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The spin texture surrounding a nonmagnetic impurity in a quantum antiferromagnet is a sensitive probe of
the novel physics of a class of quantum phase transitions between a Néel ordered phase and a valence-bond
solid phase in square lattice S=1 /2 antiferromagnets. Using a newly developed T=0 quantum Monte Carlo
technique, we compute this spin texture at these transitions and find that it does not obey the universal scaling
form expected at a scale invariant quantum critical point. We also identify the precise logarithmic form of these
scaling violations. Our results are expected to yield important clues regarding the probable theory of these
unconventional transitions.
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I. INTRODUCTION

A particularly elegant strategy in the study of strongly
correlated materials exploits the presence of small concentra-
tions of well-characterized impurities in an otherwise pure
sample. Each impurity acts more or less independently of the
others to alter the state of the system around it, and these
impurity-induced charge and spin textures can then be picked
up by nuclear magnetic resonance �NMR� or scanning tun-
neling microscopy experiments. As these local responses are
characteristic signatures of the underlying low-temperature
state, such experiments provide a valuable window to the
underlying physics, especially if the state in question has
strong correlations but no obvious charge or spin order.1

Some of these experiments2 have focused on the effects of
nonmagnetic impurity atoms which give rise to a missing-
spin defect in strongly correlated Mott insulators. Due to the
uncompensated Berry phase associated with such a missing
moment,3 it induces a nontrivial pattern of spin density
around it, and a direct signature of this spin texture can be
obtained by analyzing the pattern of Knight shifts in NMR
experiments. Other experiments have also studied such ef-
fects in cuprate high-Tc superconductors.4 These experiments
have motivated several theoretical studies of such physics—
these include calculations of such impurity effects in
antiferromagnets,5 superconductors,6 as well as at a quantum
phase transition �QPT� signaling the destruction of
antiferromagnetism.7

Here, we use impurities to theoretically probe a class of
unconventional QPTs between an antiferromagnetic phase
with Néel order and a phase with valence-bond solid �VBS�
order in square lattice S=1 /2 magnets. Using a recent
extension8 of the valence-bond projector loop quantum
Monte Carlo �QMC� technique,9 we access the total spin-1/2
doublet ground state of the system with a missing-spin defect
and compute the induced spin texture at these Néel-VBS
transitions.

We use this texture to carefully check for signs of phase
coexistence that would signal first-order Néel-VBS transi-
tions and find no such signatures �see Appendix�. Although
this indicates that these transitions are continuous, we find
that the spin texture at these QPTs does not obey the univer-

sal scaling form expected to hold at any continuous transition
described by a scale-invariant quantum critical theory. Fur-
thermore, we find that this failure of scaling cannot be attrib-
uted to conventional finite-size corrections but instead repre-
sents logarithmic violations of standard quantum critical
scaling. These logarithmic violations of scaling at the Néel-
VBS QPTs are in stark contrast to the near-perfect scaling
collapse we observe for the spin texture at a conventional
QPT between a Néel ordered antiferromagnet and a quantum
paramagnet without spontaneous VBS order. Our results thus
demonstrate that although the Néel-VBS QPT is continuous
on the square lattice, the critical theory is characterized by
logarithmic violations of scaling.

This is extremely significant since the field-theoretical
work of Senthil et al.10 argues that this Neel-VBS QPT can
be generically continuous and admits a natural description in
terms of “deconfined” S=1 /2 spinon excitations of a non-
compact CP1 �NCCP1� field theory rather than the order pa-
rameter fields of conventional Landau theory, which generi-
cally predicts a first-order QPT. This “deconfined criticality”
scenario has been challenged by Kuklov et al. who argue11

that lattice regularizations of the NCCP1 field theory them-
selves exhibit no second-order transitions. This contradicts
Motrunich and Vishwanath,12 who conclude in favor of a
generic second-order transition in a lattice regularized ver-
sion of the NCCP1 field theory. Early numerical evidence
from microscopic spin models did not resolve this field-
theoretical controversy since Sandvik13 and Melko and
Kaul14 found an apparently continuous transition consistent
with deconfined criticality in two S=1 /2 spin models while
Jiang et al.15 found a weakly first-order transition in one of
these models. However, more recent work of Sandvik and
collaborators has convincingly demonstrated the second-
order nature of the Neel-VBS transition in the same
models:16,17 this is consistent with our own findings.

