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We studied the edge states and transverse electron focusing in the presence of spin-orbit interaction in a
two-dimensional electron gas. Assuming strong spin-orbit coupling we derived semiclassical quantization
conditions to describe the dispersion of the edge states. Using the dispersion relation we then make predictions
about certain properties of the focusing spectrum. Comparison of our analytical results with quantum-
mechanical transport calculations reveals that certain features of the focusing spectrum can be quite well
understood in terms of the interference of the edge states while the explanation of other features seems to
require a different approach.
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I. INTRODUCTION

Semiclassical approximations are often very practical for
understanding certain physical phenomena. Beyond their
practicality, they also provide a rather general framework to
treat quantum systems of interest. A good example to illus-
trate the merits of semiclassical approach is the transverse
electron focusing �TEF�. The geometry of electron focusing
is shown in Fig. 1. The current is injected into the sample at
a quantum point contact called injector �I� in perpendicular
magnetic field B. If the magnetic field is an integer multiple
of a focusing field Bfocus, electrons injected within a small
angle around the perpendicular direction to the edge of the
sample can be focused onto a collector quantum point con-
tact �denoted by C in Fig. 1� which acts as a voltage probe.
Therefore, if the collector voltage is plotted as a function of
magnetic field one can observe equidistant peaks at magnetic
fields B= p�Bfocus �p=1,2 ,3 , . . .� corresponding to cases
where the cyclotron diameter 2Rc�B� is an integer multiple of
the distance L between the injector and the collector.

TEF is a versatile experimental technique �for a review
see Ref. 1�. In the case of quantum wells containing two-
dimensional electron gas �2DEG�, the accessibility of the
quantum ballistic transport regime opened up the way to the
experimental demonstration of coherent electron focusing2,3

as well. Recently, several experiments investigated the effect
of spin-split bands in semiconductors on magnetic
focusing.4,5,7 Of special interest are for us the experiments of
Refs. 5 and 7 in which evidence of spin-orbit interaction
�SOI� dependent focusing have been found. These experi-
ments sparked considerable theoretical interest6,8–10 as well.
References 6 and 8–10 have in common that they consider
the properties of bulk Landau levels in the presence of SOI
to explain the experimental results on focusing. While using
the bulk Landau levels as a starting point is certainly justified
when discussing magneto-oscillations11,12 for the geometry
shown in Fig. 1 one expects that the edge states should play
a central role in the transport phenomena. Indeed, this was
the approach adopted in Ref. 2 to discuss coherent electron
focusing. The rich physics brought about by the interplay of
SOI and the confinement due to external magnetic field and
electrostatic potential has also attracted significant theoreti-
cal attention13–18 but implications on electron focusing have
not been considered.

Here we aim to investigate whether the electron focusing
spectrum in 2DEG with strong SOI can be explained in
terms of edge states formed as a combined effect of SOI,
magnetic field and �an assumed� hard-wall confinement po-
tential. To this end we first derive semiclassical quantization
conditions which describe the dispersion relation of the edge
states in the limit of strong SOI and weak magnetic fields.
These results shed new light on and help to better understand
the exact quantum solution of this problem, published very
recently in Ref. 18. We then study how the properties of the
edge states are manifested in the transport phenomena of the
focusing setup shown in Fig. 1. We expect that our results
should be relevant in the case of, e.g., InSb quantum wells,
where theoretical predictions19 and recent experiments7,20–22

indicate that it is possible to fabricate samples with strong
�compared to GaAs/AlGaAs heterostructures� spin-orbit in-
teraction and ballistic quasiparticle propagation over dis-
tances on the order of 1 �m at low temperatures.

The rest of the paper is organized in the following way: in
the next section we briefly introduce the semiclassical frame-
work that we will be using. In Sec. III we derive a pair of
semiclassical quantization conditions for the edge states and
compare the obtained band structure to the results of exact
numerical calculations. We also discuss how our semiclassi-
cal results are related to other approximation methods found
in the literature. The semiclassical quantization conditions
then allow us in Sec. IV to make prediction about the focus-
ing spectrum. We end our paper by a comparison of these
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FIG. 1. �Color online� Schematic geometry of the transverse
electron focusing setup. The 2DEG is contacted by an I and a C
probe and perpendicular magnetic field is applied. Classical quasi-
particle trajectories leaving from the injector at normal direction,
depending on the strength of the magnetic field, can be focused onto
the collector. The inset shows the details of the tight-binding model
used to describe the probes �cf. the inset of Fig. 1 in Ref. 6�.
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predictions to numerical transport calculations and a short
summary in Sec. V.

