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We present an analytical model describing polariton four-wave mixing oscillation in semiconductor micro-
cavities. The noise spectra of the intensity difference of the light emitted by the oscillating polariton modes are
calculated. It is shown that the two-mode squeezing depends essentially on the ratio of the photonic to the
excitonic fraction of the polariton modes. This ratio can be adjusted freely by changing the cavity-exciton
detuning. A comparison with available experimental results indicates that a significant intensity difference
squeezing can be expected for realistic experimental situations.
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I. INTRODUCTION

The nonlinearities due to excitonic interactions in strongly
coupled semiconductor microcavities are at the origin of a
wealth of effects that have been recently uncovered, such
as condensation,1 collective fluid dynamics,2,3 and
superfluidity.4 The great relevance of the coherent nonlinear
optical response in polariton systems was first realized about
10 years ago, with the discovery of parametric amplification
and oscillation of polaritons �Refs. 5–8�. The implications of
these experimental and theoretical advances for the genera-
tion of squeezed and quantum correlated field states was
soon pointed out.9–12 Based on the squeezing properties dem-
onstrated in media possessing second- and third-order non-
linearities, one could expect analogous quantum effects, in-
volving composite half-matter half-light bosons, to be
observed for polariton parametric oscillators.

The coherent nature of the parametric process was dem-
onstrated by Messin et al. using a degenerate Kerr-type
configuration.6 In the same geometry, Karr showed that the
light reflected from a microcavity presented an amount of
squeezing of 4%.13 That was the first experimental evidence
of quantum effects in polariton systems, followed by the
demonstration of quantum complementarity in the paramet-
ric luminescence from microcavity polaritons.14

In the so-called “magic angle” geometry �i.e., with the
pump beam having in-plane wave vector kp, giving birth to a
strong signal at ks=0 and a weak idler at ki=2kp�, quantum
correlations between the signal and idler polaritons are also
expected.11 However, it turns out that the strong imbalance in
the photonic content of the signal and idler polariton modes
makes it extremely difficult to observe such correlations.
This problem was solved using a more symmetrical pump
scheme, that makes use of two pump beams having opposite
wave vectors kp and −kp �from now on, we drop “in-plane”�.
In this case, momentum conservation requires ks+ki=0
while energy conservation imposes �ks�= �ki�= �kp�. Indeed, in
such a configuration, two bright spots lying approximately
on a diameter of the �k�= �kp� circle in k space were observed
in the far-field emission pattern from the microcavity, above
an oscillation threshold �see Fig. 1�. Strong intensity corre-
lations were measured between the light emission from the

two spots,15 however they remained in the classical domain.
A theoretical treatment of the observed four-wave mixing

process was provided by Verger et al., including disorder and
multiple scattering effects, using a numerical quantum Monte
Carlo method.16 The issue of quantum effects in microcavi-
ties was also tackled using the nonequilibrium Langevin ap-
proach by Portolan et al.17–19 Here we present a less general
model based on Heisenberg-Langevin equations which pro-
vide a simpler but quite efficient approach, that is in our
opinion more transparent to physical interpretation. Our
model allows to obtain a simple analytical expression for the
intensity noise spectrum of the emitted light, a quantity that
can be easily measured. Useful hints for future experiments
searching for nonclassical effects can be extracted from the
derived expressions. In general, the physical properties of
polariton systems depend simultaneously on the wave vector
k and on the cavity-exciton detuning �0 at k=0. Our model
reveals that the squeezing dependence on k and �0 can be
expressed using only one parameter, which we denote as s,

s =
�aC2

�bX2 , �1�

where �a and �b are the photonic and homogeneous exci-
tonic linewidth, respectively, and C2 and X2=1−C2 are the
photonic and excitonic fraction of the polariton mode, re-
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FIG. 1. �Color online� �a� Sketch of the four-wave mixing pro-
cess under study: the two pump modes Pi and the two generated
modes Qi lie on a circle in k space. �b� Experimental far-field emis-
sion pattern �Ref. 15�.
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spectively. Thus s is the ratio of the photonic to the excitonic
fraction, weighted by the respective linewidths. Since C de-
pends on both k and �0, the squeezing dependence on k and
�0 is automatically accounted for by the single parameter s.
In particular, we will discuss the essential role of �0 in de-
termining the squeezing performance of the system. Antici-
pating the results that will be presented in the paper, two
main conclusions are the outcome of our analysis: �1� The
higher the photonic fraction of the mode, the higher the
squeezing that can be obtained. �2� Perhaps more impor-
tantly, a high photonic fraction efficiently filters out excess
excitonic noise, making the squeezing more robust against it.

