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The spectrum of quantum dots made from semiconductors such as HgTe and HgS changes from negative
gap to positive gap with decreasing size. Furthermore, intrinsic surface states, which are not related to dangling
bonds, appear in the negative-gap regime. We investigate theoretically the evolution of the spectrum of HgS
quantum dots with decreasing size and show how states evolve from a negative gap to a positive gap as
confinement is increased. The lowest confined electron level evolves into an intrinsic surface state with
increasing size and, thus, is not derived directly from a bulk HgS band. Due to strong band mixing in
narrow-gap semiconductors, spacing between confined levels decreases more slowly with increasing size than
for quantum dots made from wide-gap semiconductors. Moreover, dielectric screening becomes nearly metallic
as the gap closes. As a consequence, confinement energies dominate exciton binding energies for all dot sizes
up to the gap closure. Excitons remain in the strong confinement limit as size increases until the gap closes.
Nonetheless, the exciton binding exceeds the single-particle gap for sizes near gap closure, opening up the
possibility of an excitonic insulator phase in quantum dots not possible in positive-gap quantum dots. Signa-
tures in the quantum-dot optical response for gap collapse and surface states are identified.
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I. INTRODUCTION

Quantum dots �QDs� made from negative-bulk-band-gap
materials, including HgTe, HgSe, and �-HgS �the zinc-
blende phase of HgS�, have a broad range of possible tech-
nological applications that could be exploited and fundamen-
tal issues that should be addressed. For example, negative-
bulk-band-gap materials are gapless semiconductors or
semimetals. When confined as QDs, they should exhibit
small positive band gaps, that can be controlled by the dot
size. These tunable small gaps make these QDs ideal for
applications as nanodetectors and nanosensors in the far
infrared.1,2 For QDs with energy gaps close to the gapless
state, the exciton binding energy may become larger than the
energy gap, opening up the possibility of an “excitonic insu-
lator” phase in QDs.3 In this case, the normal insulating
ground state with a filled valence band would become un-
stable against formation of electron-hole pairs. Moreover, it
has been proposed recently that such gapless materials will
manifest a topological insulator phase that makes them at-
tractive for applications in quantum computing and
spintronics.4 An understanding for the evolution of quantum
confinement effects in QDs made from negative-gap materi-
als is needed to pursue applications and assess possible new
phases in QDs.

Understanding quantum confinement, excitonic states,
and optical response in negative-band-gap nanocrystals pro-
vides challenges not posed for nanocrystals made from
positive-band-gap semiconductors, such as CdTe, CdSe, and
CdS. These positive-band-gap semiconductors have a direct
band structure, with the s-type �6 band lying above the
p-type �8 band and the bulk band gap Eg

b=E�6
−E�8

�0, as
shown in the upper panel of Fig. 1. The band gap Eg

d of QDs
made of positive-gap semiconductors with parabolic disper-
sion roughly follows the normal �particle in a box� confine-
ment so that Eg

d�Eg
b+�2�2 / �2R2��1 /me+1 /mh� �where me,h

are the electron and hole effective masses and R is the QD
radius�. Although there is some controversial data on the
band arrangement in negative band-gap materials,5–7 most
experiments8–12 demonstrate that these materials have an in-
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FIG. 1. Bulk band structure of CdS �upper panel� and �-HgS
�lower panel�. CdS has a normal band structure, with the s-type �6

band lying above the p-type �8 band. �-HgS has an inverted band
structure where the �6 band lies below �8 band.
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verted band structure where the �6 band lies below the �8
band, as shown in the lower panel of Fig. 1. The effective
masses of the conduction and light-hole bands are negative
near �. As a result, the two �8 bands degenerate at �, which
are light-hole and heavy-hole bands, become the lowest
empty �conduction� band and highest occupied �valence�
band, respectively. �-HgS, HgSe, and HgTe are classified as
gapless semiconductors or semimetals with the negative gap
between �6 and �8 bands. Due to the band inversion and the
narrow-gap, conduction and valence bands are strongly
mixed away from the zone center, and effective masses be-
come momentum dependent resulting in highly nonparabolic
dispersion. Experimentally, it was shown12–14 that the level
structure of HgTe and �-HgS QDs changes from inverted
gap to positive gap with decreasing size. As a consequence
of the strong mixing, it becomes difficult to follow levels as
the QDs change from inverted gap to positive gap with de-
creasing size. For example, the inverted conduction band �6
has a negative mass. It cannot evolve directly to a confined
state above the gap in the same way that conduction states
evolve due to confinement of positive-gap semiconductors
with positive effective masses. Moreover, as we will show,
unique intrinsic surface states strongly affect the evolution
of the level structure of inverted-gap QDs. These states are
not confined bulk states because they are localized toward
the QD surface in large dots. However, they evolve into
above-gap confined states as the dot size decreases. These
surface states are not caused by dangling bonds so that they
cannot be removed by surface passivation. Similar surface
states have been predicted theoretically to exist on the sur-
face of bulk negative-band-gap semiconductors15,16 and
nanocrystals.17 The interplay of strong mixing, the inverted
band structure with negative effective masses, and the con-
tribution from intrinsic surface states will define the size evo-
lution of QD levels and determine the optics and excitonic
response of negative-gap QDs.

