular, i.e., �-point phonons �q=k−k�=0,
that is, a single k point, k=0� but retaining the off-diagonal
elements this function reduces to

�2F���� =
1

N↑�	F� �
�,n,n�

�gn,n�
� �2

� 
�	F − 	n�
�	F − 	n��
�� − ��� . �2�

The electron-phonon matrix elements are obtained from the
self-consistent variation in the electronic potential by dis-
placing a nucleus � in the direction �. These, however, can

be obtained directly from the DFPT computation of the vi-
brational modes. By transforming them to phonon coordi-
nates and summing all the contributions from all atoms and
directions the matrix elements for each mode � are given by

gn,n�
� = �

�,�

u�,�
�

�2M��
�
�n�

dVSCF

dR�,�
�n�	 ·

In the calculation of �2F��� using Eq. �2� the delta functions
have been replaced by normalized Gaussians with a smearing
value of 0.01 Hartree. Using this value, the difference be-
tween the computed DOS of the isolated nanoparticles at the
Fermi level and the corresponding DOS of the cluster as-
sembled materials is minimized. From the Eliashberg spec-
tral function the isotropic electron-phonon coupling strength
can then be calculated

� = 2

0

�

d�
�2F���

�
·

Molecular materials assembled with the X@Si16 �X=Ti,
Zr, and Hf� nanoparticles are predicted to be insulators.4,5

However, by appropriately doping these materials with elec-
tron donor atoms one hopefully expects these extra electrons
from the dopant atoms to occupy some conduction bands of
the bulk materials without altering much the overall band
structure. Both �2F���� and � have an implicit dependence
on the Fermi level: �2F����=�2F��� ;	F� and �=��	F�. By
varying 	F then ��	F� can be estimated for a set of electronic
levels in the hypothetical conducting material. In particular
this information can be used to maximize the electron-
phonon coupling strength. Choosing carefully the number of
valence electrons of the dopant atoms we can try to maxi-
mize the electron-phonon coupling strength and therefore the
superconducting transition temperature since in the strong
coupling regime Tc�����2	. This methodology has been
recently employed by Moussa and Cohen24 to estimate the
electron-phonon coupling and possible superconductivity in
hypothetical covalent materials. These authors used a some-
what different metric for the electron-phonon coupling
strength �which is independent of the phonon details�, and
also an upper bound of Tc: see Eqs. �2� and �1�, respectively,
of Ref. 24. A similar methodology was also used to success-
fully describe superconductivity in boron-doped diamond33

in this case with a �-point approximation to the Eliashberg
spectral function. In line of what was done in Ref. 33 we
choose to retain the phonon details of the molecule on the
calculation of � but use a single k point.

D. Estimates of the superconducting transition temperature

The superconducting transition temperature Tc was esti-
mated by solving numerically34,35 the Eliashberg gap equa-
tion for an electron-phonon spectral function �2F��� and a
parameter 
� which is the coulomb pseudopotential oppos-
ing superconductivity. 
� is typically between 0.1 and 0.15
in metals and variations in this interval only affect the deter-
mination of Tc in a few percent. We use 
�=0.1 in the esti-
mation of Tc. The isotropic linearized Eliashberg gap equa-
tion in the Mastsubara representation can be written as
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��̄�i�n� = �
m=−N−1

N ���n − m� − 
��N� −

mn��̃n�

�T

 � �̄�i�m� ,

�3�

where �̄ is a modified gap parameter

�̄�i�n� =
��̃n/�n���i�n�

��̃n� + �T�

� is a pair-breaking parameter and �̃n is a renormalized fre-
quency

�̃n = �nZ�i�n� = �n + �T���0� + 2�
l=1

n

��l�
 ,

where �n=2�nT. The parameter 
��N� is the rescaled 
�

taking into account the necessary numerical truncation at �N

1


��N�
=

1


�
+ ln���w	2

�N
�

with the moments of the spectral function given by

��n	 =
2

�



0

�

d��2F����n−1·

Finally the electron-phonon interaction parameters ��n� are
defined by:

��n� = 2

0

�

d�
�2F����

�2 + �2�nT�2 ·

After a simple manipulation Eq. �3� can be cast as a simple
eigenvalue problem

�
n=0

N

�Kmn − �
mn��̄�i�n� = 0 �4�

with
Kmn = ��m − n� + ��m + n + 1� − 2
��N�

− 
mn�2m + 1 + ��0� + 2�
l=1

m

��l�
 ·

The pair-breaking parameter � is only a simple mathematical
device introduced to solve the Eliashberg equation. At the
critical temperature it becomes zero. Tc is then determined
by lowering T from a sufficiently large value. At this initial
temperature all the eigenvalues of Eq. �4� are negative. How-
ever, as T is lowered toward Tc one of the eigenvalue be-
comes zero while all the others remain negative.

