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We present a theoretical study on the orientation-dependent retarding force experienced by slow dimers
moving at arbitrary alignment with the direction of their velocity in a two dimensional degenerate electron gas.
The influence of the individual constituents of a dimer on independent electrons is modeled by effective, s-type
phase shifts �. Analytical results are derived by considering the effects of interference and multiple scattering.
The orientation-dependent expressions reveal the dependence of stopping power on the classical geometry and
these effects of quantum dynamics. A brief account on strongly related problems of resistivity caused by
imperfections in the many-body system and pure dephasing of elastically scattered electrons is made, as well.
The physically motivated case of ��kF�= � �� /2� for the leading phase shift is explicitly discussed.
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I. INTRODUCTION AND MOTIVATION

Electronic excitations play an important role for the ki-
netic energy losses of heavy particles moving through the
three-dimensional electron gas of a metal, or making dis-
placements in the two dimensional fermion systems of semi-
conductor heterostructures1,2 of tunable densities, and on
close packed noble metal surfaces.3,4 The retarding forces
experienced by slow heavy particles along their classical tra-
jectories are due primarily to the creation of propagating el-
ementary composite excitations, named as electron-hole
pairs. A deep understanding of details contributing to an ef-
fective �frictionlike� retarding force is of utmost importance5

to realistic estimations needed, for instance, in computer-
aided simulations of dynamics of slow heavy particles in
three- and two dimensional fermion systems. Furthermore,
there is an inherent relation between the low-velocity retard-
ing force �stopping power� and the embedded-impurity con-
tribution to residual resistivity.

The expression for the magnitude of the energy-transfer
per unit path length for a single scattering center moving
slowly �v�vF� with velocity v, is well known and is given
by

1

v

dE

dt
= mevn0vF�tr�vF� �1�

in three and two dimensions.6,7 Here n0�D� and vF�D� are,
respectively, the density and Fermi velocity of the degenerate
electron gas and �tr�D� is the transport cross section.8–11 The
friction coefficient is defined via �dE /dt� / �Mv2� for a slow
particle with mass M �me. One can interpret the left-hand
side �lhs� of Eq. �1� in terms of an averaged density of ex-
cited electrons �n0�v /vF��, an averaged energy change
�mevF

2� of these electrons, and an effective area or length
�depending on D� for the two-body elastic scattering process.
Alternatively, one can interpret the retarding force on the lhs
in terms of an electron flux �n0vF� on the moving scattering
center and the net momentum change �mev� governed by the
momentum transfer cross section �tr�vF�. From now on we
use atomic units, �=me=e2=1.

It is the method of the kinetic or transport theory on
which the second interpretation for a moving single center is
based. Such a method for the retarding force via the momen-
tum change in a flux of electrons was used already for dimers
moving in a three-dimensional electron gas.12–14 Within this
kinetic framework the role of inhomogeneity of the electron
gas above metal surfaces of has been modeled15 for atomic
intruders, as well. As a natural extension for dimers, we in-
vestigate the case of a two dimensional electron gas in this
work. Clearly, a proper understanding of various experimen-
tal data with dimers, for instance, at surfaces with
molecules,16–19 requires such a theoretical attempt on the de-
tails.

Section II is devoted to the quantum-mechanical theory of
different cross sections for electron scattering off dimers in
two dimension. The closed expressions derived are analyzed
for the important limiting cases. Two illustrative figures are
given in order to facilitate comparisons with the
corresponding14 three-dimensional results for retarding
forces. Experimentally motivated, concrete possibilities for
future specific applications are pointed out at the relevant
places. In Sec. III, we give a short summary.

II. THEORY AND ANALYSIS

Following closely earlier detailed12,14 works, the magni-
tude of the energy loss per unit path of a slow dimer moving
in two dimensional electron gases can be written as a decom-
position in terms of the parallel � � � and perpendicular �� �
transport cross sections

�1

v

dE

dt
���� = n0kFv�cos2����tr

� �kF� + sin2����tr
��kF�� .