II. SEMICLASSICAL THEORY WITH SPIN DEGREES
OF FREEDOM

Generally, the nonrelativistic single-particle Hamiltonian
of spin-1/2 particles can be written as23

Ĥ = Ĥ0 + Ĥ1, Ĥ0 =
p̂2

2m�
+ V�r� , �1�

where r and p̂ denotes the position and momentum opera-
tors, respectively, m� is the effective mass of the particles
and we assume that the spin-dependent part have the follow-
ing form:

Ĥ1 = ��Ĉ�r,p̂� · � . �2�

Here �= ��x ,�y ,�z� is a vector of Pauli matrices and the �
comes from the spin operator ŝ= 1

2��. The constant � gives
the strength of the spin-orbit coupling.

The application of semiclassical methods developed for
systems that can be described by scalar Hamiltonians24 is not
straightforward if one has to consider the spin degree of free-
dom as well. Namely, as a first step one would have to define
a classical Hamiltonian which is not a trivial task since there
is no classical analog of the spin. Various semiclassical
schemes have been proposed, see Refs. 25–28, and we refer
to these original papers for most of the details. A short over-
view of the different approaches can also be found in Refs. 9
and 23.

Here we will follow the approach first used by Yabana
and Horiuchi29 and later generalized and further developed in
Refs. 26–28, 30, and 31. It is often called the “strong-
coupling limit” because it corresponds to a double limit �
→0 and �→� while �̄=�� is kept constant.23 For spin-1/2
particles this approximation scheme leads to two classical
Hamiltonians

H� = H0 � �̄�C�r,p�� , �3�

where the vector C�r ,p� is the phase-space symbol of the

operator Ĉ�r , p̂� �Refs. 26 and 28� and represents an effective
magnetic field which depends on the classical variables r and
p. This approximation introduces semiclassical phase correc-
tions to the orbital motion.26,29 It is restricted, however, to
the case of �C�r ,p���0 because at phase-space points where
�C�r ,p�� vanishes and therefore H� becomes degenerate,
mode conversion between trajectories described by H� oc-
curs, posing a serious difficulty to the theory.

For a 2DEG in perpendicular magnetic field and assuming

that Ĥ1 describes Rashba-type spin-orbit coupling, which
will be our main interest in the rest of the paper, the “strong
coupling” approach results in the following semiclassical
Landau-level spectrum:14,23

En
s = �	c�n � �2nkSOlB�, n = 1,2, . . . , �4�

where 	c= eB
m� is the classical cyclotron frequency, lB

=�� /eB is the magnetic length, and by using the notation 
R

for the coupling constant �̄ in this particular case, kSO is
given by kSO=m�
R /�. Comparing this to the exact result32

E0 = �	c/2,

En = �	c�n ��2n�kSOlB�2 +
1

4
� , �5�

we see that the semiclassical Landau levels are good ap-
proximations of the exact ones if 2n�kSOlB�2�1 /4. This re-
quires large quantum numbers n �i.e., large Fermi energy�
and/or strong spin-orbit coupling 
R and not too strong mag-
netic field �i.e., lB	1 /�B is not too small�. We expect there-
fore that the strong-coupling method should be adequate if
these conditions are met. An estimate of the appropriate
magnetic field range assuming InSb quantum well material
parameters will be given after Eq. �21�.

III. SEMICLASSICAL THEORY OF EDGE STATES

We assume that the 2DEG, formed, e.g., in the quantum
well of an InSb heterostructure, is in a perpendicular homo-
geneous magnetic field. The motion of electrons is confined
by a hard-wall potential, V�y�=� for y�0 �see Fig. 1 for the
geometry�. The quantum-mechanical description of the sys-

tem can be obtained using Hamiltonian �1� where Ĥ0= 
̂2

2m�

corresponds to the kinetic energy of particles and the opera-
tor 
̂ is defined as 
̂= �
̂x , 
̂y�= p̂+eA, where p̂=−i�� is the
canonical momentum operator and A is the vector potential.
Furthermore, H1=
R�
̂x�y − 
̂y�x� describes the Rashba SO
�RSO� coupling in the system, �x and �y are Pauli matrices
acting in the spin space. We assume that 
R is constant in
space and neglect its possible random variation due to nano-
size domains.33

