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Using density-functional theory we investigate the evolution of the magnetic ground state of NbFe2 due to
doping by Nb-excess and Fe-excess. We find that nonrigid-band effects due to the contribution of Fe d states
to the density of states at the Fermi level are crucial to the evolution of the magnetic phase diagram. Further-
more, the influence of disorder is important to the development of ferromagnetism upon Nb doping. These
findings give a framework in which to understand the evolution of the magnetic ground state in the
temperature-doping phase diagram. We investigate the magnetic instabilities in NbFe2. We find that explicit
calculation of the Lindhard function, �0�q�, indicates that the primary instability is to finite q antiferromag-
netism driven by Fermi-surface nesting. Total-energy calculations indicate that q=0 antiferromagnetism is the
ground state. We discuss the influence of competing q=0 and finite q instabilities on the presence of the
non-Fermi-liquid behavior in this material.
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I. INTRODUCTION

Materials that exhibit magnetic phase transitions that may
be tuned to zero temperature are strong candidates for the
formation of novel ordered states around the quantum-
critical point. These novel states rely upon the breakdown of
assumptions that underpin the Fermi-liquid �FL� theory of
metals when the magnetic interactions become extended in
space and time. Such a situation is possible at a magnetic
quantum critical point �QCP� and may lead to the formation
of new phases of matter that are potentially technologically
valuable. The formation of superconductivity in cuprates and
iron-pnictides near magnetic phase transitions are among the
phenomena that motivate us to understand materials where
magnetic interactions are potentially of crucial importance.

The metallic compound NbFe2 has been of interest to re-
searchers for decades due to its rich magnetic-phase diagram.
Initially, stoichiometric NbFe2 was thought to be either para-
magnetic or ferromagnetic �FM�.1,2 However, subsequent
NMR �Ref. 3� and magnetization measurements4 have been
interpreted as showing spin-density-wave �SDW� order with
a Néel temperature TN�10 K.

Studies of the doping evolution of the phase diagram have
shown that this spin-density-wave state is very sensitive to
changes in stoichiometry. Studies of doping in Nb1−yFe2+y
with either Nb-excess �y�0� or Fe-excess �y�0� have
shown that stoichiometric NbFe2 becomes ferromagnetic
upon either electron or hole doping.5 Because of the close
proximity of the reported SDW and ferromagnetism, NbFe2
has long been considered a candidate material for the coex-
istence of SDW and ferromagnetic fluctuations.5,6

Recent experimental work has further probed the behavior
of the temperature-doping phase diagram of high-purity
NbFe2 via measurements of the temperature dependence of
resistivity, specific heat, and magnetic susceptibility.7,8 The
resulting phase diagram is shown in Fig. 1. Importantly,
these refined measurements indicate the presence of a
quantum-critical point as the reported SDW collapses when
NbFe2 is tuned away from stoichiometry by Nb-excess. At
this critical point, intriguing non-Fermi-liquid behavior in

the material has been demonstrated. Wada et al.9 had previ-
ously reported an enhanced electronic specific heat in the late
1980s. This behavior has been confirmed by recent
measurements8,10,11 that describe the non-Fermi-liquid be-
havior in more detail. They show at low temperatures near
the quantum-critical point the presence of a logarithmic di-
vergence of the specific heat and a ��T3/2 dependence in the
resistivity.

Further NMR and magnetization studies have confirmed
the presence of antiferromagnetism �AFM� at
stoichiometry5,12,13 but neutron-diffraction7,11 studies have
been unable to determine the magnetic order. Therefore,
studying the electronic and magnetic properties of this mate-
rial with electronic-structure calculations may aid our under-
standing and has been addressed previously.14–16 Total-
energy calculations with the frozen-core approximation15

suggested a paramagnetic ground state while work with the
linear muffin-tin-orbital method with shape approximations16

FIG. 1. �Color online� Phase diagram for Nb1−yFe2+y �Ref. 7�.
By adjusting the precise composition within a narrow range, NbFe2

can be tuned from FM �y�0.01� via an intermediate SDW modu-
lated state to a QCP �y�−0.015�.
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suggested an antiferromagnetic ground state nearly degener-
ate with a paramagnetic state.