�2�

Here � denotes the polar angle between the dimer orientation
and its velocity direction. In the plane of the many-body
system two coordinate axes can be introduced via these vec-
tors. To random situations the angle averages are �cos2���	
= �sin2���	= �1 /2� in D=2. The directions of the scattering
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electron momenta, k and k�, in the center-of-mass system,
are in the above plane. This constraint is different from the
D=3 case.12,14

In the knowledge of the �usually complex� single-particle
scattering amplitude F�kF ,kF��, the differential cross section
�length� is related to the 
F�kF ,kF��
2 quantity.20 In our
orientation-dependent problem with transfer cross sections,
proper integrations over the 	K� �0,�� interval with d	K
weighting are needed in both angles. The cross sections are

�tr
� �kF� =

4

�
� d	kF� d	kF�

�cos 	kF

− cos 	kF�
�cos 	kF

1

kF

F�kF,kF��
2, �3�

�tr
��kF� =

4

�
� d	kF� d	kF�

sin2 	kF

1

kF

F�kF,kF��
2 �4�

according to the above details on kinematics of elastic scat-
tering in two dimension. In order to implement these expres-
sions, one needs the complex scattering amplitude which en-
codes the effect of dimer geometry and potential field on the
scattering of a one-electron wave.

A. Role of interference

In order to understand the details of two dimensional fric-
tion for dimers, and to provide an easily controllable back-
ground to future extensions, in this section we regard the two
�not necessarily equivalent� centers, separated by a distance
d, as scattering independently but coherently. Realistic14 val-
ues of d are about d
2. Thus, the effect of interference
�without multiple scattering� on orientation-dependent fric-
tion will be analyzed. In order to achieve this goal, the domi-
nating s-type partial waves are used for both constituents of
a dimer. With these last, physically very reasonable and com-
monly applied17,18,21 approximations in two dimensions, one
gets


F�k,k��
2 =
2

�
��sin2 ��1� + sin2 ��2�� + A12 cos��k − k�� · d�

+ B12 sin��k − k�� · d� , �5�

where A12�2 sin ��1� sin ��2� cos���1�−��2�� and B12
�2 sin ��1� sin ��2� sin���1�−��2��.

At this point we make a remark. In a first-order Born
approximation, on which a dielectric description of energy
loss of point-charge dimers under random condition22,23 is
based, one uses pure real scattering amplitudes, i.e., the Fou-
rier transforms of screened interaction potentials. This per-
turbative approximation, which is perfectly reasonable for
small phase shifts values, is recovered by the cos���1�

−��2���1 and sin���1�−��2���0 necessary substitutions.
Due to these, such a linear-response-based description cannot
treat properly even a screened proton-antiproton �Z= �1�
dimer, the dipole composition of the smallest real charges.
Earlier result24 of a numerical calculation �performed in three
dimensions with such a dipole� also signals the limitation of
the dielectric description, i.e., the absence of a sign change

via cos���1�−��2�� for not small �
��1�−��2�
� �� /2�� phase
shift differences.

The case of a conventional dimer is, fortunately, simpler.
Due to parity consideration, the term proportional to B12 dis-
appears after angle integrations �K ·d=Kd cos 	K� in the
above Eqs. �3� and �4� with Eq. �5� for the scattering ampli-
tude and we obtain the informative

kF�tr
� �kF�
4

= �sin2 ��1� + sin2 ��2��

+ 2A12�J0
2�x� − J1

2�x� −
J0�x�J1�x�

x
� , �6�

kF�tr
��kF�
4

= �sin2 ��1� + sin2 ��2�� + 2A12
J0�x�J1�x�

x
�7�

expressions, in which x�kFd is a shorthand. These
orientation-dependent, closed expressions encode the effects
of dimer-geometry and wave-mechanical interferences in
two dimensions. For the usual case of homonuclear dimers
�molecules�, it is illuminating to introduce dimensionless ra-
tios �r�, which are denoted now by gr

i�D ,x�, to the present
approximation

gr
��2,x� = 1 + 2�J0

2�2,x� − J1
2�x� −

J0�x�J1�x�
x

� , �8�

gr
��2,x� = 1 + 2

J0�x�J1�x�
x

. �9�

For the asymptotic x�1 limit, i.e., at high densities since d
is bounded in a realistic dimer, one has �gr

��2,x�−1�
��4 sin 2x� / ��x� and �gr

��2,x�−1��2�1−2 cos2 x� / ��x2�.
We can conclude that the important effect of wave mechani-
cal interference results in a slowly decaying oscillating func-
tion for dimers aligned with the direction of their movement.
Due to the special weighting, this remains the character of
the proximity effect under random situations, as well. The
minimal value of gr

��2,x� is at x�2, and is roughly 0.3.
Thus, the retarding force for a perfectly aligned dimer can be
about 1/3 of the sum of forces for two independent atoms.
By using earlier14 results for D=3, in Fig. 1 we exhibit the D
dependence of the gr

i�D ,x� ratios. In the asymptotic x→0
limit, i.e., a very low densities since d is bounded from be-
low, one gets simply the total number of dimer constituents.