These properties of negative-gap nanocrystals are related
to analogous effects in HgCdTe alloys and HgTe/CdTe quan-
tum wells and superlattices investigated in the 1980s.18,19

Indeed, by tuning the composition of an alloy such as
Hg1−xCdxTe, the alloy changes from a semimetal with an
inverted band structure to a semiconductor with a positive
gap.18 Bastard19 also showed that the band structure of HgTe/
CdTe superlattices and quantum wells behave with decreas-
ing width of the HgTe wells in the same way as Hg1−xCdxTe
alloys for increasing x. It was also shown that such superlat-
tices and quantum wells support interface states appearing
between HgTe and CdTe layers.20–22 These interface states
appear only if the positive gap of the CdTe barrier overlaps
the negative gap of the HgTe well.21,23,24 The existence of the
surface states has been confirmed experimentally in tunnel-
ing studies of HgCdTe surface quantum wells.25

Recently, the problem of surface �edge� states in negative-
gap nanostructures has stimulated intense renewed interest. It
was proposed that the spectrum of surface �edge� states in
these structures may become gapless, and that such materials
may manifest a topological insulator phase,26–29 with impor-
tant implications for quantum computing and spintronics.
This possibility further motivates the need to understand the
evolution of states and the influence of intrinsic surface
states in negative-gap QDs.

Theoretical models used previously for the analysis of the
band-structure effects in negative-band-gap nanocrystals
were based on either the k ·p Luttinger model15–17 or on a
simplified four-band tight-binding model.26,29 However, a
four-band model completely ignores the presence of the
heavy-hole band. In negative-band-gap semiconductors, the
heavy-hole valence band is degenerate with the first band
above the gap at point � �see Fig. 1�, and it can couple both
with the surface states and the inverted �6 band. The Lut-
tinger model30 takes into account the band mixing but this
model is invalid away from the zone center. Because of this,
the Luttinger model cannot be used for small nanocrystals
with confined states that are defined by the bulk bands away
from the zone center.31 Moreover the Luttinger model cannot
account for the precise geometry of the nanocrystal and sur-
face effects. Therefore, both the four-band tight-binding
model and the Luttinger model provide an incomplete de-
scription for negative-band-gap nanocrystals.

In this paper, we study the electronic and optical proper-
ties of negative-gap QDs using a realistic atomistic tight-
binding approach for the electronic-structure calculations.
Previously, we successfully applied an atomistic tight-
binding approach to investigate other narrow-gap nanostruc-
tures including CdS/HgS/CdS quantum-dot quantum wells.31

Here, we study spherical �-HgS QDs with radius 2a�R
�22a, where a is the lattice constant of �-HgS. We investi-
gate how the QD electronic structure changes with dot ra-
dius. Our results demonstrate the inversion of the QD level
structure with increasing radius and the evolution of an in-
trinsic surface state lying in the negative gap into the lowest
confined conduction state above the gap with decreasing
size. We analyze the excitonic states and study how the sur-
face state affects the optical response of the �-HgS QDs.
Excitonic states are calculated using a configuration-
interaction approach32 developed for nanostructures in the
strong confinement regime. We follow the scheme of Refs.
33–35 to apply this approach for the tight-binding approxi-
mation. We evaluate the excitonic binding as a function of
dot size to understand the interplay of electron-hole interac-
tion, screening, and confinement and to address the possibil-
ity of an excitonic insulator phase when the gap closes. This
interplay is manifested differently in negative-gap QDs than
in normal QDs made from positive-gap semiconductors. The
main insight obtained for HgS in this work is general for
other QDs made of negative-gap materials.

The paper is organized as follows. In Sec. II, we describe
the tight-binding model and present the results for the level
structure calculations of �-HgS QDs. We demonstrate the
appearance of surface states and discuss their origin. In Sec.
III, we give details of the exciton calculations and discuss
how Coulomb and exchange effects change with QD size,
using the results to address the possibility of a QD excitonic
insulator phase. In Sec. IV, we discuss the optical response of
QDs. A summary of the results is given in Sec. V.

II. ELECTRONIC-STRUCTURE CALCULATIONS

We use the empirical tight-binding method to calculate
single-particle �SP� energies and wave functions. Here we
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briefly describe the method used and refer to Ref. 31 for
details. We study spherical QDs. For �-HgS, the atoms oc-
cupy the sites of a zinc-blende lattice. Each atom is described
by its valence s orbital, three p orbitals and a fictitious ex-
cited s� orbital included to mimic the effects of higher-lying
states. Empirical on-site and nearest-neighbor coupling inte-
grals are listed in Ref. 31. Spin-orbital coupling is not well
known for HgS, so we do not consider it here. Reference 31
has a detailed discussion of spin-orbit effects. The param-
eters were adjusted to reproduce known band gaps and
masses of bulk �-HgS. In particular, we obtain an inverted
bulk band with Eg

b=−0.2 eV, consistent with recent
experiments.8 We ignore any possible relaxation at the QD
surface. We explicitly exclude the effects of QD surface
states localized on the dangling bonds by passivating the
dangling bonds to push their energies far from the confined
levels near the gap.31 For partially passivated dots, any
dangling-bond surface trap states near the gap strongly influ-
ence the intrinsic surface state studied here and it becomes
difficult to identify the intrinsic surface state among the dan-
gling bond states. In the calculations presented here, we pas-
sivate the dangling bonds by shifting the energy of each dan-
gling bond by Vs=100 eV.36,37 Once the QD structure is
defined and the tight-binding Hamiltonian is built, we find
the electron and hole energies and their wave functions by
diagonalizing the Hamiltonian using an iterative eigenvalue
solver.