From an analysis of previous experimental results, we
suggest that a substantial amount of squeezing can be ex-
pected for realistic experimental parameters. The following
part of the paper is organized as follows. In Sec. II, we
derive the Heisenberg-Langevin equations for the polariton
modes driven by the external pumps and by fluctuating input
fields. Section III is devoted to the study of the stationary
state of the system. In Sec. IV, we derive analytical expres-
sions for the fluctuations of the fields. Finally, the results are
discussed in Sec. V.

II. HEISENBERG-LANGEVIN EQUATIONS

A. Hamiltonian

We start from the Hamiltonian describing polaritons dy-
namics in a resonantly excited semiconductor microcavity,8

H = HLP + HUP = �
k

ELP�k�pk
†pk

+
1

2 �
k,k�,h

Vk,k�,h
LP pk+h

† pk�−h
† pkpk� + �

k
EUP�k�qk

†qk

+
1

2 �
k,k�,h

Vk,k�,h
UP qk+h

† qk�−h
† qkqk�, �2�

where pk and qk are the annihilation operators for the polar-
iton mode having wave vector k, for the lower and upper
polariton branch, respectively. In terms of photon and exci-
ton annihilation operators ak and bk, pk and qk read

pk = − Cak + Xbk, �3�

qk = Xak + Cbk, �4�

C and X being the Hopfield coefficients

C2 =
�R

2

2��k
2 + �R

2��k + ��k
2 + �R

2�
, �5�

X2 =
�k + ��k

2 + �R
2

2��k
2 + �R

2
. �6�

The Hopfield coefficients depend on the Rabi energy �R
describing the linear exciton-photon coupling and on the
cavity-exciton detuning �k=Ecav�k�−Eexc�k�. The exciton
mass being much larger than the photon effective mass, we

can consider that the exciton dispersion is perfectly flat;
therefore in the following Eexc�k� is regarded as a constant.
The photon dispersion reads as

Ecav�k� = �E0
2 + �2k2c2/nc

2, �7�

where E0=hc /�0=Eexc+�0 is the cavity resonance energy at
normal incidence and nc is the cavity refractive index. Equa-
tion �7� can also be written as

Ecav�i,�0� =
Eexc + �0

�1 −
sin2 i

nc
2

, �8�

i being the angle of propagation with respect to normal inci-
dence for a photon escaping the cavity, or equivalently for a
pump beam driving the polariton mode with wave vector k
=k0 sin i /�nc

2−sin2 i. From Eq. �8� we see that Ecav or
equivalently �k can be controlled by changing either the in-
cidence angle i or �0. We recall here that microcavity
samples are usually wedged, and experimentally a simple
translation of the sample allows to change the optical cavity
length, i.e., �0.

The polariton energies are given by

ELP�k� =
1

2
�Ecav�k� + Eexc�k� − ��k

2 + �R
2� , �9�

EUP�k� =
1

2
�Ecav�k� + Eexc�k� + ��k

2 + �R
2� . �10�

The energies of the two polariton branches and the Hopfield
coefficients are plotted in Fig. 2 as a function of �0. The
values of the constants used in all the plots, unless specified,
are reported in Table I and correspond to the sample used in
Ref. 15.