We continue this subsection by pointing out that in a ran-
dom situation with homonuclear dimers, and in D dimension,
one gets after orientation averaging

�cos�k − k�� · d	 = ��D

2
�� 2

qd
��D−2�/2

J�D−2�/2�qd� , �10�

where q=2k sin�	 /2� is the momentum change in elastic
scattering. In this case one can use directly25 the averaged
from
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��tr�k�	 =
4

kF
�

0

�

d	�1 − cos 	��
F�k,k��
2	 �11�

to describe the average retarding force in two dimension.
With the expansion of

J0�qd� = �
m=−



Jm
2 �kFd�eim	 �12�

one arrives at the above result obtained by proper weighting
of force components. In the light of the remarkable oscillat-
ing character found in the retarding force, there is a quite
natural question. What is the effect of proximity in an aver-
aged total �t� cross section? Based on Eq. �11�, but without
the �1−cos 	� factor, we obtain for the D=2 case

��t�kF�	 =
4

kF
2�1 + J0

2�kFd��sin2 � . �13�

It is useful to compare this result with the three-
dimensional �D=3� total cross section obtained earlier26 by
Brueckner under perfectly similar conditions

��t�kF�	 =
4�

kF
2 2�1 + � sin�kFd�

kFd
�2�sin2 � . �14�

Both expressions show that there are oscillating enhance-
ments with dimer impurities due to the proximity effect, in
comparison with the case of well-separated atoms. The en-
hancement decay with separation is slow ��1 /d��D−1�. The
two dimensional result found here may be useful in interpre-
tations of lifetime data measured4,27 by excited electrons on
close packed noble metal surfaces. Generally, a reasonable
estimation of the electron mean-free path, in the presence of
unavoidable or designed defects, requires the associated total
cross sections. Remarkably, careful experiments4,28 per-
formed with molecules and well-separated atoms on Cu sur-
faces show notable differences in electron dephasing rates
��kF�t�.

B. Influence of multiple scattering

Beyond the above-applied, so-called impulse approxima-
tion, now we outline the effect of multiple scattering on the
vicinage functions by treating the case of homonuclear
dimers with short-range potentials separated by d and char-
acterized by a common s-type effective phase shift ��kF�. We
stress the point, once more, that such a modeling is very
reasonable physically. The additional screening17,29 by bulk
electrons at close packed noble metal surfaces justifies the
assumption that the scattering potentials of embedded pairs
are nonoverlapping. Thus within our framework, one can get
useful information on the nontrivial interplay of wave inter-
ference and multiple scattering in two dimensional quantum
dynamics of electrons moving in the field of an in-plane
dimer.

The approach applied in this subsection for two dimen-
sions is strongly tied to standard methods established30,31 for
nonoverlapping �short-range� symmetric potentials in the
more common three-dimensional case. In fact, the form of
the solution for the key F�k ,k�� quantity is quite similar
�see, below� in two and three dimensions. Technically, one
has to solve two coupled algebraic equations31 with single-
particle inputs characterizing the individual scattering ampli-
tude and the single-particle Green’s function GD�x ,x��. It is
this well-known function of mathematical physics which de-
scribes the particle propagation with outgoing boundary con-
dition, in free space

GD�x,x�� = −
i

4
� k

2�
��H�

�1��k
x − x�
�

x − x�
�

, �15�

where �= �D−1� /2, and H�
�1���� is the Hankel function of

order �. In the D=2 case one has H0
�1����=J0���+ iN0���, in

terms of Bessel �J0� and Neumann �N0� functions.
The amplitude has the following14,31 common and conve-

nient form:

F�k,k�� =
2b

b2 − a2cos��k − k�� ·
d

2
�

−
2a

b2 − a2cos��k + k�� ·
d

2
� . �16�

In the investigated two dimensional case one has b= �i
−cot �� while in the D=3 case b=k�i−cot ��. The
asymptotic form of the scattered wave prescribes a

0
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FIG. 1. Illustrative ratios, denoted as gr
i�D ,x�, showing the ori-

entation dependence of renormalized stopping powers of D dimen-
sional degenerate electron gases for in-moving slow homonuclear
dimers. The parallel � � � �solid curves�, perpendicular �� � �dashed
curves�, and random �dotted curves� cases refer to fixed angles �see
the text� between dimer orientation and its velocity direction. The
curves are exhibited for the x� �0,7� range, where x=kFd. The
upper panel is devoted to the two dimensional �D=2� case, while
the lower panel �based on Ref. 14� to the three dimensional �D
=3� one. All curves are obtained in the perturbative impulse
approximation.
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= �i /2�H0
�1��kd� in two dimensions and not a=eikd /d as in

three dimensions. The illustrative representation in Eq. �16�
shows that the “expansion parameter,” which encodes devia-
tions from the perturbative impulse approximation where a
�0, is the important 
a
 / 
b
 ratio. For fixed �and physical� d
values and at vanishing �kF→0� scattering momentum the
Green’s functions determine the characteristic behavior of
the probability amplitude 
F�k ,k��
2. This fact results in
marked deviations �see Fig. 2, below� of cross sections from
the ones which include solely the role of wave-mechanical
interference without coupling the centers.

The rest of the two dimensional calculation is tedious but
straightforward, similarly to the one in three dimensions.14

Instead of Eqs. �8� and �9�, obtained without the modulating
effect of multiple scattering, we derive

Gr
��2,x� = A�1 + J0��1

2
+ J0 −

J1

x
� + B�1 − J0��1

2
− J0 +

J1

x
�

− 2CJ1
2, �17�

Gr
��2,x� = A�1 + J0��1

2
+

J1

x
� + B�1 − J0��1

2
−

J1

x
�

�18�

for the new ratio �r� functions Gr
i�D ,x�. The argument of the

Bessel functions is x�kFd. The averaged �av� energy loss
per unit path length in D=2 has a quite simple form of

�1

v

dE

dt
�

av
= n0kFv��4/kF�sin2 ���A�1 + J0�2 + B�1 − J0�2

− 2CJ1
2� . �19�

The expressions in Eqs. �17�–�19� result in the previous ones
�Gr

i →gr
i� when A=B=C=1, i.e., when the so-called impulse

approximation for electron-homonuclear-dimer scattering is
applied. Deviations of A�D ,x ,�� ,B�D ,x ,�� and C�D ,x ,��
factors from unity encode the modulating role of multiple

scattering beyond the interference effect. The functions for
these multiplying factors are �cf., Ref. 14, for the D=3 case�
given by

A�2,x,�� =
1

1 + sin ��J0�x�sin � + N0�x�cos �� + � sin �

2
�2

�J0
2�x� + N0

2�x��
, �20�

B�2,x,�� =
1

1 − sin ��J0�x�sin � + N0�x�cos �� + � sin �

2
�2

�J0
2�x� + N0

2�x��
, �21�

C�2,x,�� =

1 − � sin �

2
�2

�J0
2�x� + N0

2�x��

�1 − � sin �

2
�2

�J0
2�x� + N0

2�x���2

+ sin2 ��J0�x�cos � − N0�x�sin ��2

. �22�
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FIG. 2. Illustrative ratios, denoted as Gr
i�D ,x�, showing the ori-

entation dependence of renormalized stopping powers of
D-dimensional degenerate electron gases for in-moving slow homo-
nuclear dimers. The parallel � � � �solid curves�, perpendicular �� �
�dashed curves�, and random �dotted curves� cases refer to fixed
angles �see the text� between dimer orientation and its velocity di-
rection. The curves are exhibited for the x� �0,7� range, where x
=kFd. The upper panel is devoted to the two dimensional �D=2�
case while the lower panel �taken from Ref. 14� to the three-
dimensional �D=3� one. The curves are obtained beyond the per-
turbative �cf., Fig. 1� impulse approximation, by considering the
modulating effect of multiple scattering with �=� /2.
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Now, we make an asymptotic evaluation, with ��kF�
= �� /2 for the phase shift,17,21 of the ratio function Gr