Our study of impurity properties demonstrates that this
continuous transition has logarithmic violations of scaling
that are not predicted by the NCCP1 field theory, at least
within standard approximate analytical treatments.18 Re-
markably, this recent work of Sandvik17 also finds similar
logarithmic violations of scaling, but in very different, bulk
physical quantities.
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II. MODELS AND METHODS

We focus here on two putative realizations13,16 of decon-
fined criticality corresponding to the Hamiltonians

HJQ2 = − J�
�ij�

Pij − Q �
�ij��kl�

PijPkl

and

HJQ3 = − J�
�ij�

Pij − Q �
�ij��kl��rs�

PijPklPrs

defined by Sandvik and co-workers. Here, Pij =1 /4−Si ·S j,
�ij� refers to a nearest-neighbor �nn� bond on the square lat-
tice connecting sites i and j, and �ij��kl���ij��kl��rs�� refer to
two �three� adjacent parallel nn bonds. As a foil of the un-

conventional physics of these JQ models, we also study a
coupled spin-dimer Hamiltonian HJJ� with antiferromagnetic
nn Heisenberg exchange couplings J for all vertical bonds
and J�J�� for even �odd� columns of horizontal bonds.19

These models capture different mechanisms for destabilizing
the Néel order while large values of Q favor a VBS phase in
the JQ2 and JQ3 models, large values of J� drive the system
to a quantum paramagnetic state with no spontaneous sym-
metry breaking.

In order to study the impurity physics at these transitions,
one needs to access the total spin-1/2 doublet ground state of
an L�L periodic system with one missing site �periodic
boundary conditions fix L to be even�. We do this using a
recently developed modification8 of the valence-bond projec-
tor loop-QMC method,9 and focus on the Stot=Stot

z =1 /2

J
−

J
′

J
Q

2
J
Q

3

1/L
0 0.01 0.02 0.03

0.2

0.25

0.3

0.35

1/L
0 0.01 0.02 0.03

|S
z
(q
)|

0.5

0.2

0.3

0.4

|q|L/2π
3210 4

1/L
0 0.01 0.02 0.03

0.2

0.25

0.3

0.35

|S
z
(q
)|

0.5

0.2

0.3

0.4

|q|L/2π
3210 4

1/L
0 0.01 0.02 0.03

0.2

0.25

0.3

0.35

|S
z
(q
)|

0.5

0.2

0.3

0.4

|q|L/2π
3210 4

1/L
0 0.01 0.02 0.03

0

0.03

0.02

0.01

0.04

L
(η

−
3
)/

2
|S

z
(Q

+
q
)|

0

0.01

0.04

0.03

0.02

|q|L/2π
3210 4

L
(η

−
3
)/

2
|S

z
(Q

+
q
)|

1/L
0 0.01 0.02 0.03

0

0.01

0.04

0.03

0.02

0

0.03

0.02

0.01

0.04

|q|L/2π
3210 4

L
(η

−
3
)/

2
|S

z
(Q

+
q
)|

1/L
0 0.01 0.02 0.03

0

0.01

0.04

0.03

0.02

0

0.03

0.02

0.01

|q|L/2π
3210 4

L = 48

L = 64

L = 80

L = 96

Main panels

|S
z
(q
)|

|S
z
(q
)|

|S
z
(q
)|

L
(η

−3
)/

2
|S z

(Q
+

q
)|

L
(η

−3
)/

2
|S z

(Q
+

q
)|

L
(η

−3
)/

2
|S z

(Q
+

q
)|

Insets

q =
2π

L
(1, 0)

q =
2π

L
(1, 1)

q =
2π

L
(2, 0)

q =
2π

L
(2, 1)

FIG. 1. �Color online� Main figures: k dependence of �Sz�k�� at the Néel-VBS transition in the JQ2 and JQ3 models, and the Néel-
paramagnet transition in the JJ� model k near k=Q �right panels� and k=0 �left panels�. Values of the bulk exponent � were taken from Ref.
7 �Ref. 16� for the Néel-paramagnet �Néel-VBS� transitions. Lines passing through the JJ� model data are fits to power-law forms
��q�L /2��−�3−�+���/2 for �Sz�Q+q��L−�3−��/2 �right panel� and ��q�L /2��−���/2� for �Sz�q�� �left panel�, obtained by using the common value
���0.44�0.02 for this “impurity exponent,” consistent with the estimate in Ref. 7. Insets: �Sz�Q+2�m /L�� /L�3−��/2 and �Sz�2�m /L�� for
small �m� versus 1 /L at these transitions.
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ground state �G� of periodic systems with a missing spin at
r=0 at the Néel-VBS transitions in HJQ2, at qc
��Q /J�c / 	�Q /J�c+1
�0.962, and HJQ3 �at qc�0.603�,16

