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We study numerically the edge magnetoconductance of a quantum spin Hall insulator in the presence of
quenched nonmagnetic disorder. For a finite magnetic field B and disorder strength W on the order of the bulk
gap Eg, the conductance deviates from its quantized value in a manner which appears to be linear in �B� at small
B. The observed behavior is in qualitative agreement with the cusplike features observed in recent magneto-
transport measurements on HgTe quantum wells. We propose a dimensional crossover scenario as a function of
W, in which for weak disorder W�Eg the edge liquid is analogous to a disordered spinless one-dimensional
�1D� quantum wire, while for strong disorder W�Eg, the disorder causes frequent virtual transitions to the
two-dimensional �2D� bulk, where the originally 1D edge electrons can undergo 2D diffusive motion and 2D
antilocalization.
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I. INTRODUCTION

A great deal of interest has been generated recently by the
theoretical prediction1 and experimental observation2–4 of the
quantum spin Hall �QSH� insulator state.5–7 The QSH state is
a novel topological state of quantum matter which does not
break time-reversal symmetry �TRS�, but has a bulk insulat-
ing gap and gapless edge states with a distinct helical liquid
property.8 The gaplessness of the edge states is protected
against weak TRS preserving perturbations by Kramers
degeneracy.8,9 As a result, the QSH state exhibits robust dis-
sipationless edge transport2–4 in the presence of nonmagnetic
disorder.

However, in the presence of an external magnetic field
which explicitly breaks TRS, the gaplessness of the edge
states is not protected. This can be simply understood by
considering the generic form of the effective one-
dimensional �1D� Hamiltonian H for the QSH edge10 to first
order in the magnetic field B, H=H0+H1�B�, where H0
=�vk�3 is the Hamiltonian of the unperturbed edge, and
H1�B�=�a=1,2,3�ta ·B��a is the perturbation due to the field. k
is a 1D wave vector along the edge, v is the edge state
velocity, �1,2,3 are the three Pauli spin matrices, and t1,2,3 are
model-dependent coefficient vectors.10 If B points along a
special direction in space t�� t1� t2, then H1�B���3 com-
mutes with H0, the wave vector k is simply shifted, and the
edge remains gapless, unless mesoscopic quantum-
confinement effects become important.11 If B∦ t�, then
�H0 ,H1�B���0 and a gap Egap� �B� opens in the edge state
dispersion.

Experimentally,2,12 one observes that the conductance
G�B� of a QSH device exhibits a sharp cusplike peak at B
=0, and G decreases for increasing �B�. Although the expla-
nation of a thermally activated behavior G�B��e−Egap��B��/kBT

with T the temperature can account qualitatively for the ob-
served cusp, it does so only if the chemical potential � lies
inside the edge gap which, according to theoretical
estimates,7 is rather small �Egap�1 meV�. Experimentally, a
sharp peak is observed12 throughout the bulk gap �Eg
�40 meV�. Furthermore, this explanation ignores the ef-

fects of disorder. In the absence of TRS, the QSH edge liquid
is topologically equivalent to a spinless 1D quantum wire
and is thus expected to be strongly affected by disorder due
to Anderson localization. Although the effect of disorder on
transport in the QSH state has been the subject of several
recent studies,8,9,13–17 except for studies addressing the effect
of magnetic impurities8,18 there have been no theoretical in-
vestigations of the combined effect of disorder and TRS
breaking on edge transport in the QSH state.