Nonlinearities are described by the interaction potential
Vk,k�,h, which for the lower branch reads

Vk,k�,h
LP = �V0X�k+h�Xk� + 2Vsat�C�k+h�Xk� + X�k+h�Ck���X�k�−h�Xk,

�11�

where V0 and Vsat are defined as in Ref. 8.
At this point we notice two important facts. First, in

Hamiltonian �2� nonlinear couplings between the two polar-
iton branches have been neglected due to the large energy
separation between them �typically �5 meV for the III-V
samples that we consider20�, so that the dynamical evolution
of upper and lower polaritons are independent. Second,
equations for upper polaritons and lower polaritons are ob-
tained from each other by the correspondences

X � C , �12�

C � − X . �13�

Therefore, in the following we will only derive the equations
for the lower polariton branch. The final results can be gen-
eralized to the upper branch with the substitutions �12� and
�13�.
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B. Derivation of the equations of motion

We will model the process sketched in Fig. 1 and experi-
mentally observed in Ref. 15 by considering that only four
modes are involved: the two pump modes p1 and p2 and the
two modes p3 and p4 generated by the parametric process.
We focus on the regime of four-wave mixing oscillation, in
which two strongly correlated polariton populations were ob-
served above the oscillation threshold. In order to neglect
multiple scatterings, we assume that the system is slightly
above threshold. In this approach, the influence of fluctua-
tions of other modes below threshold is neglected, which is a
valid approximation if the signal and idler modes can be
effectively separated from the others. An imperfect spatial
selection will lead to a reduction in the detected squeezing.

We consider pumping under linear TM polarization and ne-
glect spin dynamics,21 therefore implicitly assuming that a
perfect polarization inversion takes place, on time scales that
are much faster than those involved here. An almost per-
fectly cross-polarized four-wave mixing emission has been
observed,22 therefore the correction is on the order of a few
percent at worst. The assumption on adiabatic elimination of
polarization dynamics is excellently verified because we are
interested in noise spectra at typically megahertz frequencies.

In order to derive the dynamic equations for the system,
we only take into account the resonant terms in Eq. �2� that
contain the four considered modes. The equation of motion
for the operator p1 in the Heisenberg representation is

i�
d

dt
p1 = �p1,H� = �ELP�1� + V�N̂p1

+ 2N̂p2
+ 2N̂p3

+ 2N̂p4
��p̂1

+ 2Vp̂2
†p̂4p̂3, �14�

where we have introduced the population operators N̂pi

= p̂i
†p̂i, and set Vk,k�,h

LP 	V= �V0X2+4VsatCX�X2. We see that
there are two types of nonlinearities: energy renormalization
due to Kerr-type terms involving the population of each
mode, and four-wave mixing described by the term
2Vp̂2

†p̂4p̂3. The equation for p2 can be obtained by exchang-
ing p1 and p2 in Eq. �14� while the equations for p3 and p4
are obtained by the exchanging p1 with p3 and p2 with p4.
We note that the interaction potential V has the same value
everywhere because the modulus of the wave vector is the
same for all the modes involved �Eq. �11��.

1. Dissipation and input fluctuations

Equation �14� describes an unitary evolution. In order to
take into account polariton relaxation, we adopt a phenom-
enological treatment by including the following terms in the
evolution equation �Eq. �14��:

− �p̂1 + p̂1
in�t� , �15�

where � is the polariton linewidth

� = C2�a + X2�b �16�

written as a linear combination of the cavity mode linewidth
�a and of the homogeneous exciton linewidth �b. The first
contribution in Eq. �15� represents dissipation due to mirror
transmission and exciton relaxation. The second contribution
describes input fluctuations for the polariton mode, due to
the dissipative couplings with two reservoirs, the vacuum
modes of the electromagnetic field and the exciton reservoir,
respectively.

Following Karr et al.,11 we write the input fluctuations
operator p̂1

in�t� as a linear combination of the photonic and
excitonic fluctuations operators,

p̂1
in�t� = − C�2�aÂ1

in + X�2�bB̂1
in, �17�

where �a��b� and Â1
in�B̂1

in� are the relaxation rate for the pho-
tons �excitons� and the input photonic �excitonic� field, re-
spectively.

One important approximation made in the present ap-
proach is to treat separately the photon and exciton relax-

TABLE I. Numerical values of the constants appearing in the
formulas.