The size dependence of the near-gap states in �-HgS QDs
is shown in Fig. 2. Calculated electron energy levels are
shown by unfilled �red� and filled �blue� circles and hole
levels by black circles. The connecting lines indicate the evo-
lution of levels. The dotted lines show the bulk valence ��8�
and inverted conduction ��6� band edges. The two lower
panels show the probability density on the anion plane z
=0.5a and on the cation plane z=0.25a for the states marked
in the upper panel. The plane z=0 passes through the QD
center. In small QDs, the lowest conduction state, Sc, is de-
rived mostly from cation s-type states. The first excited elec-
tron state Pc is made primarily from cation s orbitals with a
smaller but significant contribution for cation and anion p
orbitals. The highest hole states, Pa, are derived primarily
from the anion p-type states and are the heavy-hole states. Sc
is more localized toward the surface of the QD as shown in
the lower panels ��a�–�c�� of Fig. 2. This is in contrast with
the confined hole Pa and electron Pc states presented in the
lower panels �d� and �e� of Fig. 2. It is worth noting that the
maximum intensity of the �a�, �b�, and �c� images of the Sc
state is one order of magnitude higher on the cation plane
than on the anion plane. This confirms the cation origin of
this state. In contrast, for the anion-derived Pa state, the
maximum probability is larger on the anion plane than on the
cation plane of image �d�. With increasing size, Pa shifts
closer to the gap but remains primarily a heavy-hole state
with little change in orbital character. Pc also shifts toward
the gap. However, Pc becomes more light-holelike as the QD
size increases, with significant increase in anion p-orbital
content and substantial decrease in cation s and p orbital
content. The lowest electron state Sc shifts down in energy
and becomes more strongly localized toward the surface. Fi-
nally at R�13a, the state crosses the valence band edge and

moves inside the valence band for R�13a. As size increases,
the anion p content increases while the cation p content de-
creases, indicating the increased light-hole character of the
state. In Fig. 2, we mark the state Sc by filled �blue� circles
connected by the blue lines to follow the change in Sc with
size. For R�13a, the spectrum of the QDs approaches the
bulk band arrangement with a gapless spectrum. In practice,
it is hard to identify which states form the conduction- and
valence-band edges of the gapless spectrum without knowing
the dispersion of the bands. To check the dispersion for the
bulk limit, we have done calculations for the projected band
structure of a HgS slab. We conclude that the conduction-
and valence-band edges of the gapless spectrum are both
derived significantly from the anion p states �Pa�. While the
Pc state forms the first excited electron state. Figure 2 shows
directly the evolution of the HgS QD spectrum from direct
gap to inverted gap with increasing size. It also reveals the
increased localization toward the surface of Sc.

It is interesting to compare the states of �-HgS with nega-
tive gap as presented in Fig. 2, with the states of QDs made
of an artificial �-HgS with positive-bulk band gap Eg

b

=0.2 eV �see Fig. 3�. The levels of HgS/CdS QD quantum

FIG. 2. �Color online� Energy levels of �-HgS QDs. The upper
panel demonstrates the evolution of the near band edge levels of the
QDs with radius. The electron energy levels are shown in unfilled
�red� and filled �blue� and hole levels in black. The surface state is
marked by the filled �blue� circles. The solid lines are guides for the
eyes. The dotted lines show the bulk �8 and �6 band edges. The
lower panels show the probability density on anion �z=0.5a� and
cation �z=0.25a� planes for the states marked in the upper panel.
The dashed circles outline the QD. Images �a�-�c� demonstrate the
evolution of the surface state Sc with increasing size. Typical con-
fined hole Pa and electron Pc states are shown in �d� and �e�, re-
spectively. The maximum probability of �a�, �b�, and �c� is one
order of magnitude higher in the cation plane than in the anion
plane. The opposite is true for �d�. The maximum probability in �e�
is almost identical in the cation and anion planes.
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wells with both positive and negative-bulk band gaps have
been discussed in detail in Ref. 31. Confinement acts nor-
mally on the band-edge levels of QDs with positive-bulk gap
resulting in a continuous increase in levels and gaps with
decreasing size. Importantly, all near band edge states are
confined inside the dots without any localization toward the
surface as shown in the lower panel �a�, �b�, and �c� of Fig. 3.
All QD states converge to bulk states with increasing size
when the bulk gap is positive.

The inverted-gap QDs support a surface state while the
positive-gap QDs do not. This surface state is intrinsic, not
caused by dangling bonds, because all dangling bonds are
pushed far from the gap by passivation. For small passivat-
ing potentials ��Vs��10 eV�, the surface state and the energy
levels of small QDs are sensitive to the magnitude of the
potential.36,37 This sensitivity to surface potential makes
these QDs very attractive for applications as infrared
nanosensors.

To understand the origin of the surface state, we follow
the states as R increases, approaching the bulk limit. The
highest hole states Pa and the first excited electron states Pc

are similar in negative-gap and positive-gap QDs as shown
in the lower panels of Figs. 2�d� and 2�e� and Figs. 3�b� and
3�c�. With increasing QD size, Pa �Pc� evolves to the bulk
valence �8 band edge �a bulk conduction band above the
gap� both for negative-gap and positive-gap QDs. Sc is in-
herently different in the negative- and positive-gap QDs. In
positive gap �-HgS, Sc evolves to an above-gap bulk state �6
as R increases. In negative gap �-HgS, Sc evolves to a level
inside the inverted band gap, between �6 and �8 bulk band
edges, that has no counterpart in the bulk. Sc never reaches
the �6 band edge for negative-gap dots. In practice, we can-
not model large enough dots to reach completely the “bulk”
limit. To check the behavior for the bulk limit, we have done
calculations for the states confined in a HgS slab. We con-
clude that the confined Sc level evolves from a surface state
intrinsic to the negative-gap QDs studied. Thus, Sc is not a
confined bulk state. The confined bulk �6 levels in negative
gap dots and slabs are actually pushed to more negative en-
ergies, further away from the gap. As the dot size increases
for R�13a and Sc is pushed down into the negative gap, Sc
crosses the higher-lying valence states and is strongly hy-
bridized with them. This hybridization has important conse-
quences for the level structure, which becomes clearer for
slab states with finite wave vector. For example, in a QD, the
highest-lying Pa state is heavy-holelike. In wide slabs, the
band-edge, zone-center �in-plane wave vector k=0� Pa va-
lence state remains heavy-holelike after it has crossed with
Sc. However, for finite k, the highest valence state in a slab
becomes light-holelike with negative effective hole mass, ly-
ing above the other heavy-hole bands, just as in the bulk.
This complex evolution of the dispersion of valence states in
slabs of negative-gap materials and the connection to topo-
logical insulator phases will be discussed in another paper.