In this work, we study numerically the edge magnetocon-
ductance G of a QSH insulator in the presence of quenched
nonmagnetic disorder. Our main findings are: �1� for a finite
magnetic field B and disorder strength W on the order of the
bulk energy gap Eg, G deviates from its quantized value
G�0�=2e2 /h at zero field2 by an amount 	G�B��G�B�
−G�0� which seems roughly linear in �B� at small B, at least
in the range of fields we study. We observe this behavior
for � across the bulk gap �Fig. 1�c��, which agrees qual-
itatively with the cusplike features reported in Ref. 2. �2� The
slope �G /�B of G�B� at small B steepens rapidly when
W�Eg �Fig. 2�b��, which suggests that bulk states play an
important role in the backscattering of the edge states. �3� G
is unaffected by an orbital magnetic field in the absence
of inversion symmetry breaking terms �Fig. 3�a��. In the
absence of such terms, t1 and t2 are entirely in the xy
plane of the device7 hence t�� ẑ is out of plane and a per-
pendicular field B 	 t� cannot lead to backscattering, as dis-
cussed earlier. In the presence of inversion symmetry-
breaking terms, the effective edge Hamiltonian becomes H�
=�vk�3�+�a=1,2,3�ta� ·B��a�, where �3� has nonzero compo-
nents along the 1 and 2 directions. Then t��= t1�� t2� is not
along ẑ anymore, and a perpendicular field B=Bẑ can lead to
backscattering.

II. THEORETICAL MODEL

We start from a simple four-band continuum model
Hamiltonian1,7 used to describe the physics of the QSH state
in HgTe quantum wells �QW�
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H�k� = 
H�k� 	�k�
	†�k� H��− k�

� �1�

written in the �E1+,H1+,E1−,H1−� basis where E1,H1 are
the relevant QW subbands close to the Fermi energy and 

denotes time-reversed partners. The diagonal blocks
H�k� ,H��−k� with H�k�=��k�+vk ·�+M�k��z are related
by TRS and correspond to decoupled 2D Dirac-type Hamil-
tonians, where k= �kx ,ky�, �= ��x ,�y� is a vector of Pauli
matrices, and the velocity v is obtained from k ·p theory. We

also define a quadratic kinetic energy term ��k�=C−Dk2 and
the Dirac mass term M�k�=M −Bk2, where C ,D ,M ,B are
k ·p parameters. The off-diagonal block 	�k� is given by19

	�k� = 
	ek+ − 	z

	z 	hk−
� , �2�

where 	e ,	h ,	z are k ·p parameters and k
=kx
 iky. It
originates from the bulk inversion asymmetry �BIA� of the
underlying microscopic zinc-blende structure of HgTe and
CdTe.20 A nearest-neighbor tight-binding �TB� model on the
square lattice can be derived from Eq. �1�

H = �
i

ci
†Vci + �

i

�ci
†Tx̂ci+x̂ + ci

†Tŷci+ŷ + H.c.� , �3�

where the 4�4 matrices V ,Tx̂ ,Tŷ depend solely on the k ·p
parameters introduced above.

Equations �1� and �3� correspond to a translationally in-
variant system in the absence of magnetic field or disorder.
In the presence of disorder and an external magnetic field
B= �Bx ,By ,Bz�, we perform the substitutions

V → V + HZ	 + HZ� + Wi,

Tx̂ → Tx̂ exp
2�i

0
�

i

i+x̂

d� · A� = Tx̂e
−2�inzy/a,

where Wi is a Gaussian random on-site potential with
standard deviation W mimicking quenched disorder, A
= �−Bzy ,0� is the in-plane electromagnetic vector potential in
the Landau gauge, 0=h /e is the flux quantum, and nz
=Bza

2 /0 is the number of flux quanta per plaquette with a
the lattice constant. We use a=30 Å which is a good ap-
proximation to the continuum limit. The in-plane Zeeman
term HZ	 is given by7
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FIG. 1. �Color online� Magnetoconductance G of a QSH edge:
�a� TB model with asymmetric edge states �2��1 to study a single
disordered edge; �b� dependence of G on sample width Ly for dis-
order strength W=55 meV larger than the bulk gap, length Lx

