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By using a combination of several nonperturbative techniques—a one-dimensional field theoretical approach
together with numerical simulations using density-matrix renormalization group—we present an extensive
study of the phase diagram of the generalized Hund model at half filling. This model encloses the physics of
various strongly correlated one-dimensional systems, such as two-leg electronic ladders, ultracold degenerate
fermionic gases carrying a large hyperfine spin 3

2 , other cold gases such as ytterbium 171 or alkaline-earth
condensates. A particular emphasis is laid on the possibility to enumerate and exhaust the eight possible
Mott-insulating phases by means of a duality approach. We exhibit a one-to-one correspondence between these
phases and those of the two-leg electronic ladders with interchain hopping. Our results obtained from a
weak-coupling analysis are in remarkable quantitative agreement with our numerical results carried out at
moderate coupling.
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I. INTRODUCTION

A major focus of the study of strongly correlated elec-
tronic systems is the analysis of the competition between
qualitatively distinct ground states and the associated quan-
tum phase transitions �QPTs� �Ref. 1� in low dimensions. A
reason to concentrate on these matters stems from the hope
that the criticality of the system at such QPTs possibly results
in a universal description of their vicinity. In 2+1 space-time
dimensions, the resulting relativistic quantum field theories
which describe the zero-temperature transition between these
quantum phases are in general strongly coupled and can be
highly nontrivial.2

In one dimension �1D�, the situation is much simpler
since the quantum critical points in standard condensed-
matter systems are characterized by conformal field theories
�CFTs�, which often admit a simple free-field representation
in terms of free bosons or fermions. In this respect, the
bosonization approach has been very successful to investi-
gate the physical properties of one-dimensional quantum
phases.3,4 Within this approach, several conventional and ex-
otic long-range-ordered phases have been revealed over the
years in two-leg ladder models5–18 and carbon nanotube
systems19–22 at half filling. Two different classes of Mott-
insulating phases have been found at half filling in these
systems. A first class is twofold degenerate corresponding to
the spontaneous breaking of discrete symmetries such as the
translation symmetry in charge-density wave �CDW� and
bond-ordering phases, or the time-reversal symmetry in
d-density wave �DDW� phase. In contrast, the second class
of Mott-insulating phases is nondegenerate. A paradigmatic
example of this class is the Haldane phase of the spin-1
Heisenberg chain23 and of the two-leg spin ladder which
breaks spontaneously a nonlocal Z2�Z2 discrete
symmetry.24–26

Another striking particularity of many one-dimensional
electronic systems is the existence of hidden duality symme-
tries, within the low-energy approach, which relate many of
the competing orders to a conventional one like the
CDW.5,13,27–31 Actually, a general duality approach has been
introduced recently to describe the zero-temperature spin-
gapped phases of 1D electronic systems away from half
filling.31 In this paper, we apply this approach to half-filled
systems of four-component fermions and revisit the problem
of competing orders in half-filled two-leg electronic ladders.
In this particular case, some of the duality symmetries al-
ready exist at the level of the lattice model, and have been
first revealed in Ref. 13. In addition to these, as it will be
seen, there are also interesting emergent duality symmetries
which relate nondegenerate Mott-insulating phases to con-
ventional order such as CDW. Unlike the former ones, those
dualities do not bear a local representation on the lattice.

The starting point of the duality approach to competing
orders is to identify the internal global symmetry group H of
the lattice model. For two-leg electronic ladders, or more
generally two-band models, the building blocks of the model
are four-component fermionic creation operators on each site
i: cl�,i

† where l=1,2 is the leg or orbital index and �= ↑ ,↓
denotes the spin-1

2 index. Three basic global continuous sym-
metries are retained: a U�1� charge symmetry �cl�,i
→ei�cl�,i�, a SU�2� spin-rotational invariance �cl�,i

→����e
i�� ·�� /2����cl��,i, �� being the Pauli matrices�, and a

U�1� orbital symmetry �c1�2��,i→e�i�c1�2��,i�. Moreover, we
will consider models for which the two legs or two bands
behave identically; in other words, we impose a Z2 invari-
ance under the permutation of the legs. If we restrict our-
selves to on-site interactions, the most general model with
H=U�1�c�SU�2�s�U�1�o�Z2 invariance then reads as
follows:32
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H = − t�
i,l�

�cl�,i
† cl�,i+1 + H.c.� − ��

i

ni +
U

2 �
i

ni
2

+ JH�
i

S�1,i · S�2,i + Jt�
i

�Ti
z�2 �1�

with ni=�l�nl�,i�nl�,i=cl�,i
† cl�,i� being the occupation number

on the ith site. In Eq. �1�, the spin operator on leg l is defined
by

S� l,i =
1

2�
�,�

cl�,i
† �� ��cl�,i �2�

whereas Ti
z= 1

2���n1�,i−n2�,i� is the generator of the U�1�
symmetry for orbital degrees of freedom.

Model �1� depends on three microscopic couplings: a
Coulombic interaction U, a Hund coupling JH, and an “or-
bital crystal-field anisotropy” Jt. When Jt=0, the resulting
model is the so-called Hund model which has been investi-
gated in the context of orbital degeneracy.15,28,32 The gener-
alized Hund model �1� is directly linked to ultracold fermi-
onic 171Yb and alkaline-earth atoms with nuclear spin
I= 1

2 .33,34 The two-orbital states are described in these sys-
tems by the ground state �1S0�g� and a long-lived excited
state �3P0�e�. The almost perfect decoupling of the nuclear
spin from the electronic angular momentum J in the two e ,g
states �J=0 states� makes the s-wave scattering lengths of the
problem independent of the nuclear spin. The low-energy
Hamiltonian relevant to the 171Yb cold gas loaded into a 1D
optical lattice then reads34

HYb = − t�
i,l�

�cl�,i
† cl�,i+1 + H.c.� +

Ũ

2 �
i,l

nl,i�nl,i − 1�

+ V�
i

ng,ine,i + Vex �
i,�,�

cg�,i
† ce�,i

† cg�,ice�,i, �3�

where cl�,i
† is the fermionic creation operator at site i with the

nuclear spin-1
2 index �= ↑ ,↓ in the l=e ,g electronic states.

The occupation number of electronic states is nl,i
=��cl�,i

† cl�,i. Model �3� is then directly equivalent to the gen-

eralized Hund model �1� with the correspondence: Ũ=U
+Jt /2, V=U−Jt /2−JH /4, and Vex=−JH /2.