III. RESULTS AND DISCUSSION

The structures of the X@Si16 �X=Ti, Zr, and Hf� nano-
particles were obtained using the procedure outlined in a
previous work.5 Following the ground-state structure deter-
mination, a computation of the second-order derivatives of
the energy with respect to this set of coordinates was carried
out. The mixed second-order derivatives of the energy with

respect to the coordinates and the electric field were also
determined. The set of frequencies ��, normal mode dis-
placements u� and the Born effective charges Z� were then
determined from the second order derivatives of the ground-
state energy of each nanoparticle.

In Fig. 1 we show the results of the calculation of the
infrared spectrum using the procedure described in the pre-
vious section. To facilitate the comparison with experiments
and previous theoretical work, the calculated intensities are
replaced with normalized Gaussian functions with intrinsic
width 10 cm−1. In all three cases the normal modes have
frequencies which are low compared to, e.g., isolated
fullerenes, exhibiting sizable intensity �200 cm−1. This pic-
ture is consistent with a weaker bonding of the silicon atoms
in the X@Si16 �X=Ti, Zr, and Hf� nanoparticles compared to
the carbon atoms in the fullerene clusters. The IR spectrum
for Ti@Si16 depicted in the upper panel of Fig. 1 is nearly
identical to the one obtained by Nakajima and co-workers36

using a localized basis set method. One interesting feature
apparent in Fig. 1 is a progressive softening of the frequency
spectrum with the increasing mass of the central metal atom.
This is accompanied with a simultaneous decrease in IR ac-
tivity which is most pronounced for Hf@Si16. The peaks of
highest intensity at 380 cm−1 and 360 cm−1, for Ti@Si16
and Zr@Si16, respectively, correspond to the three normal
modes depicted in the upper part of each panel of Fig. 2. In
the case of Ti@Si16 these are essentially displacements of
the central metal atom in the cluster with minor rearrange-
ments of the surrounding silicon atoms. For the Zr@Si16 the
movement of the central metal atom is accompanied by a
more sizable distortion of the silicon cage. This is also the
case for the three modes corresponding to the second most
intense peak for both Ti@Si16 and Zr@Si16 at 246 cm−1
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FIG. 1. �Color online� The calculated infrared spectrum of the
X@Si16 �X=Ti, Zr, and Hf� nanoparticles.
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and 205 cm−1, respectively. In the case of Hf@Si16 the peak
of highest IR activity is located at 180 cm−1. These modes
are depicted in the upper part of Fig. 3 whereas the second
most intense peaks correspond to the six normal modes de-
picted in the lower part of Fig. 3.

Using the procedure described in Sec. II we estimate the
electron-phonon coupling strength � as function of the elec-
tronic level for the isolated X@Si16 �X=Ti, Zr, and Hf�
nanoparticles. The results are given in Fig. 4. The vertical

bars are placed at the energy 	L of the first set of threefold
degenerate unoccupied molecular orbitals. The calculated
electron-phonon coupling strength for this level, ��	L� cor-
responds to the weak coupling regime ���	L��1� in all three
cases. Very large values for � occur, however, for the second
set of threefold degenerate unoccupied molecular orbitals 	L

�.
These correspond to the large peaks in Fig. 4. This result is
rather unexpected given that these large values for the
electron-phonon coupling strength are unusual for covalent
materials. We note, however, that by optimizing electron or
hole doping using a similar procedure, Moussa and Cohen
obtained recently24 unusually large values for � for hypo-
thetical materials based on C4O6 molecular units. A value as
large as ��70 was reported together with a room tempera-
ture Tc. The calculated Eliashberg spectral functions for the
second set of threefold degenerate unoccupied molecular or-
bitals �2F��� ;	F

�� are depicted in Fig. 5. The large peaks at
33 cm−1 for Ti@Si16 and 26 cm−1 for Zr@Si16 and
Hf@Si16, respectively, are responsible for a large part of the
calculated electron-phonon coupling strength ��90%�.

These results strongly suggest that attempts to synthesize
molecular materials assembled with the X@Si16 �X=Ti, Zr,
and Hf� nanoparticles should be carried out. In a previous
work4,5 we predicted that these materials should be stable
under normal pressure and room temperature. The calculated
band gaps 1.3 eV �Ti@Si16� and 1.6 eV �Zr@Si16 and
Hf@Si16� indicate that these materials should be insulators.
The predicted bulk structure is hexagonal close packed with
a distance between nanoparticles in the bulk �17 Bohr. This

��

��

FIG. 2. �Color online� Selected normal modes for the Ti@Si16

�upper panel� and Zr@Si16 �lower panel� nanoparticles. In each
panel the three top modes correspond to the peak of highest IR
activity whereas the lower three modes correspond to second most
intense peak.