Eexc 1485 meV

i 6°

nc 3.54

�a 0.12 meV

�b 0.075 meV

�R 5.07 meV
Vsat

V0
0.02
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FIG. 2. �Color online� �a� Lower and upper polariton energy
branches �solid lines�, and cavity and exciton dispersions �dotted
lines� as a function of the cavity-exciton detuning �0. �b� Hopfield
coefficients.
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ation. That is, we neglected modifications induced by the
strong coupling between exciton and photons, which origi-
nate from the peculiar shape of the polariton dispersion rela-
tion. It is necessary to stress that an ab initio treatment of the
polariton relaxation and of the associated input fluctuations
is extremely complex. In order to derive the statistical prop-

erties of the operator P̂1
in, one should take into account elastic

and inelastic scattering processes, as well as the interaction
with acoustic phonons. These issues have been considered
early by Tassone,23 and more recently by Portolan.18 Here we
will not try to address the issue of the calculation of the
polariton input noise. Instead, we will deduce the amount of
the input excitonic noise in a given polariton mode directly
from the experimental data, i.e., from the experimentally
measured intensity noise of the light emitted from the micro-
cavity, under the assumption �experimentally verified� that
the input photonic field is in a coherent state. Some more
considerations on input fluctuations are developed in Sec. V.

2. Slowly varying operators

We eliminate fast oscillations at the optical frequency by
introducing the slowly varying operators p̂̃i= p̂ie

i�Lt, where
�L is the pump laser frequency.

We then introduce the following normalized quantities
and operators:

P̂i =�g

�
p̂̃i �i = 1,2� , �18�

Q̂i =�g

�
p̂̃i �i = 3,4� , �19�

g =
2V

�
, �20�

�i =
�i

�
=

��i� − �L

�
, �21�

P̂i
in = − C�2�ag

�2

Ẫi
in

��
+ X�2�bg

�2

B̂̃i
in

��
�i = 1,2� , �22�

Q̂i
in = − C�2�ag

�2

Ẫi
in

��
+ X�2�bg

�2

B̂̃i
in

��
�i = 3,4� . �23�

We finally end up with the four coupled equations

1

�

d

dt
P̂1 = 
− 1 − i��1 +

P̂1
†P̂1

2
+ P̂2

†P̂2 + Q̂1
†Q̂1 + Q̂2

†Q̂2�P̂1

− iP̂2
†Q̂2Q̂1 + P̂1

in, �24�

1

�

d

dt
P̂2 = 
− 1 − i��2 + P̂1

†P̂1 +
P̂2

†P̂2

2
+ Q̂1

†Q̂1 + Q̂2
†Q̂2�P̂2

− iP̂1
†Q̂2Q̂1 + P̂2

in, �25�

1

�

d

dt
Q̂1 = 
− 1 − i�� + P̂1

†P̂1 + P̂2
†P̂2 +

Q̂1
†Q̂1

2
+ Q̂2

†Q̂2�Q̂1

− iQ̂2
†P̂2P̂1 + Q̂1

in, �26�

1

�

d

dt
Q̂2 = 
− 1 − i�� + P̂1

†P̂1 + P̂2
†P̂2 + Q̂1

†Q̂1 +
Q̂2

†Q̂2

2
�Q̂2

− iQ̂1
†P̂2P̂1 + Q̂2

in, �27�

where the pump modes are noted as P while the modes gen-
erated by four-wave mixing are noted as Q.

III. STATIONARY SOLUTION

The steady state of the system �Eqs. �24�–�27�� is given
by the solution of the following equations:

0 = 
− 1 − i��1 +
N̄p1

2
+ N̄p2

+ N̄q1
+ N̄q2

�P̄1

− iP̄2
�Q̄2Q̄1 + P̄1

in, �28�

0 = 
− 1 − i��2 + N̄p1
+

N̄p2

2
+ N̄q1

+ N̄q2
�P̄2

− iP̄1
�Q̄2Q̄1 + P̄2

in, �29�

0 = 
− 1 − i��3 + N̄p1
+ N̄p2

+
N̄q1

2
+ N̄q2

�Q̄1 − iQ̄2
�P̄2P̄1,

�30�

0 = 
− 1 − i��4 + N̄p1
+ N̄p2

+ N̄q1
+

N̄q2

2
�Q̄2 − iQ̄1

�P̄2P̄1.