Apart from this connection to cold fermions physics, one
of the main interests of model �1� stems from the fact that it
contains a large variety of relevant models with extended
continuous symmetries, some of which having appeared in
different contexts. First of all, when Jt=−3JH /4, the continu-
ous symmetry is promoted to U�1�c�SU�2�s�SU�2�o, and
one recovers the so-called spin-orbital model.35–39 In absence
of Hund coupling, i.e., JH=0, the continuous symmetry
group of model �1� is U�1�c�U�1�o�SO�4�s where each
chain has a separate SU�2� spin-rotational symmetry. When
Jt=JH /4, model �1� displays an SO�5� symmetry which uni-
fies spin and orbital degrees of freedom. The resulting
model, with U�1�c�SO�5�s,o continuous symmetry, is rel-
evant to four-component fermionic cold atom systems.40–50

Finally, when JH=Jt=0, one recovers the U�4� Hubbard
model, that has been extensively analyzed in recent
years.14,51–53 As it will be seen in Sec. II, at half filling, many

other highly symmetric lines can be identified. For instance,
the line JH=8U unifies spin and charge degrees of freedom
with an extended U�1�o�SO�5�s,c continuous symmetry.54

The corresponding model has been previously introduced by
Scalapino, Zhang, and Hanke �SZH� �Ref. 6� in connection
to the SO�5� theory which relates antiferromagnetism to
d-wave superconductivity.55

In this paper, we will investigate the nature of the insulat-
ing phases of the zero-temperature phase diagram of model
�1� at half filling. In this respect, it will be shown that the
duality approach of Ref. 31 for half-filled fermions with in-
ternal global symmetry group H=U�1�c�SU�2�s�U�1�o
�Z2 yields eight fully gapped phases. These eight Mott-
insulating phases fall into two different classes. On one hand,
the first class consists of four doubly degenerate phases
which spontaneously break a discrete symmetry of the un-
derlying lattice model. On the other hand, the second class
contains four nondegenerate Mott-insulating phases. A first
one is the rung-singlet �RS� phase where two spins on each
rung lock into a singlet. A second nondegenerate phase is a
rung-triplet �RT� phase where the spins now combine into a
triplet and this phase is known to be adiabatically connected
to the Haldane phase of the spin-1 Heisenberg chain.26 Fi-
nally, two other Haldane-type phases are found: they are spin
singlet but involve two different pseudospin-1 operators
which are, respectively, built from charge and orbital degrees
of freedom. In the case of the charge pseudospin-1 operator,
the resulting Haldane charge �HC� phase has been found
very recently in the context of 1D half-filled spin-3

2 cold
fermions.50

In addition to this duality approach, it will be shown, by
means of a one-loop renormalization group �RG� approach
and numerical simulations �using the density-matrix renor-
malization group �DMRG� algorithm56�, that the zero-
temperature phase diagram of model �1� displays seven out
of the eight expected insulating phases. We find it remark-
able that model �1�, that only has three independent coupling
constants, turns out to have a rich phase diagram which in-
cludes the four nondegenerate Mott-insulating phases.

Finally, we will make contact with the eight Mott-
insulating phases found over the years in half-filled general-
ized two-leg ladders with a t� transverse hopping term.11,12

The latter term breaks explicitly the U�1�o symmetry but it is
known that this symmetry is recovered at low energy.5,12 The
relevant global symmetry group is still H and the same du-
ality approach thus applies to that case. In this respect, we
will connect the two families of eight fully gapped phases
found for t�=0 and for t��0. In particular, it will be shown
that the two problems are in fact connected by an emergent
nonlocal duality symmetry.

The rest of the paper is organized as follows. In Sec. II,
we discuss the symmetries of model �1�. We also present a
strong-coupling analysis along special highly symmetric
lines which gives some clues about the nature of the nonde-
generate Mott-insulating phases. The low-energy investiga-
tion is then presented in Sec. III. It contains the duality ap-
proach to half-filled fermions with internal symmetry group
H=U�1�c�SU�2�s�U�1�o�Z2. The zero-temperature phase
diagram of the generalized Hund model �1� and that of
highly symmetric models are deduced by a one-loop RG
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analysis. We then connect our results to the known insulating
phases of generalized two-leg ladder models with a t� hop-
ping term. In Sec. IV, we map out the phase diagram of
model �1�, SZH, and spin-orbital models with t�=0 by
means of DMRG calculations to complement the low-energy
approach. Our concluding remarks are presented in Sec. V.
The paper is supplied with three appendices which provide
some additional information. Appendix A describes the tech-
nical details of the continuum limit of model �1�. The low-
energy approach of edge states in the nondegenerate Mott-
insulating phases are discussed in Appendix B. Finally,
Appendix C presents the main effect of the interchain hop-
ping in the strong-coupling regime, close to the orbital sym-
metric line.

II. SYMMETRIES AND STRONG COUPLING

Before investigating the zero-temperature phase diagram
of the generalized Hund model by means of the low-energy
and DMRG approaches, it is important to fully determine the
special lines which exhibit enlarged symmetry. It turns out
that, at half filling, many highly symmetric lines can be high-
lighted. Their study will give some important clues on the
possible Mott-insulating phases of the model at half filling.

A. Highly symmetric lines

The generalized Hund model �1� enjoys a global internal
symmetry group H=U�1�c�SU�2�s�U�1�o�Z2 on top of
the lattice discrete symmetries such as one-step translation
invariance, time-reversal symmetry, site and link parities. For
generic filling, and on four different manifolds—that corre-
spond to some fine tuning of the lattice couplings—in the
space of coupling constants, this model possesses a higher
symmetry.

First of all, on top of the SU�2�s that rotates spin degrees
of freedom, one can define a SU�2�o orbital pseudospin op-
erator,

Ti
† = c1↑,i

† c2↑,i + c1↓,i
† c2↓,i,

Ti
z =

1

2
�n1,i − n2,i� �4�

with nl,i=��nl�,i, l=1,2. When Jt=−3JH /4, the U�1� orbital
symmetry of the Hund model �1� is enlarged to SU�2�o, with
generators given by Eq. �4�. The resulting model displays a
U�1�c�SU�2�s�SU�2�o continuous symmetry and has been
considered in systems with orbital degeneracy like the spin-
orbital model.32,35–39

A second highly symmetric model is defined for JH=0:
then the interacting part of model �1� simplifies as follows:

HSO�4�
int =

1

2
�U +

Jt

2
��

i

�n1,i
2 + n2,i

2 � + �U −
Jt

2
��

i

n1,in2,i,

�5�

from which we deduce that each leg has a separate SU�2�
spin rotation symmetry so that the continuous symmetry
group of model �5� is U�1�c�U�1�o�SO�4�s.