The size evolution of the spectrum of �-HgS QDs and
appearance of the surface state demonstrated in Fig. 2 are
very similar to that for CdTe/HgTe/CdTe quantum wells re-
ported in Ref. 21. For CdTe/HgTe/CdTe quantum wells, the
localized states are trapped at the interface between the
negative-gap HgTe and the positive-gap CdTe. Such inter-
face states appear if the positive gap of the CdTe barrier
overlaps in energy with the negative gap of the HgTe
well.20,21,24 For �-HgS QDs with a surface, the vacuum �with
infinite band gap� plays the same role as the positive-gap
CdTe barrier.

III. EXCITON STATES

To identify the effects of the inverted gap—positive-gap
crossover and the intrinsic surface states on the optics of
�-HgS QDs, we analyze the electron-hole correlation effects
that determine exciton states. We employ a configuration-
interaction approach using the tight-binding approximation
for the single-particle states.33–35 The exciton wave function
is expanded in terms of the electron-hole pair states found
from the tight-binding calculations

�ex = �
e=1

Ne

�
h=1

Nh

Ceh	e	h, �1�

where Ne and Nh are the number of electron and hole states,
with wave functions 	e and 	h, included in the configuration.

FIG. 3. �Color online� Energy levels of artificial �-HgS QDs
with positive-bulk band gap Eg

b=0.2 eV. The upper panel demon-
strates the evolution of near band-edge levels with radius, electron
levels in red and blue and hole levels in black. The solid lines are
guides for the eyes. The dotted lines show the bulk valence ��8� and
conduction ��6� band edges. The two lower panels show the prob-
ability density on anion �z=0.5a� and cation �z=0.25a� planes for
the states marked in the upper panel. The dashed circles outline the
QDs. The maximum probability of �a� is one order of magnitude
higher in the cation plane than in the anion plane. The opposite is
true for �c�. The maximum probability of �b� is similar in the cation
and anion planes.
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The �Ceh�2 define the occupation numbers of the electron-
hole pairs. The exciton spectrum is found from the Schro-
dinger equation H�ex=E�ex. The matrix elements of the
electron-hole Hamiltonian H are calculated as35

Heh,e�h� = �Ee − Eh�
e,e�
h,h� − Jeh,e�h� + Keh,e�h�. �2�

Here the difference between electron and hole energies,
found from tight-binding calculations, defines the single-
particle band gap Eeh

sp =Ee−Eh. The matrix elements J and
K describe the Coulomb and exchange interactions, re-
spectively. To obtain excitonic levels, we diagonalize the
configuration-interaction matrix Eq. �2�. We include a suffi-
cient number of electron Ne and hole Nh states in the con-
figurations to achieve convergence of the first few exciton
states within a few millielectron volt. For the HgS QDs stud-
ied, we used the three or four lowest electronic states and the
nine or ten highest hole states to ensure the convergence of
the exciton states. Since we neglect the spin-orbit interaction,
exciton states must be singlet �with total spin equal to 0� or
triplet �with total spin equal to 1�.38 The exchange matrix
elements vanish for triplet states. Therefore, there are two
Hamiltonians depending on the exciton spin. The Hamil-
tonian for singlet exciton �SE� states includes both the Cou-
lomb and exchange interactions while the Hamiltonian for
the triplet exciton states includes only the Coulomb interac-
tion. We diagonalize these two Hamiltonians separately to
obtain the spectra of the singlet En

ex,s and triplet En
ex,t exci-

tons.
The Coulomb and exchange interactions are screened by a

dielectric function ���r�� −r�� ,R� which depends both on spatial
separation between electrons and holes �r�� −r��, and the QD
radius R. The size dependence of the dielectric function ex-
plicitly defines the extent of screening and the dielectric con-
finement effect.39 Calculations of the average dielectric con-
stant in nanostructures show that it decreases with size.40,41

However, the origin of this decrease is not understood.42 In
the Thomas-Fermi approach,40 the decrease in the dielectric
constant is attributed to the decrease in the polarizability due
to increasing gap. On the other hand, it was proposed42 that
the decrease in the average dielectric response with decreas-
ing size could be caused by the breaking of polarizable
bonds at the surface. In this case, the dielectric screening can
be described by the bulk size-independent dielectric function
except the thin surface layer of the order of the Fermi wave-
length.

Following the approach of Ref. 43, we approximate the
electronic �high-frequency� dielectric function by the
Thomas-Fermi model,44 and the ionic �low-frequency� di-
electric function by the polaronic model.38 The electronic
dielectric function of the dot is obtained from a Penn model43

��
dot = 1 + ���

bulk − 1�
�Eg

b + E�2

�Eg
d�R� + E�2 . �3�

Here Eg
d�R� is the calculated band gap of the QD, ��

bulk is the
bulk high-frequency dielectric constant equal to 11.36 for
�-HgS, and Eg

b+E is the energy of the first pronounced
peak in the bulk absorption spectrum. In accordance with
experimental data,10 we assumed that Eg

b+E is equal to

0.25 eV both for the inverted band �-HgS with Eg
b=0 and for

the artificial direct band �-HgS with Eg
b=0.2 eV. The low-

frequency dielectric constant of the dot is obtained as

�o
dot�R� = ��

dot + ��o
bulk − ��

bulk� , �4�

where �o
bulk is the bulk low-frequency dielectric constant,

equal to 18.2 for �-HgS. We perform the calculations using
size-dependent dielectric function as defined by Eqs. �3� and
�4�. We also perform calculations with the bulk size-
independent dielectric function. This allows us to test the
robustness of our predictions to different choices for screen-
ing.