�31�

We set N̄p1
= N̄p2

	 N̄ because the two pump beams intensities
are equal. This allows us to cast Eq. �30� and the complex
conjugate of Eq. �31� in the matrix form,

M�Q̄1

Q̄2
�
� = 0, �32�

where M is

�− �1 + i��3 + 2N̄�� − iP̄1P̄2

iP̄1
�P̄2

� − �1 − i��4 + 2N̄��
� . �33�

Note that we neglect the population of the Q modes with
respect to the pump modes, which is a valid approximation
close to the oscillation threshold.

The oscillation condition Q̄1 , Q̄2�0 imposes

det M = 0, �34�

which gives
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�1 + i��3 + 2N̄���1 − i��4 + 2N̄�� − N̄2 = 0. �35�

Straightforward algebra shows that �3=�4	�, i.e., the two
generated modes necessarily have the same energy. The low-
est threshold is obtained when the detuning compensates ex-
actly the pump energy renormalization, that is, when �

+2N̄=0. In this case the threshold condition becomes N̄=1.
This value is identical to the one found in the theory of the

polariton parametric oscillation.8,11 We stress that N̄ does not
depend on the pump laser intensity. This is a well-known
effect in triply resonant optical parametric oscillator �OPO�
theory,24 once the oscillation threshold has been reached, the
intracavity intensity of the pump beam remains constant be-
cause all the energy injected by the pump is transferred to the
signal and idler modes.

Our model allows to obtain an expression for the phases
and intensities of the polariton fields, and their dependence
on the pump field. The phases of the fields Q1 and Q2 can be
obtained from the first line in Eq. �33�, which reads

�1 + i�� + 2N̄��Q1 = − iP̄1P̄2Q̄2
�. �36�

Setting

Q̄i = �Q̄i�ei	i, �37�

	N = arctan�� + 2N̄� �38�

and choosing P̄1 and P̄2 reals we find the following relation
for the phase sum:

	1 + 	2 = − 	N −



2
. �39�

While the phase sum is fixed, the phase difference can
change freely. This phase diffusion process is also typical of
OPOs.24

The intensities of the fields Q1 and Q2 are obtained from
Eq. �36�, which implies

�Q1� =
N̄

�1 + �� + 2N̄�2
�Q2� . �40�

Using Eq. �35�, one can verify that

�Q̄1� = �Q̄2� . �41�

The dependence on the pump-laser intensity can be derived

by observing that, at threshold �N̄=1, �Q̄1�= �Q̄2�=0�, Eq. �28�
can be expressed as


1 + i�� +
3

2
�P1 = P̄1,s

in , �42�

where we have introduced the threshold value for the pump

field P̄1,s
in . Above threshold, Eq. �28� becomes

iP̄2
�Q̄1Q̄2 = P̄1

in − P̄1,s
in . �43�

Taking the square modulus, we obtain the dependence of the
intensities of the modes Qi on the pump rate �,

�Q�2 = �P̄1,s
in ��� − 1� = �1 + �� + 3/2�2�� − 1� . �44�

The parameter �=��P̄1
in�2

�P1s
in �2 =� Ī1

in

I1s
in represents the pump rate nor-

malized to threshold. All our calculations are valid when �

−1�1, which implies through Eq. �44� that N̄Qi
� N̄Pj

.
We can now study the dependence of the oscillation

threshold on the cavity-exciton detuning at normal incidence
�0. Equation �42�, together with Eq. �22�, allows us to write
the expression for the laser power Ith �in units s−1� required
to reach the oscillation threshold,

Ith �
�3

2�agC2 =
�C2�a + X2�b�3

2�aC2�X4V0 + 4CX3Vsat�
. �45�

We can introduce the weighted ratio of the photonic to the
excitonic fraction s �Eq. �1��, to rewrite Eq. �45� as

Ith �
�b

2

2V0

�1 + s�3

s

1

1 + 4
Vsat

V0
��b

�a

�s

. �46�

Expression �46� is valid also for the upper branch, with the
substitutions �12� and �13�. Experimentally, s can be con-
trolled by changing the photonic and excitonic content of the
pumped polaritons, which can be achieved by varying �0.

Ith is plotted as a function of �0 in Fig. 3, for both polar-
iton branches. The lowest threshold results from a trade-off
between the excitonic fraction �required for efficient nonlin-
ear interaction� and the photonic fraction �required for effi-
cient coupling to the external cavity fields�. The minimum
value for laser power is obtained for s�1 /2.