When Jt=JH /4, as shown in Ref. 54, model �1� is known
to be equivalent to the spin-3

2 cold fermionic model with
interacting part,

Hspin-3/2
int = U0�

i

P00,i
† P00,i + U2�

i
�

m=−2

2

P2m,i
† P2m,i, �6�

where U0= �2U−7Jt� /4 and U2= �2U+Jt� /4. In Eq. �6�, we
have PJm,i

† =���	Jm 
 3
2 , 3

2 ;���c�,i
† c�,i

† , � ,�= �
3
2 , �

1
2 , and

	Jm 
 3
2 , 3

2 ;��� are the Clebsch-Gordan coefficients for spin 3
2 .

Model �6� is known to exhibit a U�1�c�SO�5�s,o continuous
symmetry without any fine tuning.40

Finally, for JH=Jt=0, spin and orbital degrees of freedom
unify to a maximal SU�4� symmetry and model �1� takes the
form of the Hubbard model for four component fermions
with a U�4� invariance.

At half filling, the chemical potential � is given by �0

= 3U
2 to ensure particle-hole symmetry. More highly symmet-

ric lines can be found in this particle-hole symmetric case. It
stems from the fact that, as in the spin-1

2 Hubbard model, the
U�1�c charge symmetry can be enlarged to an SU�2�c sym-
metry at half filling.57,58 In this respect, one can define a
charge pseudospin operator by

Ji
† = c1↑,i

† c2↓,i
† − c1↓,i

† c2↑,i
† ,

Ji
z =

1

2
�ni − 2� , �7�

which is a SU�2�s spin singlet that satisfies the SU�2� com-
mutation relations. This operator is the generalization in two-
leg ladder or two-band systems of the pseudospin-1

2 operator
introduced by Anderson59 and by Yang in 	-pairing
problems.57

Many interesting lines can then be considered. A simple
way to reveal them is to consider the energy levels of the
one-site Hamiltonian �1� with t=0. The corresponding spec-
trum is depicted in Fig. 1. On top of the four symmetric lines
that we have identified above, we find nine additional lines
where higher continuous symmetries emerge �see Table I�.
Among all these new highly symmetric lines, there are three
interesting models with two independent coupling constants,
i.e., with only one fine tuning.

A first one corresponds to the SZH model with U�1�o
�SO�5� continuous symmetry. Such SZH model with no
transversal hopping t� is defined as follows: HSZH=Ht�
+Hrung with

Ht�
= − t�

i,�
�c�,i

† c�,i+1 + d�,i
† d�,i+1 + H.c.� ,

Hrung = USZH�
i

�nc↑,i −

1

2
��nc↓,i −

1

2
� + �c → d��

+ VSZH�
i

�nc,i − 1��nd,i − 1� + JSZH�
i

S�c,i · S�d,i,

�8�

where c� and d� are, respectively, the fermion annihilation
operator of the upper and lower leg of the ladder with spin
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index �. The occupation numbers on the ith site are denoted
by nc�d�,i, respectively. The spin operators S�c�d�,i are defined
similarly to those of the Hund model �see Eq. �2��. It is
straightforward to relate the SZH model to the generalized
Hund model �1�,

U =
USZH + VSZH

2
,

JH = JSZH,

Jt = USZH − VSZH. �9�

As shown in Ref. 6, the fine tuning JSZH=4�USZH+VSZH�
�i.e., JH=8U in the context of model �1�� makes the lattice
model �8� U�1�o�SO�5�s,c symmetric. The SO�5� symmetry
unifies here spin and charge degrees of freedom and is thus

different from the spin-3
2 cold fermionic atoms �Eq. �6�� case.

A second symmetric line is found for Jt=2U with the
emergence of a SU�2�s�SO�4�c,o continuous symmetry. In
that case, charge and orbital degrees of freedom play a sym-
metric role and are unified by a SO�4� symmetry.

Finally, the last extended symmetric ray with the fine tun-
ing JH=−8U /3 �see Table I� corresponds to a model with
U�1�o�SU�2�c�SU�2�s continuous symmetry. Such a
model has two independent SU�2� symmetries: one for the
spin degrees of freedom and also a second for the charge
degrees of freedom. In this respect, it is very similar to the
spin-orbital model and can be called “charge-spin” model.

B. Strong-coupling analysis

The identification of these highly symmetric models is
very useful since several possible insulating phases of the
generalized Hund model �1� can be inferred from a strong-
coupling analysis. Such an approach has already been per-
formed for some special lines of Table I such as the half-
filled U�4� Hubbard chain,60,61 the SO�5� spin-3

2 model,45,50

and the SZH one.6,7

Here, we present a simple strong-coupling approach along
three special lines which enables us to identify several non-
degenerate Mott-insulating phases. To this end, let us first
consider the line Jt=2U with U
0 and JH�0. In the ab-
sence of hopping term �i.e., t=0�, the lowest-energy states
are the spin triplet E3 �see Fig. 1�. An effective Hamiltonian
can then be deduced by treating the hopping term as a per-
turbation in the strong-coupling regime 
U ,JH ,Jt
� t. At sec-
ond order of perturbation theory, we find an antiferromag-
netic SU�2� Heisenberg chain,

Heff = Js�
i

�S�1,i + S�2,i� · �S�1,i+1 + S�2,i+1� , �10�

where Js=−4t2 / �JH−4U�
0, and S� l,i are the spin operators
defined in Eq. �2�. The resulting fully gapped phase is the
well-known RT phase of the two-leg spin-1

2 ladder which is
adiabatically connected to the Haldane phase of the spin-1

FIG. 1. Energy-level diagram for the one-site Hamiltonian �1�
with t=0.

TABLE I. Extended continuous symmetries of model �1� at half filling.