We use the two-orbital approximation34 to evaluate J and
K. This allows us to expand J and K into a small number of
Coulomb-type �coul and exchangelike �exch integrals using
the tight-binding wave functions 	e,h. To evaluate screened
and unscreened on-site integrals �coul and �exch, we used a
reciprocal-space formalism.33,43 Off-site integrals �coul and
�exch between nearest neighbors were calculated by direct
integration in real space. All other off-site Coulomb integrals
were estimated using the Ohno formula45 modified to include
screening.34 Working with the empirical tight-binding ap-
proach, we must choose atomic basis functions for the evalu-
ation of the �coul and �exch integrals. There are several
choices for the basis functions. These include the Slater-
Koster orbitals,46 which have an analytical formulation; and
Hermann-Skillman orbitals47 which can be obtained by nu-
merical atomic-structure calculations. The Slater-Koster or-
bitals allow us to get analytical matrix elements. However,
the Hermann-Skillman orbitals should correspond more
closely to the actual atomic states. We used both the Slater-
Koster orbitals and Hermann and Skillman orbitals to evalu-
ate �coul and �exch. Although the values of the integrals may
differ considerably for the two choices of the orbitals, the
trends for the excitonic effects are qualitatively identical. In
all results presented here, we use the Coulomb and exchange
integrals calculated using Hermann-Skillman orbitals.

The configuration-interaction matrix �2� is defined by the
transitions from the filled to the empty electron levels, which
are separated by the Fermi level. In principle, the Fermi level
can be determined by finding all electron levels and filling
them with the atomic valence electrons. This computational
approach is not practical for large dots. Even so, for a dot
with a positive gap, strict filling of just the valence states,
leaving the conduction states empty, is achieved only for dots
with an equal number of anions and cations. Surface passi-
vation should account for any charge imbalance on the dot.
To account for this effect of the surface passivation, we
would need an explicit, atomistic model for the passivants.
This is beyond the scope of our model. Instead, we follow
the routinely used practice of taking the Fermi level between
the valence and conduction bands, as in the bulk. This choice
for the Fermi level is clear for small HgS dots with a finite,
positive gap, but not clear if the gap closes and conduction
levels move into the valence band. The level schemes we use
are shown in Fig. 4. We indicate in Fig. 4 the single-particle
energy levels used in the configuration-interaction matrix in
Eq. �2�. The line thickness of each level indicates the level
degeneracy. The allowed transitions that correspond to ab-
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sorption are shown by arrows. For small QDs �R�13a� the
band gap between the lowest cation-derived s-type electron
state Sc and the highest p-type hole state Pa is clear �see Fig.
4�. However, for R�13a the band gap becomes ambiguous
because the Sc moves into the valence band. Results should
depend on which valence states and whether Sc are occupied
in the ground state. We consider the two possible filling con-
figurations for R�13a, shown in Fig. 4. In filling scheme 1,
the lowest empty state was chosen to be the highest anion-
derived p-type state Pa. In scheme 2, we assume that Pc is
the lowest unoccupied state. Given the uncertainty in the
level filling because of the nonstoichiometry of the dot and
the unknown amount of charge accounted for by the passi-
vation, we test both filling schemes.

The filling schemes we consider are “closed shell”
schemes with the highest occupied molecular orbital
�HOMO� completely filled and the lowest unoccupied mo-
lecular orbital completely empty in the nanocrystal ground
state. This closed shell scheme is commonly used and works
well to describe QDs with a wide gap. However, as men-
tioned above, the filling scheme to be used is not obvious
when the gap is small or negative. We consistently use the
closed shell scheme even for R�13a. After Sc crosses Pa,
two closed shell schemes are possible. We consider both.
However, one could also assume that when Sc crosses below
Pa and captures two electrons, Pa loses two electrons and
becomes partially occupied. This is an “open shell” filling
scheme. Correlation effects between electrons in the partially
occupied Pa HOMO would have to be included to determine
the nanocrystal ground state for a partially occupied HOMO.
This scheme should also be considered but is beyond the
scope of the calculations presented here.

When the gap is small or negative �i.e., for R near 13a�,
electron-hole binding energy can be comparable to the gap as
well. In that case, correlation and binding energy from
electron-hole excitations should also be included to deter-
mine the nanocrystal ground state. Such an excitonic insula-
tor ground state should also be considered but is beyond the
scope of the calculations discussed here.

In Fig. 5, we compare the splitting of four lowest exciton
levels En

ex−E1
ex �b� with the single-particle transition-energy

splittings En
sp−E1

sp �a�. Both the singlet �solid curves� and
triplet �dashed curves� states are shown. We define the occu-
pation numbers Ceih

=� j�Ceihj
�2, where the sum is over all

hole states included in the configuration. In Fig. 5�c�, we

show the Ceih
of the lowest singlet exciton state as a function

of the QD radius. Here we separated the occupation number
�Ce1h1

�2 �circles� corresponding to E1 transition in Fig. 4. The
curve with stars corresponds to Ce1h�=Ce1h−Ce1h1

. The occu-
pation numbers of the next two exciton levels are similar to
that of the lowest state shown in Fig. 5�c� but the label e1h1
must be replaced for e1hn with n=2,3 for the second and
third states, respectively. For R�13a, scheme 1 was used for
these calculations. The kink for the fourth exciton level and
the fourth single-particle transition energy arises from the
change in the filling used for R�13a to the filling used for
R�13a shown in Fig. 4.