=2.4 �m, fixed clean width Ly −Ldis=0.03 �m, and local mass
term �M =−70 meV, with error bars �plotted for Ly =0.12 �m and
B�0 only� corresponding to conductance fluctuations �G; �c� de-
pendence of G on chemical potential �; and �d� quasi-1D spectrum
of the device illustrated in a� for zero W ,B, showing bulk states
�blue thin lines�, top edge states �green outer thick lines, solid and
dashed�, and bottom edge states �red inner thick lines�.
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FIG. 2. �Color online� �a� Magnetoconductance for various dis-
order strengths W and �b� small-B slope of the magnetoconductance
�obtained by linear regression for 0�B�15 mT�. Device size is
�Lx�Ly�= �2.4�0.12� �m2.
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FIG. 3. �Color online� Dependence of the magnetoconductance
G on �a� strength of the k-independent BIA term 	z with 	e=	h

=0; �b� magnetic field orientation; and �c� Dirac mass term M �0.
Sample size is �Lx�Ly�= �2.4�0.12� �m2, disorder strength is
W=55 meV for �a� and �b�, and W=30 meV for �c�.
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HZ	 = g	�B
0 0 B− 0

0 0 0 0

B+ 0 0 0

0 0 0 0
� , �4�

where B
=Bx
 iBy, �B is the Bohr magneton, and the in-
plane g-factor g	 is obtained from k ·p calculations.19 The
out-of-plane Zeeman term HZ� is given by7

HZ� = �BBz diag�gE�,gH�,− gE�,− gH�� �5�

and the out-of-plane g-factors gE� ,gH� are also obtained
from k ·p calculations.19 The k ·p parameters used in the
present work correspond to a HgTe QW thickness of d
=80 Å.

We calculate numerically the T=0 disordered-averaged
two-terminal conductance G and conductance fluctuations
�G of a finite QSH strip �Fig. 1�a�� using the standard TB
Green’s function approach.21 We find that Ndis�100 disorder
configurations are enough to achieve good convergence for
G and �G. For a strip of width Ly comparable to the edge
state penetration depth �, interedge tunneling22 backscatters
the edge states even at B=0 and the system is analogous to a
topologically trivial quasi-1D quantum wire. To ensure that
we are studying effects intrinsic to the topologically non-
trivial QSH helical edge liquid, we first need to suppress
interedge tunneling. The naive way to achieve this is to use a
very large Ly; however, this can be computationally rather
costly. We use a geometry �Fig. 1�a�� which allows us to
effectively circumvent this problem while keeping Ly reason-
able. By adding a local Dirac mass term7 �M �0 on the first
horizontal chain of our TB model �Fig. 1�a�, red dots�, the
penetration depth �2 at the top edge becomes much smaller
than that at the bottom edge �1��2. We then add disorder
only to the last Ldis /a chains of the central region with Ldis
��1 and Ly −Ldis��2. The resulting top edge states are very
narrow, contribute an uninteresting background quantized
conductance independent of B and W, and are essentially
decoupled from the bottom edge states �whose magnetocon-
ductance we wish to study� that are effectively propagating
in a semi-infinite disordered medium.

III. NUMERICAL RESULTS

For � inside the bulk gap, we expect edge transport to
dominate the physics. The typical behavior of the magneto-
conductance G�B� for B=Bẑ and disorder strength W larger
than the bulk gap Eg�40 meV is shown in Fig. 1�b�. The
cusplike feature at B=0 agrees qualitatively with the results
of Ref. 2. G�B� is independent of Ly, which suggests that
transport is indeed carried by the edge states. G�B=0� is
quantized to G0�2e2 /h independent of W up to W
=71 meV with extremely small conductance fluctuations
�G�B=0� /G0�10−5, which confirms that interedge tunnel-
ing is negligible even for strong disorder. Furthermore, G
tends to G0 /2 for large �B��1 T, which indicates that the
disordered bottom edge is completely localized for large W
and �B�, and only the unperturbed top edge conducts. For
W�Eg, G is approximately quadratic in B �not shown�, and