IV. INTENSITY FLUCTUATIONS OF THE FIELDS

The aim of this section is to calculate the intensity fluc-
tuations of the polariton fields and of the measurable extra-
cavity photon fields. We recall that, for a generic field opera-
tor â whose expectation value reads �a�e−j, the fluctuations
�I of the associated intensity operator I= â†â are proportional
to the fluctuations of the amplitude quadrature �= âe−j

+ â†e+j,

1

10

100

1000

-20 -10 0 10 20

LP UP

�0 (meV)

I th

FIG. 3. �Color online� Threshold laser power for the upper and
lower polariton branch, as a function of �0, normalized to its mini-
mum value.

TWO-MODE SQUEEZING IN POLARITON FOUR-WAVE MIXING PHYSICAL REVIEW B 82, 155313 �2010�

155313-5



�I = �a���âe−j + �â†e+j� . �47�

In order to calculate the fluctuations of the field quadratures,
we linearize Eqs. �24�–�27� around the following steady
state:

P̄1 = P̄2 = P̄1
� = P̄2

� = 1, �48�

Q̄1 = Q0
�� − 1, �49�

Q̄2 = − iQ0
�� − 1, �50�

where Q0=�45 /4.

This steady state is obtained when �=−2 and N̄=1. Un-
der such conditions, the laser detuning compensates the en-
ergy blueshift induced by the pump populations. The phase

	N=arctan��+2N̄� �Eq. �38�� is zero so that the phase be-
tween the conjugated fields is −
 /2. This leads to a consid-
erable simplification of the equations, allowing to find an
analytical solution.

Operators P̂i are replaced by P̄i+�P̂i, and only the first-
order terms are retained. We obtain the following equations

for the signal and idler field fluctuations �Q̂i:

1

�

d

dt
�Q̂1 = Q0

�� − 1�1 − i���P̂1 + �P̂2�

− iQ0
�� − 1��P̂1

† + �P̂2
†� − �Q̂1 − i�Q̂2

† + �Q1
in,

�51�

1

�

d

dt
�Q̂2 = Q0

�� − 1�− 1 − i���P̂1 + �P̂2�

− Q0
�� − 1��P̂1

† + �P̂2
†� − �Q̂2 − i�Q̂1

† + �Q2
in.

�52�

We introduce the Hermitian operators

�̂Q1
= �Q̂1 + �Q̂1

†, �53�

�̂Q2
= i��Q̂2

† − �Q̂2� �54�

representing the amplitude fluctuations of the modes Qi.
These operators evolve according to

1

�

d

dt
�̂Q1

= Q0
�� − 1��̂P1

+ �̂P2
� − �̂Q1

+ �̂Q2
+ �̂Q1

in ,

�55�

1

�

d

dt
�̂Q2

= Q0
�� − 1��̂P1

+ �̂P2
� − �̂Q2

+ �̂Q1
+ �̂Q2

in .

�56�

We are now in position to calculate the difference of the

amplitude fluctuations r�̂= 1
�2

��̂Q1
− �̂Q2

�,

1

�

d

dt
r�̂ = − 2r�̂ + r̂�in. �57�

As in OPOs, r�̂ is independent of the pump fields fluctua-
tions. The nonclassical effects in OPOs benefit from this
property. Equation �57� shows that it also arises in polariton
four-wave mixing.

An equation identical to Eq. �57� holds for the operator

r̂= 1
�2

��̂p3
− �̂p4

� describing the difference of amplitude fluc-
tuations of the polariton operators p̂3 and p̂4,

d

dt
r̂ = − 2�r̂ + r̂in. �58�

The input noise operator r̂in in Eq. �58� reads

r̂in =
1
�2

��̂p3

in − �̂p4

in � = − C�2�ar̂A
in + X�2�br̂B

in, �59�

where r̂A
in= 1

�2
��̂A3

in − �̂A4

in � and r̂B
in= 1

�2
��̂B3

in − �̂B4

in �.
In Eq. �59�, the excitonic and photonic input noises ap-

pear again explicitly. By Fourier transforming, one obtains

r̂��� =
1

2� − i�
r̂in��� . �60�

This result allows us to calculate the extracavity photonic
field fluctuations. The extracavity field is related to the int-
racavity and input field by the input-output relation