An important feature of the results shown in Fig. 5�a� is
that the single-particle splittings cannot be fit by the 1 /R2

function that is characteristic of normal �particle in a box�
confinement. Instead, En

sp−E1
sp scale as 1 /R� where �=0.8,

1, and 0.7 for n=2,3 ,4, respectively, decaying much slower
with increasing R than is typical for quantum confinement.
The triplet exciton splittings follow closely the single-
particle transition energy splittings. The singlet exciton states
are split from the triplet states by the exchange interaction.
Due to quantum confinement enhancement of the electron-
hole spatial overlap,48–50 the exchange splittings for all four
levels increase with decreasing QD size. As shown in Fig.
5�b�, the exchange splitting for the second exciton level is
larger than for the other levels. For small QDs, the second
exciton state is mostly defined by the electron-hole pair com-
posed of the Sc electron state and the second Pa hole state
�see transition E2 in Fig. 4�. For large QDs, all Pa hole states
included in the configuration are composed mostly of anion
p orbitals. However, with decreasing size, the second Pa hole
level gains considerable contribution from s-cation orbitals.
This feature is a consequence of the band mixing in the
strong confinement regime. In contrast, the other hole states
remain mostly anion derived p states with decreasing size.
The coupling between the cation s orbitals of Sc and the
second Pa level results in much larger exchange splitting of
the second exciton level than the coupling between the cation
s orbitals Sc and the anion p orbitals of the hole states of the
other exciton levels shown in Fig. 5�b�.

The occupation numbers change abruptly for R�13a as
shown in Fig. 5�c�. Such behavior is characteristic of the
three lowest exciton states both of singlet and triplet-type.
For R�13a, the lowest exciton state is composed mostly of
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FIG. 4. �Color online� Schematics of the single-particle energy
levels taken into account for the excitonic calculations. The line
thickness of each level indicates the level degeneracy. The arrows
show the allowed transitions E1, E2, E3, and E4 ordered in energy.
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the e1h1 electron-hole pair. The mixing of electron-hole pairs
does not increase with increasing size. This result is counter-
intuitive. For normal �particle-in-the-box� confinement, mix-
ing is enhanced with increasing size because the corrections
to the wave function caused by the mixing scales in lowest-
order perturbation theory, as

Jn1

En
sp − E1

sp �

1

R

1

R2

� R . �5�

Here Jn1 is the Coulomb matrix element between nth and
first electron-hole pairs which scales approximately as 1 /R.
However, as discussed above for negative-gap QDs, En

sp

−E1
sp�1 /R� where �=0.8, 1, and 0.7 for n=2,3 ,4, respec-

tively. As a result, the mixing even decreases with size as
R�−1 for the lowest exciton states and the exciton states be-
come more like noninteracting pair states as R increases up
to the gap closure. As the gap closes, screening is enhanced
�see Eq. �3��, becoming more metallic. This also suppresses
mixing. However, even when we use size-independent
screening, mixing does not increase with increasing size. The
dominant effect is the slow decrease in the energy gaps and
levels with increasing size. For R�13a after the collapse of
band gap, all electron-hole pairs strongly mixed in the con-
figuration. The nonmonotonic behavior of Ceihj

is a signature
for the transition between positive and inverted gaps.

The lowest singlet exciton state, E1
ex,s, defines the optical

gap Eg
ex=E1

ex,s. The exciton binding energy �Coulomb split-
ting� is the difference between the single-particle band gap,
Eg=E1

sp, and the lowest triplet state, Ecoul=Eg−E1
ex,t. The

exchange splitting is the difference between the lowest sin-
glet and triplet states, Eexch=E1

ex,s−E1
ex,t. In Fig. 6�a�, we

compare Eg
ex �circles� with the single-particle band gap Eg

�squares� and the difference between Sc and the highest Pa
level, ESc−EPa �thin curve�. Figures 6�b� and 6�c� show the
Coulomb and exchange splittings, respectively. In the right
panels of Figs. 6�a�–6�c��, we zoom in on the region close to
gap closure. The solid and dashed curves in Figs. 6�a�–6�c�
are found with filling schemes 1 and 2, respectively. To dis-
tinguish how dielectric screening and quantum confinement
affect the Coulomb and exchange energies, we also show
Eg

ex, Ecoul, and Eexch calculated with the size-independent
dielectric function corresponding to the bulk dielectric con-
stants �dashed-dotted curves�. On the large scale, both the
exciton and single-particle ground-state energies, as well as
the exchange splitting, decrease monotonically with radius
for scheme 1, as shown in the left panel of Fig. 6. In contrast,
for filling scheme 2 the energy of the exciton ground state
and the exchange splitting jump for R�11a as shown by the
dashed curves in the left panels of Figs. 6�a� and 6�c�. How-
ever when we zoom on the region close to gap closure, we
notice that no quantities behave monotonically for any
scheme used. As we show below, this nonmonotonic behav-
ior is related to the positive-inverted gap crossover and sur-
face states.