Recent work by Subedi and Singh17 has discussed in de-
tail the magnetic interactions of local-moment configurations
within the unit cell of stoichiometric NbFe2. NbFe2 exhibits
significant exchange splitting of the 3s core levels.18 This
indicates the presence of local-moment fluctuations as is also
found in the Fe-based superconductors.19 Subedi et al. found
that the magnetism has itinerant character due to the depen-
dence of the size of the moments on the magnetic configu-
ration. Also, a ferrimagnetic ground state was found to be
most favorable. Furthermore large moments �1 �B were
obtained, which far exceed the �0.02 �B inferred from ex-
periment. In this study we further address the magnetic
ground state of this material using the full-potential methods
in WIEN2K.20 We consider the doping dependence of the
ground state and discuss the magnetic interactions that may
be key to the critical behavior in this material. Our findings
for the ground state are used to discuss the driving forces
behind the rich magnetic-phase diagram and the role of mag-
netism in the intriguing non-Fermi-liquid behavior of this
material.

We begin our analysis by considering the electronic struc-
ture of stoichiometric NbFe2. All calculations are performed
using the generalized-gradient approximation- �GGA-�
Perdew-Burke-Ernzerhof �PBE� �Ref. 21� correlation func-
tional. We have used the experimental lattice parameters.7

For stoichiometric NbFe2 a=4.8401�2� Å and c
=1.8963�6� Å. All results presented were obtained using
RKmax=8, Gmax=16, and Indices of the Fast Fourier Trans-
form grid �IFFT� factor=4.0. Here, RKmax determines the
matrix size �Kmax is the plane wave cutoff and R is the small-
est of the atomic sphere radii�, Gmax is the maximum wave
vector in the charge-density Fourier expansion, and IFFT
determines the size of the mesh for the calculation of the
exchange-correlation potential in the interstitial region. The
Fermi surface and charge densities were calculated from a
43�43�23 grid of k points. The radii of the muffin tins
were 2.12a0 for Fe and 2.15a0 for Nb.

II. CRYSTAL AND BONDING STRUCTURE

NbFe2 crystallizes in the C14 Laves phase which has the
MgZn2 hexagonal structure. The crystal structure is shown in
Fig. 2. The Fe atoms form a layered structure of a kagome
lattice �6h sites� separated by Fe �2a sites� atoms centered on
the line between alternate kagome triangles. The Nb atoms
occupy the interstices in this Fe structure and lie slightly out
of plane with respect to the Fe�2a� sites. The site symmetries
have internal degrees of freedom: Nb at 4f�1 /3 / ,2 /3,x� and
Fe at 2a�0,0 ,0� and 6h�y ,2y ,3 /4�. In our calculation of
stoichiometric NbFe2 we have relaxed these internal param-
eters resulting in x=0.0657 and y=0.1705.

It is worth considering this crystal structure in further de-
tail since its properties affect the bonding, doping impurity
location, and the magnetic coupling. In Fig. 3�a� we show an
extended view of the crystal structure along the c axis. We
can see that the blue Fe�2a� atoms only coordinate every
second triangle of the kagome structure formed by the

Fe�6h� sites. To emphasize this we have separated the colors
of the upper and lower kagome layers into red and green.
The presence of the Fe�2a� atoms coordinating every second
kagome triangle means that the bonding between the pairs of
Fe�6h� atoms in the kagome layers will not be the same. In
Fig. 3�b� we show charge-density contours within the
kagome layer. As we can see the bonding between Fe�6h�
sites varies significantly. Effectively the presence of the
Fe�2a� sites draws away charge density into the out of plane

FIG. 2. �Color online� Crystal structure of NbFe2. Fe�6h� red,
Fe�2a� blue, and Nb gray.