Extended continuous symmetry Fine tuning Degenerate levels

U�1�c�SU�2�o�SU�2�s Jt=−3JH /4 E2=E4

U�1�c�U�1�o�SO�4�s JH=0 E3=E4

U�1�c�SO�5�s,o Jt=JH /4 E2=E3

U�1�c�SU�4�s,o JH=Jt=0 E2=E3=E4

SO�7� Jt=2U , JH=8U E0=E2=E3

U�1�o�SU�4�s,c U=JH=0 E0=E3=E4

SU�2�c�SO�5�s,o Jt=−2U /3, JH=−8U /3 E0=E4 , E2=E3

SU�2�o�SO�5�s,c Jt=−6U , JH=8U E0=E3 , E2=E4

SO�5�c,o�SU�2�s Jt=2U , JH=−8U /3 E0=E2=E4

U�1�o�SO�5�s,c JH=8U E0=E3

SO�4�c,o�SO�4�s JH=0, Jt=2U E0=E2 , E3=E4

SO�4�c,o�SU�2�s Jt=2U E0=E2

U�1�o�SU�2�s�SU�2�c JH=−8U /3 E0=E4
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chain.26 Such a nondegenerate gapful phase displays a hid-
den antiferromagnetic ordering which is revealed by a string-
order parameter,25,62,63

lim

i−j
→


	�S1,i
z + S2,i

z �ei��k=i+1
j−1 �S1,k

z +S2,k
z ��S1,j

z + S2,j
z �� � 0.

�11�

This RT phase is also known to exhibit spin-1
2 edge states

when open-boundary conditions �OBCs� are considered.64–66

A second interesting line is JH=−8U /3 where the charge
degrees of freedom enjoy an SU�2� symmetry enlargement.
In the absence of hopping term, the lowest-energy states for
U�0 and Jt
0 are the E0 ,E4 levels as it can be seen from
Fig. 1. Keeping only these three states, we obtain, at second
order of perturbation theory, an effective �pseudo� spin-1 an-
tiferromagnetic SU�2� Heisenberg chain,

Heff = Jc�
i

J�i · J�i+1 �12�

with Jc=−4t2 / �6U−Jt�
0. The effective Hamiltonian �12�
expresses in terms of the spin-singlet charge operator �7�
which is a pseudospin-1 operator in the triplet states E0 ,E4 of
Fig. 1. We then expect the emergence of Haldane-type phase
for charge degrees of freedom as it has been recently found
in the context of half-filled spin-3

2 cold fermions.50 Such a
HC phase is fully gapped and nondegenerate. It displays a
hidden ordering that is revealed by the string-order param-
eter,

lim

i−j
→


	Ji
zei��k=i+1

j−1 Jk
z
Jj

z� � 0. �13�

A deviation from the line JH=−8U /3 breaks the SU�2�
charge symmetry down to U�1� and in the strong-coupling
regime the lowest correction to model �12� is a single-ion
anisotropy term Dc�i�Ji

z�2 �with Dc=3JH /4+2U�. The
Haldane phase of the spin-1 chain is known to be stable
under a weak single-ion anisotropy.67 A large enough Dc may
give rise to a Ising phase with 	Ji

z��0 �i.e., a CDW from
definition �7�� or to a large-Dc phase which is a nondegener-
ate gapped singlet phase. The latter, with 	Ji

z�=0, corre-
sponds to the RS phase of the two-leg spin-1

2 ladder where
the two spins of the rung bind into a singlet state �E4 state of
Fig. 1� for an antiferromagnetic interchain coupling.

Finally, a last interesting symmetric ray is Jt=−3JH /4
where the U�1� orbital symmetry is enlarged to SU�2�. Along
this line, when JH
0 and U is not too negative, the lowest-
energy states of the one-site Hamiltonian are levels E2 ,E4 of
Fig. 1. At second order of perturbation theory, we now find a
spin-1 antiferromagnetic SU�2� Heisenberg chain for the or-
bital degrees of freedom,

Heff = Jo�
i

T� i · T� i+1 �14�

with Jo=16t2 / �9JH+8U�. We thus expect the emergence of a
new Haldane phase for the orbital degrees of freedom that
will be called Haldane orbital �HO� phase in the rest of the
paper. The resulting hidden ordering is captured by the fol-
lowing string-order parameter:

lim

i−j
→


	Ti
zei��k=i+1

j−1 Tk
z
Tj

z� � 0. �15�

A deviation from the line Jt=−3JH /4 breaks the SU�2� or-
bital symmetry down to U�1� and in the strong-coupling re-
gime the lowest correction to model �14� is a single-ion an-
isotropy term Do�i�Ti

z�2 �with Do=Jt+3JH /4�. For
sufficiently strong value of 
Do
, the HO phase will be desta-
bilized into either an orbital density wave �ODW� which is
described by the E2 states with 	Ti

z��0 or a RS phase, i.e.,
the E4 state with 	Ti

z�=0.
In summary, the strong-coupling analysis along highly

symmetric lines reveals the existence of four nondegenerate
Mott-insulating phases �RT, HC, HO, and RS� and two gap-
ful phases with long-range density ordering �CDW and
ODW�.

III. LOW-ENERGY APPROACH

In this section, we present the details of the low-energy
approach of the generalized Hund model �1� at half filling, in
the weak-coupling regime 
U ,JH ,Jt
� t. The zero-
temperature phase diagram of model �1� will be investigated
by means of the combination of a duality approach and one-
loop RG calculations. In particular, we will determine the
different insulating phases in the weak-coupling regime and
make connection with the ones found within the strong-
coupling approach.

A. Phenomenological approach

The starting point of the low-energy approach is the lin-
earization around the Fermi points �kF of the dispersion
relation for noninteracting four-component fermions. We
thus introduce four left- and right-moving Dirac fermions
Ll� ,Rl� �l=1,2 and �= ↑ ,↓�, which describe the lattice fer-
mions cl�,i in the continuum limit,

cl�,i

�a0

→ Rl��x�eikFx + Ll��x�e−ikFx �16�

with kF=� /2a0 at half filling and x= ia0 �a0 being the lattice
spacing�. The next step of the approach is to use the Abelian
bosonization of these Dirac fermions to obtain the low-
energy effective Hamiltonian for model �1�. The details of
these calculations are given in Appendix A. Here, we present
a more phenomenological approach which is based on the
symmetries of the lattice model �1�.