and at the Néel-paramagnet transition of HJJ� 	at �J� /J�c
�1.9096
.19

The total Sz=1 /2 carried by the ground state spreads out
throughout the sample to form the impurity-induced spin tex-
ture ��r�= �G�Sz�r��G�. This texture is expected to have a
smooth uniform part �u�r� and a Néel component �n�r� that
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FIG. 2. �Color online� Logarithmically modified scaling collapse of Sz�k� near k=0 �left panel� and near k=Q �right panel� at the
Néel-VBS transition, with l0=5�1, lQ=0.75�0.2 for the JQ2 model, and l0=12�1, lQ=1.5�0.5 for the JQ3 model.
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FIG. 3. �Color online� Histograms of �D���Dx
2+Dy

2 	with Dx
2��ij�i� j��S� i ·S� i+x̂��S� j ·S� j+x̂�� where �i is +1�−1� if the x coordinate of site

i is even �odd�, and similarly for Dy
2
 and �M���m2 	m2��ij�i� j�S� i ·S� j�, with �i equal to +1�−1� for i belonging to the A�B� sublattice
 for

a periodic boundary condition defect free JQ2 and JQ3 models with Lx=Ly =80. Also shown is the histogram of �Sz�k=Q�� in periodic
boundary condition samples with one site missing and Lx=Ly =80 for both the JQ2 and JQ3 models.
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alternates in sign between the two sublattices of the square
lattice. The Fourier transform

Sz�k� = �
r

��r�exp�ik · r� ,

defined for wave vectors k=2�m /L 	where m��mx ,my�
with mx/y =0,1 , . . . ,L−1
, is thus expected to have two
peaks, one at k=0 of magnitude 1/2, and the other at k=Q
��� ,�� reflecting the tendency to Néel order.

A first-order transition would imply that the distribution
of �Sz�Q�� has a double-peak structure signaling phase coex-
istence. Although we look for such signatures in �Sz�Q�� and
other observables such as the valence-bond solid order pa-
rameter and spin correlations at wave vector Q for both JQ2
and JQ3 models, we see absolutely no such evidence of first-
order behavior �see Appendix�, which leads us to conclude
that these Néel-VBS transitions are continuous. If these con-
tinuous transitions obeys standard scaling theory, one
expects7,18

�u�r� =
1

L2 fu�r/L� ,

�n�r� =
1

L�1+��/2 fn�r/L� ,

where � is the bulk anomalous exponent associated with the
Néel order parameter, and fu and fn are the scaling forms for

the uniform and alternating signals. Earlier work7 has vali-
dated this scaling ansatz for the conventional Néel-
paramagnet QPT by studying two coarse-grained fields �rep-
resenting the uniform and alternating signals� obtained from
the computed texture ��r�. Although straightforward to
implement, this procedure depends on an ad hoc coarse-
graining prescription.

Here we finesse this difficulty by noting that standard
scaling arguments7,18 also imply

Sz�q� = g0�Lq� for �q� � �/2,

Sz�Q + q� = L�3−��/2gQ�Lq� for �q� � �/2 �1�

in Fourier space. The advantage of this formulation is clear:
one may unambiguously test for scaling by simply examining
the computed Sz�k� for k in the vicinity of k=Q and k=0. In
particular, the data for Sz�q� at the transition point computed
from samples of varying size L must fall on top of each other
for �q��� /2. This unbiased test of scaling does not need any
a priori estimate of the bulk anomalous exponent � for the
Néel order parameter nor does it rely on a specific coarse-
graining procedure.