FIG. 3. �Color online� Crystal Structure of NbFe2 at left. View
shown along the c axis. The upper and lower kagome layers formed
by the Fe�6h� sites have been separated into red and green, respec-
tively. Fe�6h� red �upper kagome�, Fe�6h� green �lower kagome�,
Fe�2a� blue, and Nb gray. In the right figure we show charge-
density contours in the upper kagome plane. The charge density for
kagome triangles coordinated with Fe�2a� sites is inequivalent to
those with no coordination.
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Fe�2a�-Fe�6h� bonds and starves the bonds in the kagome
triangles that are coordinated with an Fe�2a� site.

In Table I we show the interatomic bond distances. Sig-
nificantly, among the Fe sites, the nearest-neighbor distances
from Fe�2a� and Fe�6h� sites are similar. Therefore upon Nb
doping, the preferred dopant site is likely to be determined
by the bonding network of the Fe cage rather than the vol-
ume available at the site. We investigate this via total-energy
calculations in the following section.

The density of states for nonmagnetic NbFe2 is shown in
Fig. 4 and agrees with the results of previous studies.14,17 We
also show the partial density of states by atomic site. The
partial density of states for Fe�2a� d and Fe�6h� d sites pos-
sess similar structure, which is consistent with their strong
bonding exhibited in the charge density. The Fe d states
dominate the structure at the Fermi level. In contrast the
Nb d character contributes far less structure to the overall
density of states. This reflects the role of Nb as an electron
donor in the system.

Clearly the Fermi level lies near a depression in the den-
sity of states which has been cited as important to the forma-
tion of a SDW at stoichiometry.17 The density of states at EF
is 3.6 eV−1 FU−1. In a rigid-band approximation the impact
of doping a small amount of holes �e.g., Nb doping� will
raise the total density of states and promote the development
of ferromagnetism as is seen in its doping-phase diagram
experimentally.8 However, if we take the same rigid-band
approach to electron doping, such as in the Fe-doped system,

then the density of states is expected to fall. This is in con-
flict with the experimental phase diagram �see Fig. 1�, which
shows the formation of ferromagnetism with small amounts
of Fe doping. Therefore, effects beyond rigid-band shifts of
EF may be in operation and we attempt to explore these in
the following section.

III. DOPING DEPENDENCE OF THE FERROMAGNETIC
INSTABILITY

We may evaluate the proximity of the system to ferromag-
netism within Stoner theory,22 where if N�EF�I�1 then a
material is unstable to ferromagnetism. It has been shown17

that if we assume a typical interaction23,24 I�0.7–0.9 eV
then we obtain a Stoner enhancement of �1−N�EF�I�−1�3
for stoichiometric NbFe2. Experimentally,8,11 however, com-
paring the measured susceptibility with the band-structure
value of N�EF� indicates a Stoner enhancement �1
−N�EF�I�−1�100. This suggests first, that the interaction
scale may be unusually large in NbFe2, I�1 eV. Second,
very slight increases in the value of N�EF� of order a few
percent should drive NbFe2 to a ferromagnetic instability. In
this section we utilize doped supercell calculations to inves-
tigate the evolution of N�EF� with both hole �Nb� and elec-
tron �Fe� doping. We note that doped NbFe2 samples are
disordered as is evidenced by the significant increases in the
low-temperature resistivities that occur upon doping.7 For
these calculations we have employed the lattice parameters
derived from experiment7 and relaxed all internal coordi-
nates. We consider the nonmagnetic density of states in order
to apply the Stoner framework.