The continuous symmetry of the noninteracting model �1�
is SO�8�. In the continuum limit, the SO�8� symmetry can be
revealed by introducing eight real �Majorana� fermions from
the four complex Dirac �R ,L�l� ones. The noninteracting
fixed point is then described by the SO�8�1 CFT with central
charge c=4.68 The chiral currents JL,R

�a,b� �1�a�b�8�, which
generates this CFT, can be expressed as fermionic bilinears:
JL�R�

�a,b�= i�L�R�
a �L�R�

b , where �L�R�
a are the eight left- �right-� mov-

ing Majorana fermions.
When interactions are included, the SO�8� symmetry is

broken down to H=U�1�c�SU�2�s�U�1�o�Z2. The key
point of the analysis is to identify how the eight Majorana
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fermions of the SO�8�1 CFT act in H. One way to obtain the
correspondence is to focus on the currents which generate
the different continuous symmetry groups in H. The uniform
part of the continuum limit of the spin operator �2� on the leg
l=1,2 defines the chiral SU�2�1 currents J�lR,L,

J�lL = Ll�
† �� ��

2
Ll�, J�lR = Rl�

† �� ��

2
Rl�. �17�

As in two-leg spin ladder,25,69 the sum and difference of
these chiral SU�2�1 currents can be locally expressed in
terms of four Majorana fermions �R,L

1,2,3,6 among the eight
original ones,

J�1R,L + J�2R,L = −
i

2
��R,L ∧ ��R,L,

J�1R,L − J�2R,L = i��R,L�R,L
6 , �18�

where the triplet of Majorana fermions �� = ��1 ,�2 ,�3� ac-
counts for the spin degrees of freedom since the SU�2�s spin
rotation symmetry of the lattice model �1� is generated in the
continuum by J�1R+J�2R+R→L. The Majorana fermion �6 is
related to the discrete Z2 interchain exchange as it can be
seen from Eq. �18�. Finally, the four remaining Majorana
fermions can be cast into two pairs, each of which is associ-
ated to the two U�1� symmetries in H: �4,5 �respectively, �7,8�
Majorana fermions describe the orbital �respectively, charge�
U�1� symmetry.

With this identification at hand, we can derive the low-
energy effective theory for the generalized Hund model �1� at
half filling. Assuming only four-fermion �marginal� interac-
tions, the most general model with H=U�1�c�SU�2�s
�U�1�o�Z2 invariance can be easily deduced from the Ma-
jorana fermion formalism,

H = −
ivc

2 �
a=7

8

��R
a�x�R

a − �L
a�x�L

a� −
ivs

2 �
a=1

3

��R
a�x�R

a − �L
a�x�L

a�

−
ivt

2 �
a=4

5

��R
a�x�R

a − �L
a�x�L

a� −
iv0

2
��R

6�x�R
6 − �L

6�x�L
6�

+
g1

2
��

a=1

3

�R
a�L

a�2

+ g2��
a=1

3

�R
a�L

a���
a=4

5

�R
a�L

a�
+ �R

6�L
6
g3�

a=1

3

�R
a�L

a + g4�
a=4

5

�R
a�L

a� +
g5

2
��

a=4

5

�R
a�L

a�2

+
g6

2
��

a=7

8

�R
a�L

a�2

+ ��R
7�L

7 + �R
8�L

8�

�
g7�
a=1

3

�R
a�L

a + g8�
a=4

5

�R
a�L

a + g9�R
6�L

6� , �19�

where the normal ordering procedure is assumed here and
also in the rest of the paper.

The different velocities and the nine coupling constants
cannot be determined within this phenomenological ap-
proach based on symmetries. In this respect, a direct standard

continuum limit procedure of the lattice model must be ap-
plied. This is done in Appendix A and we find the expression
of the velocities

vc = vF +
a0

�
�3

2
U −

Jt

4
� ,

vs = vF −
a0

2�
�U −

JH

2
+

Jt

2
� ,

vt = vF −
a0

2�
�U −

3Jt

2
� ,

v0 = vF −
a0

2�
�U +

3JH

2
+

Jt

2
� �20�

whereas the identification of the nine coupling constants
reads as follows:

g1 = − a0�U −
JH

2
+

Jt

2
� ,

g2 = − a0�U −
JH

4
−

Jt

2
� ,

g3 = − a0�U +
JH

2
+

Jt

2
� ,

g4 = − a0�U +
3JH

4
−

Jt

2
� ,

g5 = − a0�U −
3Jt

2
� ,

g6 = a0�3U −
Jt

2
� ,

g7 = a0�U +
JH

4
−

Jt

2
� ,

g8 = a0�U +
Jt

2
� ,

g9 = a0�U −
3JH

4
−

Jt

2
� . �21�

The main advantage of this Majorana fermions descrip-
tion is that the symmetries of the original lattice model are
explicit in the low-energy effective model �19� in sharp con-
trast to the standard Abelian bosonization representation
�see, for instance, Eqs. �A5� and �A7� of Appendix A where
the symmetries are hidden�. In particular, using Eqs. �20� and
�21�, one can check that all extended symmetries of Table I
are indeed symmetries of model �19�.
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B. Duality approach

On top of the continuous symmetries of model �1�, the
low-energy effective Hamiltonian �19� displays exact hidden
discrete symmetries which take the form of duality symme-
tries. Indeed, as shown recently in Ref. 31, general weakly
interacting fermionic models with marginal interactions ex-
hibit nonperturbative duality symmetries in their low-energy
description. Those will help us to list and identify possible
gapful phases that may occur at low-energy. This is the ob-
ject of the present section.

The duality symmetries are easily identified here within
the Majorana formalism �Eq. �19�� since they are built from
Kramers-Wannier duality symmetries3,70 of the underlying
two-dimensional Ising models associated to the eight Majo-
rana fermions �R,L

a : they simply take the following form �L
a

→−�L
a, �R

a →�R
a . Applying the approach of Ref. 31 yields

eight possible dualities, that can be built out of three elemen-
tary ones that one may choose as

�1:�L
7,8 → − �L

7,8,

�2:�L
4,5 → − �L

4,5,

�7:�L
6 → − �L

6 .

We now describe in detail each of the eight phases.