��

FIG. 3. �Color online� Selected normal modes for the Hf@Si16

nanoparticles. The three top modes correspond to the peak of high-
est IR activity whereas the lower six modes correspond to second
most intense peaks.
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FIG. 4. �Color online� Calculated electron-phonon coupling as a
function of the molecular orbital energy level 	 for the isolated
X@Si16 �X=Ti, Zr, and Hf� nanoparticles. The solid �dashed� lines
represent the energy 	L�	L

�� of the first �second� set of degenerate
unoccupied molecular orbitals.
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large space between nanoparticles in the bulk opens an inter-
esting possibility. Electron donor atoms can be placed inter-
stitially in the molecular materials �see Fig. 6�. Assuming no
significant structural transformation, the extra electrons from
the dopant atoms will hopefully populate some of the con-
duction bands of the previously insulating molecular materi-
als. Furthermore the number of valence electrons of the dop-
ant atoms can be adjusted to obtain a maximal electron-

phonon coupling. If we further assume that the calculated
�2F��� ;	F

�� is a reasonable approximation to the spectral
functions of hypothetical materials assembled with the
X@Si16 �X=Ti, Zr, and Hf� nanoparticles and doped with
electron donor for maximal coupling then the superconduct-
ing transition temperature can also be estimated by solving
numerically the Eliashberg equations for the model spectral
function �2F��� ;	F

��. These estimates are summarized in
Table I. The obtained Tc values are unusually high for cova-
lent materials. We emphasize that these are only estimates of
possible high-temperature superconductivity in molecular
materials assembled with the X@Si16 �X=Ti, Zr, and Hf�
nanoparticles. It is also important to note that the class of
molecular, narrow bandwidth superconductors is experimen-
tally observed to be close to a metal-insulator transition.37 If
the bandwidth is too narrow, superconductivity may not oc-
cur without applied pressure. Additionally, important proper-
ties such as the structure of the doped molecular material and
its structural stability, electronic band structure and a com-
putation of the Eliashberg spectral function using Eq. �1� for
the bulk material should be carried out for a more accurate
determination of the superconducting transition temperature.
We believe that the results obtained here justify the signifi-
cant increase in computational effort to pursue such a pro-
gram. Work along these lines is in progress.

IV. CONCLUSIONS

Making use of first-principles computer simulations in the
framework of density-functional theory we calculated the vi-
brational modes and infrared spectra of the exceptionally
stable isovalent X@Si16 �X=Ti, Zr, and Hf� nanoparticles.
Our results predict modes with sizable intensity and low fre-
quency ��500 cm−1. Based on these results, we used the
framework developed in Refs. 24 and 33 to carry out esti-
mates of the electron-phonon coupling strengths for the in-
tramolecular modes. Given the large values obtained for �
we explored the possibility that appropriately doped bulk
materials assembled with the X@Si16 �X=Ti, Zr, and Hf�
nanoparticles can exhibit high-temperature superconducting
properties. Estimates of the critical superconducting transi-
tion temperature were obtained by solving numerically the
Eliashberg equations for an approximated spectral function.
The preliminary values for � and Tc can be unusually high
for covalent materials. These are very encouraging results
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FIG. 5. �Color online� Eliashberg spectral functions �2F��� ;	F
��

at maximal electron-phonon coupling strength for the isolated
X@Si16 �X=Ti, Zr, and Hf� nanoparticles.

FIG. 6. �Color online� Electron donor atoms �larger spheres� can
be inserted in the spaces between X@Si16 �X=Ti, Zr, and Hf� nano-
particles in the bulk. The nanoparticles are predicted to assemble in
stable hexagonal closed packed structures. The representation is in
the conventional hexagonal cell.

TABLE I. Estimated electron-phonon coupling strength � and
superconducting temperature Tc for hypothetical materials as-
sembled with X@Si16 �X=Ti, Zr, and Hf� clusters and doped with
electron donor atoms. The results are calculated at maximal
electron-phonon coupling strength from �2F��� ;	F

��.

X@Si16 �
Tc

�K�

Ti 14.8 87

Zr 25.9 87

Hf 26.5 80
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and we further hope that they stimulate experimental work
aimed at synthesizing these materials in the laboratory, as
well as the pursuit of computer simulations to obtain more
accurate values for these quantities.
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