First, we consider hole doping on the Nb-rich side of the
phase diagram of Nb1−yFe2+y. We consider doping corre-
sponding to y=−0.065 Nb rich Nb1.065Fe1.935. This state is
formed by substituting one Nb atom for an Fe atom in a 2
�2 supercell and lies beyond the formation of ferromag-
netism in the experimental phase diagram. If we were to
apply the rigid-band approximation to the density of states
shown in Fig. 4, then we expect that for Nb1.065Fe1.935 the
density of states at the Fermi level, N�EF�, will rise to
5.4 eV−1 FU−1. Therefore the system would satisfy the
Stoner criterion, N�EF�I�1, for ferromagnetism. Clearly,
since there are the two inequivalent Fe�2a� and Fe�6h� sites,
then the Nb might be doped at either one. We have per-
formed supercell calculations with the Nb atom substituted at
both sites. Nonmagnetic total-energy calculation for the 2
�2 supercell indicated that for substitution at the Fe�6h� site
the total energy is �6.8 eV /FU lower than that when we
substitute at the Fe�2a� site. Therefore, the total energy
strongly favors substitution at the Fe�6h� site.

In Fig. 5�a� we show the calculated density of states for
Nb-rich Nb1.065Fe1.935 with the Nb substituted on the Fe�6h�
site. Here we find that N�EF�=3.8 eV−1 FU−1. This is a
smaller rise than that predicted by the rigid-band approxima-
tion but probably still large enough to satisfy the criterion for
the formation of ferromagnetism under Stoner theory. If we
inspect the projected density of states for the Nb impurity
and an Fe�6h� site shown in the same figure, then we can see
a mechanism for this result. The Fe�6h� site contributes sig-

TABLE I. Interatomic bond distances for stoichiometric NbFe2.
In each case we show the shortest distance between the two given
sites.

Sites
Distance

�Å�

Fe�2a�-Fe�6h� 2.42

Fe�6h�-Fe�6h� 2.37

Fe�2a�-Fe�2a� 3.95

Nb-Fe�2a� 2.84

Nb-Fe�6h� 2.81

Nb-Nb 2.89
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FIG. 4. �Color online� Nonmagnetic calculated DOS for NbFe2.
The Fermi level is set to 0 eV.
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nificant structure to the density of states near the Fermi level.
As a result when we dope a Nb onto a Fe�6h� site, not only
are we removing valence electrons from the system but we
are also decreasing the contribution from Fe�6h� sites to the
density of states at the Fermi level. The importance of the
structure of Fe d states has been noted by Inoue et al.25 in
tight-binding calculations incorporating impurity atoms.
Consequently, the density of states at the Fermi level from
our doped supercell calculation is lower than that expected in
the rigid-band approximation.

Next we consider electron doping on the Fe-rich side of
the phase diagram of Nb1−yFe2+y. We consider doping corre-
sponding to y=0.065 Fe-rich Nb0.935Fe2.065. This state is
formed by substituting one Fe atom for a Nb atom in a 2
�2 supercell and is well within the ferromagnetic region of
the experimental phase diagram. However, according to the
rigid-band approximation, this doping would actually pro-
duce a small fall in the density of states at the Fermi level to
N�EF�=3.5 eV−1 FU−1. This is due to the fact that the Fermi
level effectively moves higher in energy in Fig. 4 and as a
result the density of states falls deeper into the trough near
the Fermi level. Therefore, in the rigid-band approximation
the Stoner criterion would not be satisfied and ferromag-
netism would not result. In Fig. 5�b� we show the density of
states from our supercell calculation of Nb0.935Fe2.065. Criti-
cally, the density of states at the Fermi level actually rises to
N�EF�=4.5 eV−1 FU−1. This is due to the fact, that despite
the addition of valence electrons, the Fe dopant contributes

increased structure to the density of states at EF. To illustrate
this we show in Fig. 5�b� the projected density of states for
the Fe dopant at the Nb site. We see that, unlike Nb, this Fe
dopant contributes a form to the density of states that is very
similar to that of an Fe�6h� site.