1. Spin-Peierls phase

The essence of a duality approach is to relate different
phases between themselves. In this respect, we need a start-
ing phase from which the dual phases can be obtained. Such
a phase can be most simply chosen by considering the spe-
cial fine tuning �0 :gi=g �i=1, . . . ,9� in Eq. �19�. The RG
study presented shortly will assess that this line is attractive
under the RG flow. On this particular line of the nine-
dimensional parameter space, the interacting part of the low-
energy effective model �19� takes the form of the SO�8�
Gross-Neveu �GN� model,71

Hint
�0 =

g

2
��

a=1

8

�R
a�L

a�2

. �22�

The SO�8� symmetry rotates the eight Majorana fermions
and is the maximal continuous symmetry of the interaction
model �19�. The SO�8� GN model is integrable and a spectral
gap is generated for g
0.70,72,73 The resulting phase corre-
sponds to a spin-Peierls �SP� ordering with the lattice order
parameter OSP=�i,l��−1�icl�,i

† cl�,i+1.
Indeed, a straightforward semiclassical approach to model

�22� reveals that the bosonic fields �c,s,f ,sf of the basis �Eq.
�A3�� are pinned into the following configurations for g
0:

	�a� = ��pa, 	�a� =
��

2
+ ��qa, �23�

pa ,qa�a=c ,s , f ,sf� being integers. In addition, the ground-
state degeneracy of this phase can be deduced within this
semiclassical approach since there is a gauge redundancy in
the bosonization procedure �A1�,

�l�R,L → �l�R,L + ��pl�R,L, �24�

where pl�R,L are integers �l=1,2 and �= ↑ ,↓�. This transfor-
mation leaves intact the Dirac fermion fields Rl� ,Ll�. Using
the change in basis �A3�, we deduce that among the field
configurations �Eq. �23��, only two of them are independent
�they cannot be connected by the gauge redundancy transfor-
mation �24��,

	�c,s,f ,sf� = 0,

	�c� = ��, 	�s,f ,sf� = 0. �25�

These two ground states are related by the one-step transla-
tion symmetry Ta0

, which is described in the bosonization
approach by: �c→�c+��. The SP phase is thus twofold
degenerate and spontaneously breaks the translation symme-
try Ta0

as it should.
The continuum bosonized description of the SP order pa-

rameter is given by

OSP � �
a=c,s,f ,sf

cos����a� + �
a=c,s,f ,sf

sin����a� , �26�

from which we deduce that indeed this order parameter con-
denses in the field configurations �Eq. �25��: 	OSP��0.

2. Charge-density wave phase

Starting from the SP phase, one can infer all possible
gapful phases that may appear at low energy. We obtain a
second degenerate phase by performing a duality transforma-
tion �1 :�L

7,8→−�L
7,8 which is a symmetry of model �19� if

g7,8,9→−g7,8,9. The resulting gapful phase, named M1, is
governed by the following interacting Hamiltonian, which
replaces the SO�8� line �Eq. �22��,

Hint
�1 =

g

2
��

a=1

6

�R
a�L

a − �R
7�L

7 − �R
8�L

8�2

. �27�

In bosonic language, the duality �1 only affects the charge
degrees of freedom and corresponds to a simple shift of the
charge bosonic field: �cL→�cL+�� /2 and �cR→�cR. We
deduce from Eq. �25� that the phase M1 is twofold degen-
erate with the two semiclassical ground states,

	�c� =
��

2
, 	�s,f ,sf� = 0,

	�c� =
3��

2
, 	�s,f ,sf� = 0. �28�

Hence, the M1 phase also breaks the one-step translation
symmetry. The semiclassical approach enables us to identify
the M1 phase as a CDW phase, described by the lattice order
parameter OCDW=�i,l��−1�icl�,i

† cl�,i. Indeed, in the bosoniza-
tion description, the CDW order parameter reads as follows:
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OCDW � cos����c� �
a=s,f ,sf

sin����a�

− sin����c� �
a=s,f ,sf

cos����a� , �29�

and it obviously condenses in the ground-state configuration
�28�: 	OCDW��0.

3. Orbital density wave phase

We can define a second duality transformation �2 :�L
4,5

→−�L
4,5, which is indeed a symmetry of model �19� if g2,4,8

→−g2,4,8. In that case, the SO�8� line �Eq. �22�� is replaced
by

Hint
�2 =

g

2� �
a=1,2,3;6,7,8

�R
a�L

a − �R
4�L

4 − �R
5�L

5�2
. �30�

The duality �2 affects the orbital degrees of freedom and is
represented by a shift in the orbital bosonic field: � fL

→� fL+�� /2. The resulting phase, M2, is a twofold degen-
erate with ground-state configurations,

	� f� =
��

2
, 	�c,s,sf� = 0,

	�c� = ��, 	� f� =
��

2
, 	�s,sf� = 0. �31�

Similarly to the CDW phase, one deduces that M2 has a
long-range ODW ordering. The order parameter is: OODW
=�i,l��−1�i�−1�l+1cl�,i

† cl�,i whose bosonized form reads

OODW � cos���� f� �
a=c,s,sf

sin����a�

− sin���� f� �
a=c,s,sf

cos����a� , �32�

and it obviously condenses in the ground-state configurations
�Eq. �31��: 	OODW��0.

4. Spin-Peierls-� phase

The last twofold degenerate phase, M3, which breaks
translation symmetry, is obtained from the SP phase with
help of the duality �3=�1�2 :�L

4,5,7,8→−�L
4,5,7,8. It is a sym-

metry of model �19� if g2,4,7,9→−g2,4,7,9. The M3 phase is
governed by the following interacting Hamiltonian:

Hint
�3 =

g

2� �
a=1,2,3;6

�R
a�L

a − �
a=4,5,7,8

�R
a�L

a�2
. �33�

The order parameter characterizing the M3 phase is a
Spin-Peierls-� �SP�� order parameter with an alternating
dimerization profile on the two legs: OSP�

=�i,l��−1�i�−1�l+1cl�,i
† cl�,i+1. Its bosonized form is

OSP�
� �

a=c,f
cos����a� �

a=s,sf

sin����a�

+ �
a=c,f

sin����a� �
a=s,sf

cos����a� . �34�

The ground-state configurations of the SP� phase are given
by

	�c,f� =
��

2
, 	�s,sf� = 0,

	�c� =
3��

2
, 	� f� =

��

2
, 	�s,sf� = 0, �35�

and 	OSP�
��0 in these configurations.