��D ,x�
of the parallel case. Leading-order expansions for high x val-
ues, i.e., A�2,x���1−J0�x��, B�2,x���1+J0�x��, and
C�2,x��1, result in

Gr
��2,x� � �1 − J0

2�x� − 2J1
2�x�� ⇒ �1 −

3

�x
�1 −

1

3
sin 2x��

�23�

to a useful comparison with the perturbative expression

gr
��2,x� � �1 + 2J0

2�x� − 2J1
2�x�� ⇒ �1 +

4

�x
sin 2x� .

�24�

Clearly, the role of multiple scattering can be very important,
as the deviation between the above asymptotic forms heralds.
Gr

��2,x� tends to unity from below. Notice that a notable
reduction �see, Fig. 2 for D=3� was vital to explain14 mea-
sured data for stopping power of a carbon target for slow
intact C2 dimer in three dimension. These results of the
quantum mechanical evaluations for complete alignment
could fit to a classical picture where the second constituent
of the dimer travels in an effective shadow of the first one.

Figure 2 is devoted, via the ratio functions Gr
i�D ,x� evalu-

ated at �=� /2, to an illustration on the role of dimensional-
ity. One can see that the �Gr

��2,x� /Gr
��2,x�� quantity �a mea-

sure of the ratio of residual resistivities, as well� is
appreciably smaller than unity over a broad range of x:
roughly in the x� �0.7,2.7� interval around a strong mini-
mum. In harmony with our general analysis given above af-
ter Eq. �16�, the effect of multiple scattering is a robust one
in both dimensions at finite d values and very small kF scat-
tering momenta. In this mathematical limit for scattering mo-
menta, and in three dimensions, we have a �tr

i �d2 character-
istic behavior for the integrated14,26 cross sections due to

1 /a
2�d2. In two dimensions the same �i.e., at finite d� limit
for integrated scattering lengths is governed20 by an 
1 /a
2
��1 / ln�1 /kFd��2 dependence due to the dominance of the
Neumann �N0�x�� function in the corresponding Green’s
function at small enough x values.

III. SUMMARY AND OUTLOOK

Motivated by the experimental relevance and importance
of two dimensional electron gases in various condensed mat-
ter systems, and the possible role of embedded molecules or

created dimers, the scattering aspects of independent elec-
trons off such unavoidable or designed centers are investi-
gated here. Special attention has been payed to the effects of
interference and multiple scattering. The important influence
of these combined effects is analyzed in a comparative man-
ner. In particular, a remarkable reduction in friction was
found for perfectly aligned dimers. The problem of pure
dephasing of elastically scattered electrons is briefly dis-
cussed via the relevant total cross sections. The detailed re-
sults derived could be useful in various problems of impor-
tant experimental relevance in the field of two dimensional
degenerate electron gases.

The orientation-dependent �tr
i ��� transport cross sections

might have applications in the theoretical understanding of
stabilization of structures based on atom deposition32 on
close-packed noble metal surfaces under voltage-driven
transport conditions, as well. As it is well known, the con-
ductivity or the resistivity is determined by the kF�tr product.
Recent experiments33 with linear atomic chain on Ag�111�
surface addressed this question of stability in the presence of
an electric current. In this case one has a problem of elec-
tromigration in which wind forces are proportional34 to the
transport cross sections.

Different charge states of dimer constituents represent an
other realistic challenge, similarly to the atomic case35,36 in
three dimensions. In two dimensions this problem requires
further careful considerations since a single not everywhere
nonpositive or not everywhere nonnegative circular potential
can easily bind electrons under very general constraining
conditions according to an earlier analytical treatment of
Simon37 and its recent numerical extension.38

Experiments4,39 seem to support this fine result of math-
ematical physics. The preliminary short analysis given after
Eq. �5� in the text was, in fact, motivated by this remarkable
effect in two dimensions. Finally, we note that in the so-
called two-impurity Kondo model40 the input �bare� coupling
parameters should depend heavily on the way of modeling
the interimpurity range, beyond a simple plane-wave ap-
proximation.
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