Also, we have made a simple approximation to the disor-
der by applying a Gaussian broadening of width 41 meV to
our density of states to reflect the decreased lifetime of elec-
trons in the states near the Fermi level due to disorder. This
is calculated from the measured low-temperature resistivity
in a Drude approximation.7,26,27 In Nb-rich Nb1.065Fe1.935 we
find that N�EF�=4.6 eV−1 FU−1. The reason for the large in-
crease compared to N�EF�=3.8 eV−1 FU−1 found without
this broadening may be ascertained from the inset to Fig.
5�a�. The Fermi level lies in a sharp dip in the density of
states and therefore disorder-induced broadening is likely to
smear out this structure and increase N�EF�. This suggests
that disorder may be important to the development of ferro-
magnetism upon Nb doping. In contrast N�EF� is found to be
insensitive to the broadening for Fe-rich Nb0.935Fe2.065. The
influence of disorder may also explain discrepancies between
experimentally determined phase diagrams where some
work5 shows the development of ferromagnetism for lower
Nb dopings than in more recent studies.7,8 This indicative
result invites further work on the description of disorder
with approaches such as the coherent-potential
approximation.28–31 A further consideration in such work
may be how the interaction, I, changes with disorder.

These findings illustrate several important points about
the evolution of the temperature-doping phase diagram. �1� A
rigid-band approximation is not sufficient to understand the
evolution to ferromagnetism, particularly for electron dop-
ing. �2� The type of dopant will be critical to the character of
this phase diagram. This is essentially because the fine struc-
ture of this phase diagram is strongly affected by the contri-
butions to the density of states at the Fermi level from Fe d
states. �3� The presence of disorder may be important to the
development of ferromagnetism upon Nb doping.

We have also undertaken calculations for dopings of y
= �0.0325 using 2�2�2 supercells. These calculations de-
liver results with the same qualitative conclusions. For ex-
ample we considered doping corresponding to y=0.0325 Fe-
rich Nb0.9675Fe2.0325. This state is formed by substituting one
Fe atom for a Nb atom in a 2�2�2 supercell. Applying the
rigid-band approximation would result in a fall from N�EF�
=3.6 eV−1 FU−1 in stoichiometric NbFe2 to N�EF�
=3.0 eV−1 FU−1. Our supercell calculation for Fe-rich
Nb0.9675Fe2.0325 indicates N�EF�=4.1 eV−1 FU−1 and sup-
ports the formation of ferromagnetism as shown in the ex-
perimental phase diagram of Fig. 1.

IV. FERMI SURFACE AND MAGNETIC INSTABILITIES

To further our understanding of the complex evolution of
the magnetic phase diagram with doping we here consider
the magnetic interactions active in stoichiometric NbFe2,
which has experimentally been interpreted as having SDW
character. The previous work of Subedi and Singh17 has con-
sidered the interaction of different magnetic orders within the

(a)

(b)

FIG. 5. �Color online� Nonmagnetic calculated DOS for �a� Nb-
rich Nb1.065Fe1.935 and for �b� Fe-rich Nb0.935Fe2.065. The insets
show the same data on an expanded scale around the Fermi level.
The Fermi level is set to 0 eV.
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unit cell under the local spin-density approximation �LSDA�.
The Fermi surface of metallic materials is crucial in the

understanding of their properties. In Fig. 6 we show the cal-
culated nonmagnetic Fermi surface for stoichiometric NbFe2
which agrees well with previous work.17 We reproduce this
Fermi surface to emphasize the importance of features that
may be important to the magnetic instabilities of the system.
Five sheets make up this Fermi surface which is strongly
three-dimensional �3D�. We consider the nonmagnetic Fermi
surface because we are interested in the magnetic instabilities
as we approach the QCP, where the static moment and spin
splitting of the Fermi surface approach zero.

We proceed by calculating �0�q� using the technique of
Romberg integration

�0�q� = �
n,k

Mk,k+q
2 � fn,k − fn,k+q

	n,k+q − 	n,k
	 . �1�

Here, the sum is over all bands up to 1 eV above the Fermi
level, n, and wave vectors k. M are the matrix elements and

f is the Fermi occupation function. No increased lifetime
broadening was applied. In Fig. 6�f� we show the suscepti-
bility for q parallel to �010� and for q parallel to �001�. We
have included only intraband contributions for which we
may to a good approximation set the matrix element M =1.
Both susceptibilities rise steeply away from q=0. Along
�010�, the susceptibility peaks at a small wave vector, q
��00 .0750�
 /b, and then falls monotonically until the zone
boundary is reached. Along �001� the susceptibility rises to a
higher level than that in-plane �40% above that at q=0. It
then levels off to an essentially constant value until the zone
boundary is reached. Enhancements at finite q are consistent
with previous work.17 From these calculations it appears
likely that finite q instabilities, particularly along �001�, may
be important in this system.