�G�B�−G0� /G0�1 even for large �B��1 T. For B�0, we
observe that the amplitude of the fluctuations �G does not
decrease upon increasing Ndis, and is roughly independent of
W with �G /G0�O�10−1� for large enough disorder W�Eg.
Since in the absence of TRS the QSH system is a trivial
insulator and the edge becomes analogous to an ordinary
spinless 1D quantum wire with no topological protection, we
conclude that �G corresponds to the well-known universal
conductance fluctuations.21

The dependence of G�B� on � is plotted in Fig. 1�c�. We
consider W=55 meV slightly larger than Eg �Fig. 1�d��. This
is not unreasonable as the bulk mobility �� of the HgTe QW
in Ref. 2 is estimated as ���105 cm2 / �V s�, which corre-
sponds to a momentum relaxation time �=��m� /e
�0.57 ps. The bulk carriers at the bottom of the conduction
subband have an effective mass m��0.01me, where me is the
bare electron mass. � is given by � /��2���Wa�2 with � the
bulk continuum density of states at the Fermi energy given
by ��m� /��2. This yields W�22 meV. However, this es-
timate considers only bulk disorder and we expect edge
roughness to yield a higher effective W on the edge. Further-
more, this estimate is perturbative in W and neglects inter-
band effects which are expected to occur for W�Eg. For the
chosen value of W we observe that the bulk states �Fig. 1�d�,
blue thin lines� are strongly localized with G�G0 for �
�Ea and ��Ee in the bulk bands while the cusplike feature
at B=0 with G�B=0�=G0 remains prominent for Eb��
�Ed in the bulk gap and even at the bottom of the conduc-
tion band Ed���Ee where the top edge states �Fig. 1�d�,
red inner thick lines� coexist with the bulk states. The sudden
dip in G�B�0� for ��Ec�15 meV corresponds to the
opening of the small edge gap discussed earlier. Finally, G
�G0 is almost independent of B for Ea���Eb, where the
disordered bottom edge and bulk states are mostly localized
while the clean top edge supports another channel �Fig. 1�d�,
green thick dashed line�, with a total top edge conductance of
G=G0.

The magnetoconductance for B=Bz and various values of
W is plotted in Fig. 2. Although not evident from the figure,
G�B� is approximately quadratic in B for W�Eg, and ap-
proximately linear in �B� at small B for W�Eg �Fig. 2�a��.
The slope of G�B� at small fields �obtained by linear regres-
sion for 0�B�15 mT where the dependence is approxi-
mately linear� is plotted in Fig. 2�b� and is seen to increase
rapidly for W�Eg�40 meV. For B=0, we have essentially
G=G0 independent of W �Fig. 2�a��. This contrasts with the
results of Refs. 13 and 16 where deviations from G=G0 at
B=0 occur for W larger than some critical value Wc�Eg.
The reason for this difference is that in Refs. 13 and 16,
disorder-induced collapse of the bulk gap is accompanied by
the edge states penetrating deeper into the bulk and eventu-
ally reaching the opposite edge, such that interedge tunneling
takes place and causes backscattering. Here, due to our spe-
cial geometry �Fig. 1�a�� the top edge state is unperturbed
and always remains localized near the edge, out of reach of
the bottom edge state, even as the latter penetrates deeper
into the disordered bulk for increasing W.

The BIA term 	k has an important effect on G for B
=Bz �Fig. 3�a��. For simplicity, we set 	e=	h=0 and con-
sider only the effect of 	z. For 	z=0, the perturbation H�
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=ej ·A due to an orbital field, with e the electron charge and
j the current operator, has no matrix element between the
spin states of a counterpropagating Kramers pair on a given
edge,7 and G is unaffected. For an in-plane field, HZ	 does
have a nonzero matrix element between these states, and
there is a nontrivial magnetoconductance even in the absence
of BIA.