III. RESULTS AND DISCUSSION

Our first inkling that standard scaling does not work at
these Néel-VBS transitions comes from the computed values
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FIG. 4. �Color online� 	�a� and �b�
 Attempts at collapsing the k=0 Fourier peak of the spin texture in the JQ2 model assuming a standard
finite-size correction to the scaling argument give very large values for the best-fit microscopic length: l0

p	100 and small values of the power
p�0.25. �c� This is equivalent to saying that the best collapse is obtained with a nonstandard argument. �d� The quality of collapse obtained
by assuming logarithmic violations of standard scaling is equally good if not better. See text for details.
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of �Sz�q�� shown in Fig. 1 for q=2�m /L with �m��L /2.20

Larger values of L are seen to yield a systematically larger
value of �Sz� at the same �m�. This behavior at the Néel-VBS
transitions is in clear violation of the scaling form Eq. �1�;
this should be contrasted with the excellent scaling observed
at the conventional Néel-paramagnet critical point of the JJ�
model. Given the unbiased nature of this test of scaling, we
consider this rather strong evidence for violation of impurity
scaling properties at these Néel-VBS transitions in the JQ2
and JQ3 models.

Next, we analyze the Bragg peak at the antiferromagnetic
wave vector, k=Q, focusing on the L dependence at the
Néel-VBS transition points. We find that the peaks values
obey the power-law scaling �Sz�Q���L�3−��/2 quite well for
both models with the anomalous exponents �JQ3

�0.33 and
�JQ2

�0.35 taken from Refs. 14 and 16. Our results for the
JJ� model are also consistent with the power-law scaling
�Sz�Q���L�3−��/2 with the known value of ��0.04 for the
Néel-paramagnet QPT.7 However, violations of impurity
scaling in the staggered component of the texture at the
Néel-VBS transitions become evident when one tests for
scaling collapse at k=Q+2�m /L with �m��L /2.20 In con-
trast to the excellent scaling collapse found at the Néel-
paramagnet QPT of the JJ� model, larger L again yield larger
values of �Sz�k�� for the same nonzero �m� at the Neel-VBS
transitions �Fig. 1�.

Can conventional finite-size corrections account for these
violations? To address this, we note that the scaling functions

g0/Q have a dimensionless argument m, implying that finite-
size corrections should be incorporated by modifying their
argument to read m	1+ �l0/Q /L�p
, where the positive power
p controls the approach to the scaling regime when L be-
comes much larger than the microscopic length scale l0/Q.
When we attempt to collapse data by including finite-size
corrections in this manner, we find �see Appendix� that this
only works for unphysically large best-fit values for the
length scales l0/Q

p 	100 and small powers p�0.2–0.6 �de-
pending on which JQ model and which peak�.

We are thus forced by the data to consider a scaling argu-
ment of the form m /Lp with small p�0.2–0.6, which has no
known basis in the theory of phase transitions. However, for
such small p, this form is essentially indistinguishable from
logarithmic violations of impurity scaling with scaling argu-
ment m / log�L / l0/Q�. Such logarithmic violations are well-
known consequences of a marginally irrelevant perturbation
of the critical fixed point. Furthermore, such logarithmic vio-
lations have been observed at the bulk Neel-VBS transitions
in impurity-free systems in the recent work17 of Sandvik.

We therefore ask if the computed spin texture obeys a
modified scaling form

Sz�q� = g0	Lq/log�L/l0�
 ,

Sz�Q + q� = L�3−��/2gQ	Lq/log�L/lQ�
 �2�

for �q��� /2, where l0 and lQ now represent the additional
nonuniversal length scale introduced by the slow vanishing
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FIG. 5. �Color online� 	�a� and �b�
 Attempts at collapsing the k=Q Fourier peak of the spin texture in the JQ2 model assuming a
standard finite-size correction to the scaling argument give very large values for the best-fit microscopic length: l0

p	100 and small values of
the power p�0.2. �c� This is equivalent to saying that the best collapse is obtained with a nonstandard argument. �d� The quality of collapse
obtained by assuming logarithmic violations of standard scaling is equally good if not better. See text for details.
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of some marginally irrelevant operators. As is clear from Fig.
2, the answer is yes: this modified scaling law gives an ex-
tremely good account of our results.

We are thus led to conclude that although the Néel-VBS
transition is continuous, the critical theory has logarithmic
violations of scaling. This conclusion underscores the utility
of impurity physics as a probe of complex strongly corre-
lated states of many-body systems and raises interesting
questions regarding the correct field theoretical description
of such critical points. An interesting follow up would be to
use the same probe at nonzero temperature above the QPT
and test for related violations of scaling in the impurity sus-
ceptibility.
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APPENDIX

This detailed appendix addresses two important concerns
that could potentially arise regarding the conclusions reached
in the preceding sections.