To preserve the translational invariance of the system, we
choose the Landau gauge A= �By ,0 ,0�T. Using the ansatz
��r�=eikx��y� we can simplify the problem to an effectively
one-dimensional �1D� one, which we will solve in semiclas-
sical approximation. The discussion goes along the lines of
Refs. 28–30 �for a recent application see also Refs. 34 and
35�. We seek the solutions of the 1D Schrödinger equation

Ĥ��y�=E��y� in the following form:28

��y� = 

q�0

��

i
�q

aq�y�ei/�S�y�, �6�

where aq�y� are spinors and S�y� is the classical action. Per-

forming the unitary transformation �→e−�i/��S�y���y�, Ĥ

→e−�i/��S�y�Ĥe�i/��S�y� the Schrödinger equation can be rewrit-
ten as


 �̂x
2 + �̂y

2

2m�
− E i
R��̂x − i�̂y�

− i
R��̂x + i�̂y�
�̂x

2 + �̂y
2

2m�
− E ��a0�y� +

�

i
a1�y� + ¯�

= 0. �7�

Here �̂x��x
0= px+eAx�r�, px being px=�k, and �̂y = p̂y
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+�y
0, where �y

0= �S�y�
�y . The WKB strategy24 is to satisfy Eq.

�7� separately order by order in �.
At O��0� order we obtain

�
��x

0�2 + ��y
0�2

2m�
− E i
R��x

0 − i�y
0�

− i
R��x
0 + i�y

0�
��x

0�2 + ��y
0�2

2m�
− E�a0�y� = 0. �8�

Nontrivial zeroth-order eigenvectors a0�y� exist if

E =
Q2

2m�
� 
RQ , �9�

where Q=���x
0�2+ ��y

0�2. This means that Q is a constant of
motion for a given energy E and the two branches of Eq. �9�
define

Q− = �pSO
2 + 2m�E − pSO, �10a�

Q+ = pSO + �pSO
2 + 2m�E , �10b�

where we used the notation pSO=m�
R. We find therefore
that the classical equations of motion that can be derived
from Eqs. �9� and �10� represent two harmonic oscillators.
The corresponding zeroth-order eigenvectors of Eq. �8� are

V� =
1
�2
�e−�i/2����y��
/2�

e�i/2����y��
/2� � , �11�

where ��y� is the phase of �x
0�y�− i�y

0�y�. However, the
eigenspinor a0

��y� can more generally be sought as a0
�

=A��y�ei���y�V�, where A��y� is a real amplitude and
���y� is a phase. Equations for A��y� and ���y� can be
obtained from the O��1� order of Eq. �7�. Using Eq. �11� we
find that the O��1� order equation can be cast into the fol-
lowing form:

���A�
2

2
� 1

m���x
0

�y
0 � � 
R�cos ��y�

sin ��y� ��� = 0. �12�

This equation does not depend on ��, which means that with
the choice of the eigenvectors shown in Eq. �11�, the phase
���y� is already determined up to an unimportant constant
factor. Moreover, by rewriting Eq. �12� as

���A�
2

2

�H�

�p
� = 0, �13�

where H�=Q2 /2m2�
RQ, it is easy to see that it expresses
probability current conservation and it can be solved for A�

using standard methods.24 From these results one finds that
��y� of Eq. �6� in semiclassical approximation is given by

���y� =
1

�2��y
0,��
�e−�i/2�����y��
/2�

e�i/2������y��
/2�� �e�i/��S�y,y0
��, �14�

where ��y
0,��=�Q�

2 − ��x
0�2. However, as the momentum

�y
0,� is a multivalued function, we need to introduce the

index j=+1,−1 do distinguish the different branches. The
corresponding classical actions Sj

��y ,y0
�� read

Sj
��y,y0

�� = j�
y0

�

y

�Q�
2 − ��x

0�y���2dy�, �15�

where as usually, we have chosen the classical turning points
as the phase reference points for the action. Similarly, the
phase ���y�=� j

��y� is multivalued as well.
We now have to take into account the confinement poten-

tial V�y�. The transverse wave functions ��y� shown in Eq.
�14� would not satisfy the boundary condition at y=0. In
order that the transverse wave function does satisfy the
boundary condition we make a linear combination of the
functions � j

��y� defined above. We try the following ansatz
for the transverse semiclassical wave function:

�̃�y� =
C+

���y
0,+�y��� ei�
/4� cos�S0

+�y,y0
+�

�
−

�+�y�
2

+



4
�

e−i�
/4� cos�S0
+�y,y0

+�
�

+
�+�y�

2
+




4
� �

+
C−

���y
0,−�y���e−i�
/4� cos�S0

−�y,y0
−�

�
−

�−�y�
2

+



4
�

e+i�
/4� cos�S0
−�y,y0

−�
�

+
�−�y�

2
+




4
� � ,

�16�

where C+ and C− are constants and the 
 /4 factor in the
argument of the cosine functions takes into account the effect
of the classical turning points at y0

� which appear due to the
magnetic field. The turning points are given by the physically
acceptable zeros of the equation Q�

2 − ��x
0�y���2=0. Note that

�̃�y� also depends on k through S0
� and �� but in order to

keep the notations uncluttered we did not write this out ex-
plicitly. The dispersion relation for the edge states can be
obtained by demanding that the wave function vanishes at

the boundary, i.e., �̃�y=0�=0. This is a homogeneous sys-
tem of equations and nontrivial solutions can only be found
if the respective determinant is zero. This results in the fol-
lowing implicit dispersion relation:

cos�S0
+�0,y0

+�
�

−
�+�0�

2
+




4
�cos�S0

−�0,y0
−�

�
+

�−�0�
2

+



4
�

+ cos�S0
−�0,y0

−�
�

−
�−�0�

2
+




4
�

�cos�S0
+�0,y0

+�
�

+
�+�0�

2
+




4
� = 0. �17�

Hence, if we denote by �̃+�y� and �̃−�y� the first and second
spinors appearing in Eq. �16�, respectively, the transverse
wave function can be written, apart from a normalization

factor, as �̃�y�	�+�y�+rSO�̃−�y�, where rSO is given by
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rSO = − ei
/2���y
0,−�0��

��y
0,+�0��

cos�S0
+�0,y0

+�
�

−
�+�0�

2
+




4
�

cos�S0
−�0,y0

−�
�

−
�−�0�

2
+




4
� .

�18�

For k�0 the reflection amplitude is rSO�−ei
/2.
Furthermore, with the help of trigonometric identities and

assuming that

cos�S0
+�0,y0

+�
�

−
S0

−�0,y0
−�

�
� � cos��+�0�

2
−

�−�0�
2

� � 1,

�19�

we find from Eq. �17� the following quantization condition:

cos��+ + �− + �+ + �−

2
�cos��+ + �− − �+ − �−

2
� = 0,

�20�

where for brevity we introduced the notations ��=
S0

��0,y0
��

�

+
 /4 and ��= ���0�
2 . Here we pause for a moment to inter-

pret Eq. �19�. From the discussion below Eq. �10� and from
Eq. �15� it is clear that if we consider the two branches of Eq.
�9� as classical Hamiltonians for two different quasiparticles
then S0

��0,y0
�� gives �half of the� enclosed flux by the qua-

siparticle trajectories with the wall between two subsequent
collisions and ���0� is the deflection angle of the momentum
between the collisions. Therefore Eq. �19� means that we
neglect the second and higher powers of the difference be-
tween the enclosed flux and momentum deflection.

It is clear that Eq. �20� defines a pair of quantization con-
ditions: �++�−+�++�−= �2m+1�
 and �++�−−�+−�−
= �2l+1�
 with l ,m=0,1 ,2 , . . . By introducing the angle
��=arcsin� X

R�
�, where X=klB

2 is the guiding center coordi-
nate and R�=Q� / �eB� is the radius of the cyclotron motion
for the two quasiparticle branch, we finally arrive at the fol-
lowing two quantization conditions:

R+
2

lB
2 �1

2
sin 2�+ + �+ +




2
� +

R−
2

lB
2 �1

2
sin 2�− + �− +




2
�

+ ��+ + �−� = 4
m, m = 0,1, . . . ,mmax �21a�

and

R+
2

lB
2 �1

2
sin 2�+ + �+ +




2
� +

R−
2

lB
2 �1

2
sin 2�− + �− +




2
�

+ �
 − �+� + �
 − �−� = 4
l, l = 0,1, . . . ,lmax.

�21b�

These equations are the first important results of our paper.
They do not lend themselves to a simple semiclassical inter-
pretation but a possible classical picture could be the follow-
ing: the classical skipping orbits whose quantization would
be described by these equations consist of two segments,
each of them having slightly different radii given by R� but
the same guiding center coordinate. Besides the orbital mo-
tion, the quantization conditions also depend on the change

in the phase of the spinor part of the wave function which is
described by the ��++�−�, �
−�+�+ �
−�−� terms in Eq.
�21�.