For R�12a, ESc−EPa �the thin curve in Fig. 6�a�� defines
the single-particle gap Eg of the dot. For R�13a, ESc−EPa

becomes negative, indicating the transition from positive-gap
to inverted-gap and Eg depends on the filling scheme. In this
region, the energy of the exciton ground state becomes nega-
tive �see squares in the right panel of Fig. 6�a��, with the
exciton binding energy, Eb

ex=Ecoul, larger than the lowest
single-particle gap, Eg. This indicates that the normal insu-
lating ground state with filled valence band becomes un-
stable against the formation of electron-hole pairs, and de-
fines the size for a transition to a possible excitonic insulator
phase.3 Importantly, Eg

ex calculated with a size-independent
dielectric function also becomes negative for R�13a �see
dashed-dotted curve in the right panel of Fig. 6�a��. This
implies that a prediction of an excitonic insulator phase does
not depend on the model of the dielectric screening used. In
filling scheme 2, the energy of the exciton ground state
shows a kink for R�11a but remains positive �see the
dashed curve with squares in the left panel of Fig. 6�a��. The
excitonic insulator phase in the �-HgS QDs is possible but it
will depend on the filling of the valence states or on the level
of doping.

As seen in Fig. 6�a�, the energy of the exciton ground
state follows closely the single-particle band gap for either
filling scheme. For R�10a, both Eg and Eg

ex can be roughly
fit by a 1 /R1.5 function which differs from 1 /R2 characteris-
tic of normal �particle-in-the-box� confinement. The binding
energy and exchange splitting rapidly decrease in the interval
2a�R�10a �see left panels of Figs. 6�b� and 6�c��. Ecoul
roughly scales as 1 /R1.5, which is steeper than the 1 /R scal-
ing expected for a Coulomb energy with size-independent
screening �see dashed-dotted curve in the left panel of Fig.
6�b��. This is a signature of the increased screening near gap
closure. On the other hand, the exchange energy is almost
insensitive to screening. In Fig. 6�c�, the solid and dashed-
dotted curves can be distinguished for R�4a only. Our re-
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sults demonstrate that for small QDs Eexch scales as 1 /R3.
This agrees with enhancement of the electron-hole exchange
interaction in QDs predicted in Ref. 51.

The solid and dashed curves for Ecoul, corresponding to
filling schemes 1 and 2, almost coincide in Fig. 6�b�. In
contrast, the exchange splitting is more sensitive to the level
filling. Our results demonstrate a sharp peak in the exchange
splitting at R�13a for filling scheme 2 �see dashed curve in
the left panel of Fig. 6�c��. Coulomb-interaction couples the
electron �	e�2 and hole �	h�2 charge densities. The charge
densities of the relevant states are similar for both filling
schemes. As a result on the large scale, Ecoul is only weakly
dependent on the filling scheme used. The exchange interac-
tion is defined by the Coulomb coupling between polariza-
tion densities 	e	h. For scheme 2, the polarization density is
a maximum for R�13a, when both 	e and 	h are defined by
cation derived states �Pc and Sc� �see transition E2 in the
right panel of Fig. 4�. This is in contrast with all other cases
when 	e and 	h are defined by the cation-derived �Sc or Pc�
and anion-derived �Pa� states. For scheme 1, the exchange
and Coulomb splittings are also sensitive to the positive-
inverted band-gap transition on the small scale �see the right
panels of Figs. 6�b� and 6�c��. The surface-localized state Sc
defines the band edge for R�14a �see the thin curve in the
right panel of Fig. 6�a��, so the ground exciton state is de-
fined by the transitions between cation-derived �Sc� and
anion-derived �Pa� states. For R�14a the exciton is defined
by the transitions between anion derived p-type states. This
results in the steplike increase in Ecoul and Eexch at R
=15a shown in the right panels of Figs. 6�b� and 6�c�.

IV. OPTICAL RESPONSE

To determine the single-particle and exciton optical spec-
tra of �-HgS QDs, we calculate the optical response in the
dipole approximation

���w� � �
�

�E� · D� ��
�E� − �w� , �6�

where the sum is over all transitions � and E� is the transi-
tion energy, E� is the electric field, and D� � is the dipole mo-
ment. In the single-particle approximation, the transition en-
ergy is defined by the single-particle pair energy between ith
electron and jth hole levels, E�=Eij =Eei−Ehj, and the dipole
moment is D� �=D� ij

o = 		ei�r��	hj
. For the exciton optical re-
sponse, the transition energy is the energy of the �th exciton
level E�=E�

ex. The dipole moment is34

D� � = �
e,h

�Ceh
� ��D� eh

o , �7�

where the sum runs over all electron-hole pairs included in
the exciton configuration. In the dipole approximation, spin
flips are not allowed, and only the singlet exciton states can
absorb light. We first calculate the single-particle dipole mo-
ments D� ij

o using the tight-binding wave functions as de-
scribed in Ref. 31. Using the single-particle dipole moments
and the coefficients Ceh

� of the exciton wave functions we

evaluate the exciton dipole moment and calculate the exciton
optical response. For all calculations we use filling scheme 1
for allowed transitions.

We show in Fig. 7 how the optical response changes with
radius. The transitions to the singlet exciton states are al-
lowed, they correspond to the bright exciton spectrum. For
each QD size, we show the SP and SE spectra in the lower
and upper panels, respectively. For small QDs with a positive
gap, �R=4a ,8a� the Pa→Sc transition is the lowest bright
transition. As shown in Fig. 5�c�, the Coulomb and exchange
interaction do not mix the electron-hole pairs, so the energy
of this state is defined from the electron-hole pair roughly as
En

ex�En
sp−Jnn+Knn �see Eq. �2��. The Coulomb interaction is

larger than exchange interaction, Jnn�Knn, so the first exci-
ton peak is redshifted from the single-particle peak shown in
Fig. 7. The second absorption peak is related to the transition
Pa→Pc. As mentioned, the Pc state has similar probability
density on anion and cation planes, giving rise to a strong
exchange and Coulomb interaction of the Pc and Pa states in
the anion plane. A strong mixing of the eihj �i=2:4 , j
=1:9� electron-hole pairs in the highest exciton states blue-
shifts the second exciton absorption peak from the single-
particle transition as shown in Fig. 7. With increasing dot
size, the strength of the Pa→Sc transition decreases relative
to the Pa→Pc transition so that the Pa→Pc transition de-
fines the dominant low-energy absorption peak for R�6a.