First, are there other interpretations of the results of our
numerical simulations, that could, in particular, point toward
a first-order transition? To address this, we note that first-
order transitions are caused by a direct coexistence between
two phases at the transition point, which reflects itself in the
existence of double-peaked distributions of order parameters
and related quantities at the transition. We have looked very
carefully in the transition region for such signatures in his-
tograms of the square of the Néel order parameter in a pure
system, the modulus of the VBS order parameter, again for a
pure system, as well as the Fourier component of the impu-
rity spin texture at the antiferromagnetic ordering wave vec-
tor for a system with one nonmagnetic impurity.

This extensive data set is presented in Fig. 3. Based on
this evidence, we simply do not find any such signature of
phase coexistence although we study large systems with
state-of-the-art numerical techniques. As a result, we just
cannot conclude in favor of a first-order transition.

Second, it is natural to wonder if the lack of scaling seen
in the critical spin texture at the Néel-VBS transition �Fig. 1�
can be interpreted as strong but ordinary finite-size correc-
tions to conventional critical scaling, instead of a logarithmic
violation of standard scaling?

This is much more subtle: as is well-known, standard
scaling theory requires that the argument of the scaling func-
tions, g0 and gQ in Eq. �1� of our paper, be dimensionless.
The standard scaling argument m=q ·L /2� indeed has this
property. Therefore, if there are any standard power-law
finite-size corrections to scaling, they should take the form
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p	100 and small values of the power
p�0.6. �c� This is equivalent to saying that the best collapse is obtained with a nonstandard argument. �d� The quality of collapse obtained
by assuming logarithmic violations of standard scaling is equally good if not better. See text for details.
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m�1+ l0/Q
p /Lp�, where the power p is positive and l0/Q is a

microscopic length scale beyond which finite-size correc-
tions become small in the vicinity of the particular Fourier
peak. In other words the data at different L and various m
should saturate to an L-independent value which defines the
scaling function of m with the power p controlling how
quickly it saturates to this function of m once L is much
bigger than l0/Q.

However, when this standard “finite-size corrections to
conventional scaling” ansatz is used, the data fail to collapse
with reasonable values for the microscopic length l0/Q. We
illustrate this in Figs. 4�a�, 4�b�, 5�a�, 5�b�, 6�a�, 6�b�, 7�a�,
and 7�b�, where we see that any attempts at collapsing the
data with this ansatz lead to unphysically large best-fit values
of l0/Q

p 	100 and very small best-fit values of p�0.2–0.6
�depending on which JQ model and which peak�. Thus, as
mentioned in our earlier discussion, any attempts at using
finite-size corrections to model the data leads us instead to a
very nonstandard form of scaling argument of the type m /Lp

with small p�0.2–0.6 	see Figs. 4�c�, 5�c�, 6�c�, and 7�c�
,

which has no known basis in the theory of continuous phase
transitions.

Faced with this behavior, we note that a small power p
�0.2–0.6 and a logarithm are hard to tell apart without ac-
cess to unfeasibly large sizes. Furthermore, a scaling argu-
ment of the form m / log�L / l0/Q� admits a well-known theo-
retical interpretation in terms of logarithmic violations of
impurity scaling known to arise when marginally irrelevant
operators are present at a fixed point.

We therefore check for scaling collapse using an argument
m / log�L / l0/Q�, and, as mentioned in the earlier discussion,
observe that it gives rise to very good scaling collapse with
very reasonable values for the microscopic length l0/Q 	see
Figs. 2, 4�d�, 5�d�, 6�d�, and 7�d� included here
.

Thus, our conclusion in favor of a continuous transition
with logarithmic violations of standard scaling is, in fact, the
most conservative and unbiased finding possible given the
numerical data at hand, and given standard theoretical inputs
from the theory of phase transitions.
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FIG. 7. �Color online� 	�a� and �b�
 Attempts at collapsing the k=Q Fourier peak of the spin texture in the JQ3 model assuming a
standard finite-size correction to the scaling argument give very large values for the best-fit microscopic length: l0

p	100 and small values of
the power p�0.3. �c� This is equivalent to saying that the best collapse is obtained with a nonstandard argument. �d� The quality of collapse
obtained by assuming logarithmic violations of standard scaling is equally good if not better. See text for details.
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