We note also, that in the absence of spin-orbit effects the
matrix element for interband contributions is M =0 at q=0
due to orthogonality, then the inclusion of interband contri-
butions will enhance the finite q instabilities shown in Fig.
6�f�. Inspection of the contributions of each Fermi-surface
sheet shows that the rising value of �0�q� along �001� is due
largely to bands 82 and 83. This results from the presence of
the very flat sections of surface that they possess. These flat
sections nest strongly as they are translated by the wave vec-
tor q. This behavior is very similar to the large finite q in-
stability found due to the flat sides of the cubelike Fermi
surfaces in metamagnetic TiBe2.32

We also compare competing magnetic ground states by
performing total-energy calculations. Our total-energy calcu-
lations consider several magnetic states including �1� non-
magnetic, �2� ferromagnetic, �3� AFM1 which is commensu-
rate along the c axis as suggested by the calculation of �0�q�,
�4� AFM2 which is q=0 antiferromagnetism of the type
found in the C14 Laves material TiFe2, and �5� AFM3 which
is the lowest energy state found by Subedi and Singh17 We
show the spin configurations associated with some of these
orders in Fig. 7.

For the energy evaluation we have used 10,000 k points in
the Brillouin zone and the GGA-PBE exchange-correlation
functional. As shown in Table II we find that the lowest
energy state corresponds to q=0 antiferromagnetism of the
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FIG. 6. �Color online� In �a�–�e� we show the nonmagnetic
Fermi surface of NbFe2. The flat sections of Fermi surface in bands
81 and 82 show potential for nesting. In �f� we show the noninter-
acting susceptibility, �0�q�, for NbFe2 along both the �010� and
�001� directions. The large flat enhancement in �0�q� along the
�001� direction indicates the potential importance of large q mag-
netic instabilities. The flat sections of the Fermi surface of the bands
82 and 83 are the dominant contribution to the susceptibility at large
q. A similar phenomenon is observed due to the cubic shaped Fermi
surface in TiBe2 �Ref. 32�.

(b)(a)

FIG. 7. Schematic diagram of the spin configuration for �a�
AFM2 q=0 antiferromagnetism and �b� AFM3 the lowest energy
state found by Subedi and Singh �Ref. 17�. Only Fe atoms are
shown and the 2a and 6h rows are as indicated.
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type found experimentally in the C14 Laves material TiFe2.33

However, our results indicate that the Fe�2a� possesses a
moment while the experiments on TiFe2 indicate no ordered
moment. In this calculation the second lowest energy state is
then the ferrimagnetic state found to have the lowest energy
by Subedi and Singh17 The use of the LSDA correlation
functional in that study results in a different configuration of
spins for the lowest energy state.

For the SDW order AFM1 corresponding to the peak in
�0�q� along the c axis we find a lower energy than that ob-
tained for ferromagnetism but not lower than the configura-
tions within the unit cell. The ground-state calculation for
these SDW configurations also produces large moments and
suggests that the energy gain is again dominated not by the
Fermi-surface nesting but by the Hund’s coupling.

Importantly, the ordered moment below the SDW transi-
tion ��0.02 �B� represents only a small fraction of the fluc-
tuating moment.8 Magnetic order is then expected to have a
minor effect on the magnetic fluctuation spectrum and hence
on the low-temperature properties, in particular, the non-
Fermi-liquid low-temperature exponents. This is evidenced
by the small size of the heat-capacity anomaly at TN
�10 K even in stoichiometric NbFe2. Therefore, the pres-
ence of finite q magnetic fluctuations may have an important
role in producing the non-Fermi-liquid properties.