The dependence of G�B� on the orientation of B is plotted
in Fig. 3�b�. The g-factors19 used in the Zeeman terms are
such that the Zeeman energies for in-plane and out-of-plane
fields are of the same order.7 The in-plane vs out-of-plane
anisotropy �Fig. 3�b�, x ,y vs z� arises from the orbital effect
of the out-of-plane field B=Bz, which is absent for an in-
plane field. In our model, the in-plane anisotropy is very
weak �somewhat visible on Fig. 3�b� for �B��1 T�, and is
due to the inequivalence between the transport x and confine-
ment y directions. Finally, the B=0 peak in G is more pro-
nounced for a smaller mass term M �Ref. 7� in the Dirac
Hamiltonians Hk ,H−k

� �Fig. 3�c��. Since Eg� �M� approxi-
mately, a smaller �M� results in a larger dimensionless disor-
der strength W /Eg, which is equivalent to an increase in W
�see Fig. 2�b��.

Although the mechanism behind the observed negative
magnetoconductance 	G�−�B� �Figs. 1 and 2� for an orbital
field B=Bz cannot be unambiguously inferred from our nu-
merical results, a dependence linear in �B� for small B and the
requirement of “strong” disorder W�Eg for its observation
seem to indicate that the effect has a nonperturbative charac-
ter. A treatment which is perturbative in W and B yields at
most, to leading order, the result −	G��−1�Weff

2 �B��B2,
where � is the mean free path23 and Weff�B��W�B� /B0 is
some effective disorder strength, with B0

−1�	z if only the
effect of 	z is considered for simplicity. For “weak” disorder
W�Eg, the 1D edge states which enclose a negligible
amount of flux are the only low-energy degrees of freedom,
and the magnetic field only has a perturbative effect on them.
Indeed, if we choose the gauge A= �Bz�Ly −y� ,0�, for suffi-
ciently small Bz we have that A is small for Ly −�1�y�Ly
with �1�Ly, where the bottom edge state wave function has
finite support �Fig. 1�a��, and the effect of an orbital field Bz
on a single edge can be treated perturbatively. In this case,
the amplitude �Weff�B� in perturbation theory for a leading
order backscattering process on a single edge involves one
power of 	z and one power of Bz to couple the spin states of
the counterpropagating Kramers partners7 �with no momen-
tum transfer as our choice of gauge preserves translational
symmetry in the x direction�, and one power of W to provide
the necessary momentum transfer for backscattering. Our ob-
servation that 	G�−B2 for W�Eg corroborates this physi-
cal picture. On the other hand, the cusplike feature at B=0
�Fig. 1�b�� occurs for “strong” disorder W�Eg, which seems

to indicate that the bulk states play an important role. This
leads us to a different physical picture. For W�Eg, the edge
electrons easily undergo virtual transitions to the bulk. In
other words, the emergent low-energy excitations for W
�Eg extend deeper into the bulk than the “bare” edge elec-
trons. The electrons spend a significant amount of time dif-
fusing randomly in the bulk away from the edge, with their
trajectories enclosing finite amounts of flux before returning
to the edge, which endows the orbital field with a nonpertur-
bative effect. In this way the conventional picture of 2D
antilocalization �AL� �Ref. 24� can apply, at least qualita-
tively, to a single disordered QSH edge. We are thus led to
the interesting picture, peculiar to the QSH state, of a dimen-
sional crossover between 1D AL �Refs. 25 and 26� in the
weak disorder regime W�Eg with the orbital field having a
perturbative effect, to an effect analogous to 2D AL in the
strong disorder regime W�Eg with the orbital field having a
nonperturbative effect.

IV. CONCLUSION

We have shown that strong disorder effects W /Eg�1 in a
QSH insulator in the presence of a magnetic field B and
inversion symmetry breaking terms can give rise to a cusp-
like feature in the two-terminal edge magnetoconductance
with an approximate linear dependence 	G�B��−�B� for
small B. These results are in good qualitative agreement with
experiments. A possible physical interpretation of our results
consists of a dimensional crossover scenario where a weakly
disordered, effectively spinless 1D edge liquid crosses over,
for strong-enough disorder, to a state where disorder enables
frequent excursions of the edge electrons into the disordered
flux-threaded 2D bulk, resulting in a behavior reminiscent of
2D AL.
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