âout = �2�aâ − âin. �61�

Given the energy separation between upper and lower polar-
iton branches, the intracavity electromagnetic field can be
taken as simply proportional to the polariton field,11

âout = − C�2�ap̂ − âin. �62�

The operator r̂A
out describing the difference of the amplitude

fluctuations of the extracavity fields reads

r̂A
out = − C�2�ar̂ − r̂A

in. �63�

Inserting Eqs. �59� and �60� in Eq. �63�, one obtains

r̂A
out = � 2�aC2

2� − i�
− 1�r̂A

in −
2XC��a�b

2� − i�
r̂B

in. �64�

The noise spectrum of the extracavity intensity difference
fluctuations Sr

out= �r̂A
out���r̂A

out�−��� of r̂A
out, normalized to the

standard quantum limit �SQL�, reads

Sr
out = 1 +

4�a�bC2X2

4�2 + �2 ��r̂B
in���r̂B

in�− ��� − 1�

− 4
�aC2�

4�2 + �2 �r̂A
in���r̂A

in�− ��� . �65�

The experimentally accessible frequencies are much lower
than �, therefore we essentially measure noise at zero fre-
quency. The input noise for the electromagnetic field
�r̂A

in���r̂A
in�−��� can be assumed to be equal to 1 at all fre-

quencies, i.e., the input photon field for the modes qi is a
vacuum state. Using these two facts Eq. �65� can be put in a
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form where only the weighted ratio of the photonic to the
excitonic fraction s �Eq. �1�� appears

Sr
out = 1 +

s

�1 + s�2E −
s

1 + s
, �66�

where E= ��r̂B
in���r̂B

in�−���−1� is the input excess noise com-
ing from the exciton reservoir.

V. DISCUSSION

As anticipated, the squeezing properties of the output field
depend only on s and on the input excess noise E coming
from the exciton reservoir. s is plotted as a function of �0 for
the two branches in Fig. 4. For the lower polariton branch s
increases for negative detunings because in this case the
lower-branch polaritons have an important photonic content.
For the same reason, s increases for positive detunings for
the upper-branch polaritons.

The noise spectrum of the extracavity intensity difference
fluctuations Sr

out is plotted in Figs. 5 and 6. It is compared to
the SQL, which is normalized to 1 in our equations. The

SQL is the noise that would be obtained if, for instance, one
splits a laser beam in two parts of the same power using a
linear beam splitter, and then subtracts their intensity fluctua-
tions. This thought experiment shows that one cannot obtain
by a linear optical process two perfect copies of the same
state of radiation; the quantum fluctuations of the two beams
are perfectly uncorrelated. In order to go below the SQL, one
has to introduce quantum correlations between the two
beams using some optical nonlinearities. For instance, in our
case polaritons are produced in pairs by the four-wave mix-
ing process; the creation of one polariton in the signal mode
implies necessarily the creation of one polariton in the idler,
therefore ideally we expect that the intensity fluctuations are
exactly the same in the two modes, which means squeezing
of the intensity difference fluctuations.

If there is no input excess noise, the model predicts
squeezing for all values of �0 for both branches �see Fig. 5�.
The squeezing vanishes as the polariton becomes more and
more excitonlike while it increases and tends to become per-
fect as the polariton becomes more and more photonlike.

In presence of excitonic excess noise E, Eq. �66� states
that s must satisfy the following inequality in order to have
squeezing:

s � E − 1. �67�

The inequality in Eq. �67� can always be satisfied for some
value of �0. Physically this means that, if an important
amount of noise enters from the excitonic port, a polariton
mode with a sufficiently large photonic fraction must be cho-
sen in order to efficiently filter out the excitonic noise. We
stress that, in this respect, the four-wave mixing scheme
demonstrated in Ref. 15 is particularly adapted because en-
ergy conservation is automatically fulfilled for any value of
�0 or any angle of incidence. The nonlinear process is per-
fectly independent of the polariton dispersion and therefore
the photonic and excitonic content of the polaritons can be
tuned freely.