We note that analogous calculations to the ones outlined
above can be carried out if the dominant term in the SOI is
the k-linear Dresselhaus term. Therefore this approach can be
relevant, e.g., in the case of heterostructure studied in Ref.
36.

To see the accuracy of the semiclassical quantization we
have performed numerical calculations for the dispersion of
the edge states using the tight-binding version of Hamil-
tonian �1� �see, e.g., Ref. 8 for the explicit form of the tight-
binding Hamiltonian�. The results for kSOlB=0.256 at a rela-
tively weak magnetic field of B=0.15 T and using typical
parameters of 2DEG in InSb quantum well at higher electron
densities19 �m�=0.021me, where me is the bare electron mass
and q
R=1.4�10−11 eV m� are shown in Fig. 2. As one can
see Eq. �21� describes quite well the dispersion of the sub-
bands, even at low energies, except for the k values where
the guiding center X�R�, i.e., in the transition region to the
bulk Landau levels. We have found that although Eq. �21�
has solutions even for m=0 and l=0, the leftmost band in
Fig. 2, which is related to the zeroth Landau level, is poorly
approximated by any of the m=0 or l=0 curves that can be
obtained from Eq. �21a� or Eq. �21b�, respectively. Neverthe-
less, the approximation works quite well for rest of the sub-
bands, i.e., for m , l�1. For a stronger magnetic field of B
=0.6 T �kSOlB=0.128� shown in Fig. 3, the approximation
for the m=1 and l=1 bands deteriorated as well, while
higher subbands are still well described by Eq. �21�.

�6 �4 �2 0 2 4 6
0

5

10

15

20

k lB

�
Ω

c
/

E

FIG. 2. �Color online� Comparison of the dispersion of the
bands as a function of the wave number k obtained from tight-
binding numerical calculations �dots� and using the theoretical pre-
diction given by Eq. �21� �solid lines� for magnetic field B
=0.15 T and kSOlB=0.256 �other parameters are given in the text�.
The dashed line at the leftmost band shows the result of Eq. �22� for
m=0.
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It is interesting to note that we find that the bands for 0
� �X��R� are quite well approximated by the following
simple formulas:

R�
2

lB
2 �1

2
sin 2�� + �� +




2
� − 
��X� = 2
�m + 3/4� ,

�22�

where ��x�=1 for x�0 and zero otherwise. Note that in
contrast to Eq. �21� these equations give a semiclassical
quantization of the orbital motion of two independent sys-
tems whose classical motion is described by the Hamilto-
nians H� given by the left-hand side of Eq. �9�. The spinor
nature of the quasiparticles enters the quantization only
through a −
 phase shift for positive X values. The origin of
this phase shift can be understood by looking at Fig. 4. For
−R��X�0 the phase contribution coming from the
�exp�i��y� /2� factors of the wave function �see Eq. �11�� is
zero over one full period of the classical motion �Fig. 4�a��.
This happens because the phase change accumulated during
the orbital motion �out−�in=−2� is canceled by the phase
change 2� upon reflection when the sign of the �y

0 is ne-
gated. However, as it is explained in Fig. 4�b� for orbits with
0�X�R� the total phase change is −2
 /2=−
. We find
that the leftmost band in Fig. 2 which is related to the zeroth
bulk Landau level �see Eq. �5�� can be quite well approxi-
mated by the-branch of Eq. �22� which involves R− and �−
for m=0. For stronger magnetic fields, such as shown in Fig.
3, the leftmost bands are better approximated by the quanti-
zation Eq. �22� than by Eq. �21�. We note that for X�0 the

quantization in Eq. �22� basically corresponds to the “longi-
tudinal SO approximation” studied in Ref. 15.

Another interesting and important comparison of the
quantization given in Eq. �21� can be made to the closely
related results of Ref. 8, where the authors used a different
semiclassical approaches25 to describe the edge states in the
presence of RSO. First, we find the same result for the k
=0 energy levels as in Ref. 8

Em�k = 0� = �	c�n − �kSOlB�2� �23�

and a comparison with the numerical calculations show that
it is a good approximation of the exact results. However, we
obtained a pair of quantization conditions, not just one �see
Eq. �27� in Ref. 8�. Furthermore, for the parameter range we
consider our results give a good approximation of the nu-
merically calculated bands not only close to k=0 but for the
whole dispersion relation. Finally, an important difference in
the semiclassical interpretation of the skipping orbits is the
following: in the classical picture put forward in Ref. 8 the
skipping orbits consist of two different type of arcs, having
radii R� and guiding center coordinates X�. Moreover, the
guiding center changes upon each reflection at the wall �see
Fig. 6 in Ref. 8�. In contrast, our approach tells that the
guiding center remains the same throughout the motion. We
think that this is physically plausible because the guiding
center is a constant of motion. It is instead the reflection
angle that slightly changes at each collision with the wall as
a consequence of having two Fermi surfaces with different
radii.