5. Haldane charge phase

So far we have considered only duality symmetries which
involve an even number of Majorana fermions. A second
class of interesting duality symmetries, called outer dualities
in Ref. 31, is involved when an odd number of Majorana
fermions is considered. These duality symmetries give rise to
the second class of Mott-insulating phases, the nondegener-
ate ones, which do not spontaneously break the translation
symmetry. A first nondegenerate gapful phase, named M4, is
obtained from the SO�8� line �Eq. �22�� by the duality
�4 :�L

6,7,8→−�L
6,7,8. Such an outer duality is a symmetry of

model �19� when g3,4,7,8→−g3,4,7,8. The resulting effective
model for the M4 phase is

Hint
�4 =

g

2
��

a=1

5

�R
a�L

a − �
a=6

8

�R
a�L

a�2

. �36�

A simple semiclassical analysis of this model shows us
that the bosonic fields are pinned in the following way:

	�c� =
��

2
+ ��pc, 	�s,f� = 	�sf� = ��ps,f ,sf ,

	�c� =
3��

2
+ ��qc, 	�s,f� = 	�sf� =

��

2
+ ��qs,f ,sf ,

�37�

where pa ,qa�a=c ,s , f ,sf� are again integers. Using the
gauge redundancy �Eq. �24��, we observe that the phase M4
is indeed nondegenerate with ground-state configuration,

	�c� =
��

2
, 	�s,f� = 	�sf� = 0. �38�

Unfortunately, the order parameter of this M4 phase can-
not be written locally in terms of the original lattice fermi-
ons. In this low-energy procedure, it involves order and dis-
order operators of the underlying two-dimensional Ising
models. The situation here is similar to the RS and RT phases
of the two-leg spin-1

2 ladder.25 These gapful phases are non-
degenerate and display a hidden antiferromagnetic ordering
and possibly edge states which can be revealed through non-
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local string order parameters.26,62,63 In this respect, in order
to build those operators, it is useful to introduce the follow-
ing quantities in terms of the occupation numbers nl�,i of the
original lattice fermions:

nc,i =
1

2
�n1↑,i + n1↓,i + n2↑,i + n2↓,i� ,

ns,i =
1

2
�n1↑,i − n1↓,i + n2↑,i − n2↓,i� ,

nf ,i =
1

2
�n1↑,i + n1↓,i − n2↑,i − n2↓,i� ,

nsf ,i =
1

2
�n1↑,i − n1↓,i − n2↑,i + n2↓,i� . �39�

We then consider two classes of stringlike order parameters,

Oa,i
even = cos���

k�i

�na,k� ,

Oa,i
odd = �na,i cos���

k�i

�na,k� �40�

with �na,i=na,i− 	na,i� and a=c ,s , f ,sf . The string operators
�Eq. �40�� are, respectively, even or odd under the transfor-
mation �na,i→−�na,i. The bosonization description of these
string-order parameters is cumbersome due to the nonlocality
of the operators in Eq. �40�. A naive continuum expression
can be derived with help of its symmetry properties like in
the two-leg spin ladder63,74 or the one-dimensional extended
Bose-Hubbard model,75

Oa
even � cos����a� ,

Oa
odd � sin����a� . �41�

We thus deduce that the odd charge string operator dis-
plays long-range ordering in the M4 phase,

lim

i−j
→


	Oc,i
oddOc,j

odd� � lim

x−y
→


	sin����c�x��sin����c�y��� � 0.

�42�

Using the charge pseudospin operator �7�, one immedi-
ately observes that this lattice charge string-order parameter
is equivalent to the long-range ordering �Eq. �13�� obtained
within the strong-coupling approach. We thus conclude that
the M4 phase is a HC phase which is adiabatically con-
nected to the HC of the strong-coupling approach found in
the vicinity of the JH=−8U /3 line. This phase displays a
hidden ordering, described by Eq. �42�, and pseudospin-1

2
edge states, as expected for a Haldane phase. Those �holon�
edge states carry charge but are singlet states as far as the
spin and orbital degrees of freedom are concerned �see Ap-
pendix B�. This result will help us to detect numerically the
HC phase in the DMRG calculations of Sec. IV.

6. Haldane orbital phase

The next phase, M5, is found by applying the duality
symmetries �L

4,5,6→−�L
4,5,6 with g2,3,8,9→−g2,3,8,9. The result-

ing dual interacting Hamiltonian reads

Hint
�5 =

g

2
� �

a=1,2,3,7,8
�R

a�L
a − �

a=4

6

�R
a�L

a�2

. �43�

Its ground-state configuration is given by

	� f� =
��

2
, 	�c,s� = 	�sf� = 0. �44�

The physical properties of the M5 phase are very similar to
the ones for the HC phase. The orbital degrees of freedom
are central to the M5 phase and play the role of the charge
degrees of freedom for the HC charge. In this respect, the
M5 phase is characterized by the long-range order of the odd
orbital string order parameter,

lim

i−j
→


	O f ,i
oddO f ,j

odd� � lim

x−y
→


	sin���� f�x��sin���� f�y��� � 0.

�45�

Using the orbital pseudospin operator �4�, we find that the
orbital string-order parameter �45� is equivalent to the long-
range ordering �Eq. �15�� obtained within the strong-
coupling approach. We thus conclude that the M5 phase is a
HO phase which is adiabatically connected to the HO of the
strong-coupling approach found in the vicinity of the SU�2�o
symmetric line Jt=−3JH /4. The HO phase is characterized
by pseudospin-1

2 edge states �see Appendix B� which carry
orbital quantum number only. The orbital edge states will be
useful to reveal numerically the HO phase by means of the
DMRG approach.

7. Rung-triplet phase

A new nondegenerate phase, named M6, is found by ap-
plying the duality symmetry �6 �L

1,2,3→−�L
1,2,3 to the SP

phase. The effective interacting Hamiltonian which governs
the properties of the M6 phase is

Hint
�6 =

g

2
��

a=4

8

�R
a�L

a − �
a=1

3

�R
a�L

a�2

. �46�

In the M6 phase, the ground-state configuration for the
bosonic fields is

	�s� = 	�sf� =
��

2
, 	�c,f� = 0, �47�

from which we deduce that the following string-order param-
eter condenses in this phase:

lim

i−j
→


	Os,i
oddOs,j

odd� � lim

x−y
→


	sin����s�x��sin����s�y��� � 0.

�48�

This order parameter is the standard string-order parameter
�11� of the RT phase of the two-leg spin ladder with ferro-
magnetic interchain coupling. The M6 phase is thus a RT
phase with spin-1

2 edge states.66
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8. Rung-singlet phase

Finally, the last nondegenerate phase, called M7, is ob-
tained from the SO�8� line �Eq. �22�� by the duality symme-
try �7 :�L

6 →−�L
6. its effective model is

Hint
�7 =

g

2
� �

a=1,a�6

8

�R
a�L

a − �R
6�L

6�2

. �49�

In the semiclassical approach, the ground-state configuration
for the bosons is obtained from the SP one �Eq. �25�� by
changing the bosonic field �sf into its dual �sf in the pinning
configuration,

	�c,s,f� = 	�sf� = 0. �50�

In particular, one observes that no odd string-order param-
eters can condense into the M7 phase. The latter phase is the
standard RS phase of the two-leg spin ladder with antiferro-
magnetic interchain coupling that we have identified in Sec.
II within the strong-coupling approach. This phase has no
edge state when open-boundary conditions are considered.66

C. Phase diagram

The duality symmetry approach, discussed in the previous
section, predicts the emergence of eight insulating phases for
two-leg electronic ladder with the symmetry group H
=U�1�c�SU�2�s�U�1�o�Z2. However, this approach can-
not determine which phases actually appear in the phase dia-
gram of a particular model like Eq. �1� with H invariance. To
answer this question, we need to perform a one-loop RG
calculation of model �19� with initial conditions �Eq. �21��
for the generalized Hund model �1�.