One may ask if the input excitonic noise E changes with
�0. In order to examine this point, we need to recall the
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FIG. 4. �Color online� Weighted ratio of the photonic to the
excitonic fraction s �Eq. �1�� as a function of �0 for the upper and
lower polariton branch.
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FIG. 5. �Color online� Noise of the intensity difference of the
extracavity photon fields as a function of �0 for the upper and lower
polariton branch. Ideal case: excitonic input excess noise E=0.
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FIG. 6. �Color online� Noise of the intensity difference of the
extracavity photon fields as a function of �0 for the upper and lower
polariton branch. Excitonic input excess noise E=12, corresponding
to the experimental data reported in Ref. 22.
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physical origin of the excess noise. As discussed in Refs. 18
and 25, besides polariton-polariton scattering, the relaxation
of polaritons is due to polariton-phonon scattering, which is
then responsible, through the fluctuation-dissipation theorem,
of the input excess noise. The phonon-polariton scattering
rate is roughly proportional to the density of states of the
polariton modes at the scattering energy.25 Now, as �0 de-
creases, as it is needed in order to obtain squeezing, the slope
of the polariton energy dispersion becomes steeper and
steeper �as can be verified calculating

�ELP

�k from Eq. �9��.
This can be easily understood because polaritons become
more and more photonlike. Now, a steeper dispersion implies
that fewer final states are available in the energy range than
can be reached by phonon scattering; the overall polariton-
phonon scattering rate should then diminish. In conclusion,
when �0 is decreased there is another mechanism that re-
duces the coupling to phonons, besides the filtering effect
obtained by reducing the excitonic fraction of the polariton.
This mechanism should reduce the value of E when �0 is
decreased. So, considering E as constant is actually a simpli-
fying hypothesis that looks quite conservative; the values of
�0 obtained from Eq. �67� can be viewed as upper bounds for
the appearance of quantum effects.

In practice, the major drawback will probably come from
the fact that the oscillation threshold increases rapidly with s,
as shown in Fig. 3. The experimental data available allow to
give the following estimations. In Ref. 15, the incidence
angle was of 6°. Assuming a resonant excitation of the lower
polariton, this corresponds to sexp=1.24. Sr

out was roughly
equal to 10. Equation �66� permits to estimate E=40. From
Eq. �67�, we obtain ssq=39 as the lowest value for s in order
to have squeezing. Using Eq. �46� we see that Ith will be
increased by a factor of about 130. The threshold for four-
wave mixing oscillation was 15 mW. In order to observe
squeezing, the microcavity should be resonantly pumped at a
negative detuning �0�−13 meV for the lower branch, with
2 W of power for each pump beam.

Data from Ref. 22 report observation of polariton four-
wave mixing oscillation at i=3°, with a threshold power of
7.5 mW, with a positive cavity-exciton detuning of 1.1 meV.
Sr

out was measured to be 3.5. In this case, we find that pump-
ing the lower branch at a negative detuning of −6.3 meV
would allow to see quantum effects �see Fig. 6�. In this case
the threshold is expected to increase in a factor of about 20,
corresponding to 150 mW for each pump beam, which cor-
responds to a more favorable case than the previous one and
allows to predict squeezing for experimentally feasible pa-
rameters. In order to have a noise reduction of 3 dB below
the standard quantum limit, one should resonantly pump at a
negative detuning of −9 meV; in such conditions, four-wave
mixing oscillation would appear for a pump power of 450
mW for each pump beam.

VI. CONCLUSIONS

In conclusion, we have provided an analytical model de-
scribing polariton four-wave mixing oscillation, slightly
above the oscillation threshold. Linearized expressions for
the intensity noise spectra of the extracavity photon fields
have been derived. It has been shown that the squeezing
properties of the generated fields depend essentially on the
weighted ratio of the photonic to the excitonic fraction of the
generated modes. From our analysis it results that photonlike
polaritons are more adapted for the generation of squeezed
field states, mainly because they permit to filter out the ex-
citonic noise contribution. Four-wave mixing oscillation re-
quires higher pump power for photonlike polaritons, but an
estimation based on available experimental data indicates
that it should be within reach experimentally.
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