IV. MAGNETIC FOCUSING

Having obtained the quantization condition for edge states
in Eq. �21�, the calculation of the focusing magnetic fields
Bfocus goes along the lines of the discussion of Ref. 2. We
expect that the ballistic transport in a mesoscopic wire in the
magnetic field regime where the cyclotron diameter is
smaller then the wire width can be understood in terms of the
edge states described in Sec. III because they are the propa-
gating modes of this problem. If the injector is narrow, i.e., it
is only a few Fermi wavelength wide, one can assume that it
excites these modes coherently. Therefore, as long as the

�4 �2 0 2 4 6
0

2

4

6

8

10

12

14

k lB

�
Ω

c
/

E

FIG. 3. �Color online� Comparison of the dispersion of the
bands as a function of the wave number k obtained from tight-
binding numerical calculations �dots� and using the theoretical pre-
diction given by Eq. �21b� �solid lines� for magnetic field B
=0.6 T and kSOlB=0.128 �other parameters are given in the text�.
Dashed lines at the leftmost bands show the result of Eq. �22� for
m=0,1.

� � � � � � � � � � � � � � �� � � � � � � � � � � � � �

θin

θout

θin

θout

Ba) X > 0

−2γ

= π − γ

= −(π − γ)

= γ

= −γ

2γ

b)

X< 0

B

FIG. 4. �Color online� Explanation of the phase shift −
 for X
�0 in Eq. �22�. Solid blue �light gray� lines show the bent quasi-
particle trajectories. The direction of the momentum at the start of a
full period and at the subsequent collision with the wall is indicated
by arrows. Also shown are the angles that the momentum encloses
with the wall. The phase-shift contribution coming from the spinor
part of the semiclassical wave function is 1

2 ��out−�in+2�� in �a� and
1
2 ��out−�in−2�� in �b�.
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distance between the injector and the collector is smaller
than the mean free path �and phase coherence length�, the
interference of the edge states can be important. Since the
total wave function of the system can be written as a sum of
all populated edge states �km� and �kl� at a given Fermi en-

ergy, i.e., ��r�	
lCl�̃�y ,kl�eiklx+
mCm�̃�y ,km�eikmx �here
Cl and Cm are normalization constants�, interference along the
confinement potential is determined by the phase factors
exp�ikmx� and exp�iklx�. Here the wave numbers km and kl
are determined by requiring that they satisfy Eqs. �21a� and
�21b�, respectively, for a given Fermi energy EF and quan-
tum numbers m and l. As in Ref. 2, we assume that the
current at the collector is determined by the unperturbed
probability density and therefore the focusing peaks are the
results of the constructive interference of edges states with
kl,m�0 at a distance x=L from the injector. This corresponds
to the assumption that only electrons injected close to per-
pendicular direction can be focused onto the collector. It is

convenient to introduce the following notation: R̃=R+−R−,

ẼF=EF /�	c and we denote by kF
�=Q��EF� /� the radii of the

two Fermi surfaces �circles� in the wave-number space. Then
for k�kF

� we have 1����k /kF
� and expanding Eq. �21a�

in this small parameter we find that in lowest order

km =
1

4R̃�1 +
1

ẼF
��4
m −




2
�kF

+R+ + kF
−R−�� . �24a�

Similarly, expanding Eq. �21b� we obtain

kl =
1

4R̃�1 −
1

ẼF
��2
�2l + 1� −




2
�kF

+R+ + kF
−R−�� .

�24b�

In the semiclassical regime, where EF��	c and hence ẼF

�1 we can take �1+ 1

ẼF
���1− 1

ẼF
��1. Therefore the phase

difference klL−kmL at distance L from the injector between
two edge states whose wave numbers km and kl are given by
Eq. �24a� and �24b�, respectively, reads

klL − kmL = 2
�l − m�
L

2R̃
+ 


L

2R̃
�25�

and we remind that R̃�B�=�pSO
2 +2m�EF /eB. We see that if

for a given magnetic field, e.g., L=2R̃�B� then the phase
difference klL−kmL will be an odd multiple of 
. This means
that the spinor part of the wave function of these two edge

states, �̃�y ,kl� and �̃�y ,km� �see Eq. �16�� will appear with
opposite signs in the total wave function, which may lead to
a near cancellation of �km� and �kl�.