From spin-fluctuation theory, it is known that at an anti-
ferromagnetic �q�0� quantum-critical point the expected
temperature dependence of the resistivity is ��T3/2 in the
presence of sufficiently strong quenched disorder34 while the
leading-order term in the specific heat is linear in T. In con-
trast at a ferromagnetic critical point �q=0�, ��T5/3 and the
specific-heat diverges logarithmically. As shown in Table III,
experiments on NbFe2 at its quantum critical point might
suggest the presence of both ferromagnetic and antiferro-
magnetic spin fluctuations if we were able to treat these
modes separately. Alternatively, NbFe2 may be entering into
a new regime such as that found in the high-pressure region
of the helimagnet MnSi.36 It is possible that the presence of
q=0 and finite q instabilities in this material may combine to
produce the unusual non-Fermi-liquid behavior. The promi-
nence of such instabilities in NbFe2 is confirmed by both our
calculation of the susceptibility in Fig. 6�f� and the total-
energy calculations in Table II.

The interplay of Fermi-surface nesting along with other
magnetic couplings in this system is shared with the Fe-
based superconductors, where nesting is important along
with other band-structure effects. The competition of these
effects has been shown by Yildirim37 to produce the struc-
tural phase transition in the Fe-based superconductors. In the
NbFe2 system they may produce intriguing non-Fermi-liquid
properties.

V. SUMMARY AND DISCUSSION

The bonding structure of the Fe cages in NbFe2 is likely
to be instrumental in producing the magnetic interactions
that dominate the formation of its magnetic ground state.
This bonding produces inequivalent character in the kagome
triangles in the Fe�6h� layers.

We demonstrate that nonrigid-band effects must be con-
sidered in order to understand the evolution of the ground
state as a function of doping. The contribution of Fe d states
to the density of states at the Fermi level is shown to be
critical to the production of a Stoner instability upon electron
doping with Fe impurities. Therefore, it is expected that the
nature of the electron dopant will be crucial to the evolution
of the phase diagram. Also, the presence of disorder is likely
to be important to the formation of ferromagnetism upon Nb
doping.

We find that NbFe2 is close to both small and large q
magnetic instabilities. The noninteracting susceptibility indi-
cates the potential importance of q�0 instabilities. The elec-
tronic structure is highly three-dimensional but the possibili-
ties for nesting of quasi-one-dimensional sections of the
Fermi surface may provide crucial magnetic instabilities.
Total-energy calculations indicate that spin configurations
within the unit cell produce the lowest energy state.

The unusual non-Fermi-liquid critical exponents of NbFe2
may arise from the combination of q�0 and q=0 instabili-
ties. Further investigation as to how these instabilities may
interplay will be necessary both theoretically and experimen-
tally. Furthermore, the presence of such a large phase space
for fluctuations is likely to complicate the formation of su-
perconducting Cooper pairs in either the spin singlet or trip-
let channels.
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TABLE II. Comparative energetics of magnetic states. For the
ferromagnetic state the total magnetic moment is 2.34 �B per for-
mula unit. In the ferromagnetic state the Nb is found to also carry a
small moment �0.2 �B which is antiferromagnetically coupled to
the Fe moments.

Energy
�meV/FU�

Fe�2a�
����B��

Fe�6h�
����B��

NM 0 0 0

FM −84 1.1 1.5

AFM1 −96 1.6 1.4

AFM2 −104 1.6 1.5

AFM3 −97 1.8 0.98

TABLE III. Results from spin-fluctuation theory �Ref. 35� in 3D
shown alongside the experimental results for NbFe2 at its quantum
critical point �Ref. 8�. Results are shown for the standard FL, a
system near a finite q AFM instability and a system near an FM
instability.

Property FL AFM FM NbFe2

Specific heat �C� T T T ln�T� /T� T ln�T� /T�
Resistivity ��� T2 T3/2 T5/3 T3/2
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