For R�13a, the gap collapses, the level structure is in-
verted and Sc is localized more toward the surface. Conse-
quently, the transition Pa→Sc is inverted to Sc→Pa. For R
�13a the Sc→Pa transition is weak. The higher, strongly
mixed exciton states, related to the Pa→Pc transition, com-
pletely define the exciton spectra after the band-gap closure
as shown in the right panel of Fig. 7.

We summarize these results in Fig. 8 by presenting the
size dependence of the strongest optical transitions. The low-
energy exciton absorption peak �solid curve� is redshifted
from the single-particle transition Pa→Sc �dashed curve�.
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The dominant exciton absorption peak �solid curve with
circles� is blueshifted from the single-particle transition Pa
→Pc �dashed curve with circles�. We can see that in this
scheme the emission threshold �dashed-dotted curve�
changes monotonically with QD size, while a dominant ab-
sorption line shows a steplike behavior. The nonmonotonic
change in the optical spectra close to the inversion is a sig-
nature for the transition from positive to inverted gap.

The Pa→Sc transition involves the state which becomes
more localized toward the QD surface with increasing size,
as shown in lower panels �a�, �b�, and �c� of Fig. 2. The Pa
→Pc transition is between two confined states �see lower
panels �d� and �e� in Fig. 2�. As mentioned, with increasing
dot size, the strength of the Pa→Sc transition decreases rela-
tive to the strength of the Pa→Pc transition. To quantify the
effect of surface state on optical response, we compare in
Fig. 9 the ratio of dipole moments for the transitions Pa
→Sc and Pa→Pc, Dn�p�=Dn�p�

ps /Dn�p�
pp for negative �n� gap

and positive gap �p� dots. The curve with squares shows the
ratio Dp /Dn for the single-particle transitions, and the curve

with circles shows the ratio for the corresponding exciton
singlet transitions. The ratio Dp /Dn increases with increasing
radius both for the single-particle and exciton dipole mo-
ment, so that at R=13a Dp is more than three time larger
than Dn. The behavior of Dp /Dn correlates with the increased
localization of Sc toward the surface with increasing QD
size. The relative strength of the transition Pa→Sc could be
used to test the intrinsic surface state character of the Sc state
in �-HgS QDs.

V. SUMMARY

Using an atomistic tight-binding approach, we have inves-
tigated the size evolution of single-particle states in QDs
made from negative-bulk-band-gap semiconductors such as
�-HgS. With decreasing size, the QD level structure changes
from an inverted gap to a positive gap. Size tuning provides
the control needed to exploit these dots as far-IR nanosensors
with very small gaps. In small dots, the lowest electron level
behaves like a confined level in a dot made from a positive-
gap semiconductor. As the size of the HgS dot increases, the
lowest conduction level crosses the gap, moving below the
valence-band edge. However, it does not converge to the
bulk-inverted band edge. Rather, it approaches a limit inside
the inverted gap, revealing that its parent state in the bulk
limit is a surface state intrinsic to the dot, not a bulk band
state. The surface localization of this state makes it an ideal
state to exploit for sensor applications requiring surface sen-
sitivity. The origin of the surface state is similar that of sur-
face states found in the HgTe quantum-well structures. Near
gap closure there is also strong band mixing. As a result, the
levels and gaps between levels decrease more slowly than
the usual 1 /R2 scaling. This slow scaling has important con-
sequences for exciton states.

We have investigated the optical response and exciton
states of these QDs using a configuration-interaction ap-
proach. The positive-inverted gap transition manifests itself
in the nonmonotonic size dependence of the excitonic effects
and optical response of the QDs. In small dots, the lowest
exciton states are defined by the noninteracting electron-hole
pair states with the low-energy exciton absorption peak red-
shifted from the single-particle transition by the Coulomb
and exchange energy. As QD size increases, the level split-
tings remain the dominant energy scale, decreasing more
slowly than the interaction energy so that the exciton remains
nearly a noninteracting electron-hole pair even up to the gap
closure. After the collapse of gap, all electron-hole pairs are
strongly mixed by the Coulomb and exchange interactions
and contribute similarly to the exciton states. As a result the
dominant optical absorption of the QDs changes steplike
when passing through positive-inverted gap transition. The
surface state is evident in the excitonic effects and in optical
spectra and is responsible for a reduction in the transitions
strength near the gap closure.

Close to the gap closure the exciton binding energy be-
comes larger than the lowest single-particle gap, making the
filled ground state unstable to the formation of electron-hole
pairs and raising the possibility of an excitonic insulator
phase for these nanocrystals. This possibility depends on the
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level of doping in the QDs. This excitonic insulator phase is
robust and does not depend on the model of the dielectric
screening used. This makes negative-band-gap nanocrystals
attractive for testing new QD phases.

In this paper, we neglected the spin-orbit interaction be-
cause of the uncertainty in parameters. It is important to
know how the trends discussed here might be affected by

spin-orbital coupling. Analysis shows that intrinsic surface
states and the band-gap collapse are evident in negative gap
HgTe films where the parameters of the spin-orbital coupling
are known. Optical response and excitonic effects must be
affected by spin-orbital coupling due to the mixing of singlet
and triplet exciton states. This problem needs further inves-
tigation.
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