In general, whenever L is an odd multiple of 2R̃, the
phase difference will be an odd multiple of 
 meaning that
there may be a near cancellation between �kl� and �km�. On
the other hand, the phase difference between edge states �km�
and �km��, both belonging to the same semiclassical quanti-
zation branch given in Eq. �21a� is

kmL − km�L = 2

m − m�

�1 +
1

4Ẽ
�

L

2R̃
�26�

and a similar expression can be derived for the phase differ-
ence klL−kl�L between edge states �kl� and �kl�� of the other

quantization branch �Eq. �21b��. As long as Ẽ�1, edge states
given by the same quantization branch can interfere con-

structively at distances L=q2R̃�B�, q=1,2 ,3 , . . ., i.e., regard-
less of whether L is an even or odd multiple of the cyclotron

diameter 2R̃�B�. By constructive interference we mean that
wave function of �km� and �km� � have the same global sign.

�Note, however, that the Ẽ�1, i.e., EF��	c condition gives
an upper limit for the q values for which this reasoning is
applicable.�

In contrast, if L is an even multiple of 2R̃ �e.g., L=4R̃� we
find from Eq. �25� that the phase difference klL−kmL will be
an integer multiple of 2
. This means that in this case not
only edge states belonging to the same quantization branch
but also those belonging to different quantization branches
can interfere constructively. Following the reasoning of Ref.
2 we expect therefore that there will be peaks in the focusing
spectra for magnetic fields B where L is even multiple of

2R̃�B� while we might not see peaks at magnetic fields cor-

responding to L being odd multiple of 2R̃�B�. This simple
analysis then suggests that the focusing fields are given by
integer multiples of Bfocus=4�2m�EF+ pSO

2 /eL.
It is interesting to compare these predictions on the focus-

ing spectra to exact numerical transport calculations. Using
the tight-binding version8 of Hamiltonian �1�, the transmis-
sion probability Tci�B� between the injector and collector
was calculated by employing the Green’s function technique
of Ref. 37. The scattering region was of finite width W �Ref.
38� and was assumed to be perfectly ballistic and infinitely
long �see Fig. 1�. This means that the left and right ends of it
act as drains which absorb any particles exiting to the left of
right. The spin-orbit coupling had a finite value in the scat-
tering region but was set to zero in the injector and collector.
To simulate the effect of finite temperatures we used a simple
energy averaging procedure in the calculation of the trans-
mission curves: Tci�B�=�Tci�B ,E��−

�f0�E�
�E �dE, where f0�E�

was the Fermi function. The actual results shown in Fig. 5
were calculated at T=1 K temperature. As it can be ex-
pected, higher temperatures tend to smear the curves while at
lower ones an additional fine structure appears. Our calcula-
tions are very similar to those in Ref. 6 except that we used
slightly different contacts �see the inset of Fig. 1�. The con-
tacts were always of a finite width �typically five-nine sites
wide� and could, in principle, accommodate more than one
�spin-degenerate� open channels.

Figure 5�a� shows the transmission Tci as a function of the
magnetic field B. We used parameter values that approxi-
mately correspond to the measurements of Ref. 19 on InSb
quantum wells: electron density ne=3.25�1015 /m2, effec-
tive mass m�=0.02me, and Rashba coefficient q
R=1.4
�10−11 eV m. It has been shown39 that the effective giro-
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magnetic factor gef f of InSb is quite large and therefore the
Zeeman spin splitting can be noticeable already at relatively
weak magnetic fields. Therefore in our numerical calculation
we took into account the Zeeman term as well and assumed
gef f =−22. The distance L was 945 nm and both contacts
were tuned to accommodate one �spin-degenerate� open
channel. We find that for these parameters the first focusing
peak is split �see the right inset of Fig. 5�a��. That for strong
enough 
R the first peak is split was first noticed in Ref. 6.
The peak splitting in good approximation corresponds to
�B=

4�kSO

eL �10 mT. Comparing now the numerical result on
the first focusing peak to our analytical prediction, we see
that the dip between the peaks is at the magnetic field value
where the analytics predicts that destructive interference may

take place for L=2R̃ �corresponding to !B ! �0.2 T� but that
the presence of the twin peaks at B−=−0.196 T and B+
=−0.206 T is not explained by our approach. It appears that
the most straightforward way to understand them is to as-
sume spin-split cyclotron orbits, as in Refs. 6, 9, and 14.
Looking at the second focusing peak, one observes that it is

located at L=4R̃ �which happens for !B ! =0.4 T� quite ac-
curately, in accordance with our edge-state-based theory. The
fact that its amplitude is significantly larger than the ampli-
tude of the first peaks seems to corroborate the theoretical
prediction that in this case edge states belonging to different
quantization branches �Eqs. �21a� and �21b�� can construc-
tively interfere with each other. Whether this enhancement of

the amplitude could be observed in an actual experimental
situation, however, depends on how specular the reflection at
the confinement potential is. �Note that in the classical pic-
ture the second focusing peak correspond to trajectories
which bounce off the boundary between the injector and col-
lector once, see the dashed line in Fig. 1.� A small amount of
diffuse scattering at the boundary may render the observation
of this enhancement difficult. Finally, we find that close to

L=6R̃ �at !B ! =0.597 T�, where our calculations predict
that the wave functions of the edge states may cancel, the
amplitude of the transmission is indeed small, but the focus-
ing peak at a slightly higher magnetic field is again not cap-
tured by our calculations. It seems that peaks which appear

when L is odd multiple of 2R̃ cannot be described with the
presented theoretical approach. The splitting of the third
peak close to B=−0.62 T, reminiscent of the splitting of the
first one, is due to the Zeeman interaction and not to the SOI.
As we mentioned, because of the large gef f the Zeeman en-
ergy can be important at smaller magnetic fields than in, e.g.,
GaAs. This is illustrated in the left inset of Fig. 5�a� where
we show the calculation for the third peak but without taking
into account the Zeeman term in the Hamiltonian. One can
see that for the assumed strength of q
R=1.4�10−11 eV m
the third peak is not split in this case.

In Figs. 5�b� and 5�c� we show the partial transmissions
assuming spin-polarized injection/detection. Thus, e.g., Tc+,i−
refers to the transmission probability of electrons being in-
jected in spin −1 eigenstate and collected in +1. In contrast
to Ref. 6 we chose as spin-quantization axis the ŷ direction
�for the definition of the coordinates, see Fig. 1�. The moti-
vation to choose this axis comes from Ref. 18 where it was
shown that the average spin of the edge states �at least the
low-energy ones� pointed mainly in the direction perpendicu-
lar to the confinement potential, i.e., along the y axis in our
case. Comparing Figs. 5�b� and 5�c� one can observe that
except for the first focusing peak, the spin-flip transmissions
Tc+,i− and Tc−,i+ are always significantly smaller than Tc+,i+
and Tc−,i−. We also performed calculations �not shown here�
where the injected electrons were polarized in the x̂ direc-
tion, as in Ref. 6, and we found that Tc+,i− and Tc−,i+ were,
apart from the vicinity of the first peak, usually smaller in the
case of ŷ-polarized injection than for x̂-polarized one. Fur-
ther investigation of the average polarization of the spin of
the edge states in the semiclassical limit and its effect on the
partial transmissions in a focusing setup is left to a future
work.

V. SUMMARY

In summary, we studied the role of edge states in trans-
verse electron focusing setup for strong spin-orbit coupling.
As a first step, employing a semiclassical approach we de-
rived a good approximation for the dispersion relation of the
edge states and briefly compared our results to other approxi-
mation methods that can be found in the literature. We then
studied the interference of the edge states as this is expected
to have ramifications on the focusing spectrum. Comparison
of our theoretical results with numerical transport calcula-
tions suggests that certain properties of the focusing spec-
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FIG. 5. �Color online� �a� The transmission from the injector to
the collector as a function of the magnetic field. The right inset
shows the closeup of the first focusing peak. The left inset shows
that if one neglects the Zeeman interaction then the third peak is not
split. �b� The partial transmissions Tc+,i+ �solid line� and Tc−,i−

�dashed line�. �c� The partial transmissions Tc−,i+ �solid line� and
Tc+,i− �dashed line�—in this scale Tc−,i+ cannot be distinguished
from Tc+,i−. Note the different vertical scale with respect to �b�.
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trum can be quite well understood in terms of the interfer-
ence of the edge states. Nevertheless, the presented
semiclassical approach cannot capture all the important char-
acteristics of the transport calculations. Finally, we studied
numerically the electron focusing when spin-polarized injec-
tion was used.
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