1. Phases of the generalized Hund model

The one-loop RG flow of the nine coupling constants of
model �19� can be derived by standard methods.3,4 By ne-
glecting the velocity anisotropy �i.e., vc=vs=v0=vt=v� and
performing a suitable redefinition of the coupling constants
�ga=2�vfa , a=1, . . . ,9�, we find the one-loop RG equa-
tions

ḟ1 = f1
2 + 2f2

2 + f3
2 + 2f7

2,

ḟ2 = 2f1f2 + f2f5 + f3f4 + 2f7f8,

ḟ3 = 2f1f3 + 2f2f4 + 2f7f9,

ḟ4 = f4f5 + 3f2f3 + 2f8f9,

ḟ5 = 3f2
2 + f4

2 + 2f8
2,

ḟ6 = 3f7
2 + 2f8

2 + f9
2,

ḟ7 = 2f1f7 + 2f2f8 + f3f9 + f6f7,

ḟ8 = 3f2f7 + f5f8 + f4f9 + f6f8,

ḟ9 = 3f3f7 + 2f4f8 + f6f9. �51�

The nine coupling constants of the low-energy Hamiltonian
�19� are not independent: they depend only on the three pa-
rameters U, Jh, and Jt of the original lattice Hamiltonian �1�.
We thus need to use the initial conditions �Eq. �21�� to de-
termine which phases do come out in the zero-temperature
phase diagram of the generalized Hund model. A numerical
analysis of these differential equations, together with the re-
sults of the preceding section, gives us the phase diagram of
the model. We find seven insulating phases out of the eight
possible ones found within the duality approach. The missing
phase is the SP� phase. Of course, by adding next-neighbor
interactions to the lattice model �1� without breaking the
symmetry group H, the latter phase will be found. Interest-
ingly enough, this lattice model with three independent in-
teractions possess the four nondegenerate Mott-insulating
phases that we have revealed with the help the duality sym-
metry and strong-coupling approaches. In Fig. 2, we present
a section of the three-dimensional phase diagram of the gen-
eralized Hund model at U=−0.005 �t is set to unity� where
the seven phases appear.

The duality approach that we used to obtain the phase
diagram allows for an easy characterization of the quantum
phase transitions. Those transitions are located on the self-
dual lines, where the coupling constants that change their
sign when going from one phase to the other vanish. Figure
3 summarizes all the phase transitions that occur in the phase
diagram of the generalized Hund model.

We now present the zero-temperature phase diagram of
several interesting highly symmetric models with two inde-
pendent coupling constants that we have introduced in Sec.
II.

2. Phase diagram of the SO(5) fermionic cold atoms model

Let us start with the spin-3
2 cold fermionic atoms model

�6� which is obtained from the generalized Hund model �1�

FIG. 2. �Color online� Low-energy phase diagram of the gener-
alized Hund model at half filling for U=−0.005t �t=1�. �SP=spin
Peierls, CDW=charge-density wave, ODW=orbital density wave,
RS=rung singlet, HC=Haldane charge, HO=Haldane orbital, RT
=rung triplet�. At the intersection of the highly symmetric lines lie
points with even larger symmetry �see Table I�.
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by the fine tuning JH=4Jt. In the continuum limit, the cou-
pling constants are naturally parametrized by the singlet and
quintet pairing U0 and U2: g1=g2=g5=−U0−U2 , g3=g4
=U0−3U2 , g6=U0+5U2 , g7=g8=2U2 , g9=2U0. The ef-
fective Majorana model �19�, describing the physical proper-
ties of the spin-3

2 cold fermions model, depends on five in-
dependent coupling constants. The resulting phase diagram,
as obtained from the one-loop RG calculation, is presented in
Fig. 4.

3. SO(5) SZH model

As mentioned in Sec. I, there is a second SO�5�-
symmetric model embedded in the generalized Hund model
�1�: the SZH model �8�. In the latter model, obtained from
Eq. �1� when JH=8U, the SO�5� symmetry unifies charge
and spin degrees of freedom.6 The coupling constants of the
Majorana model �19� for the SZH model �8� read as follows:

g1,6,7 = a0�USZH + 2VSZH� ,

g2,8 = a0USZH,

g3,9 = − a0�3USZH + 2VSZH� ,

g4 = − a0�3USZH + 4VSZH� ,

g5 = a0�USZH − 2VSZH� . �52�

We obtain the phase diagram shown in Fig. 5. The phases are
very similar to the one in the spin-3

2 cold fermions model
with the substitution: CDW→ODW and HC→HO.

4. Phase diagram of SO(4) models

We now turn to models which display an extended SO�4�
symmetry. In Sec. II, we found two different SO�4� models
with two independent coupling constants, i.e., one fine tun-
ing with respect to the original generalized Hund model �1�.
When JH=0, the lattice model �5� enjoys a U�1�c�U�1�o

�SO�4�s continuous symmetry. The phase diagram of this
model can be determined by the low-energy approach from
the identification of the coupling constants of model �19�,

g1 = g3 = − a0�U +
Jt

2
� ,

g2 = g4 = − a0�U −
Jt

2
� ,

g5 = − a0�U −
3Jt

2
� ,

g6 = a0�3U −
Jt

2
� ,

g7 = g9 = − g2 = − g4,

g8 = − g1 = − g3. �53�

The resulting phase diagram is presented in Fig. 6. It con-
tains an interesting line Jt=2U with enlarged SO�4�c,o
�SO�4�s symmetry �see Sec. II�. It is straightforward to see
that along this line for U�0, where the transition between
the CDW and ODW appears, the spin degrees of freedom are
gapped while the charge and orbital degrees of freedom are
critical. Hence, the quantum phase transition is described by
a SO�4�1 CFT with central charge c=2.

The second model is defined for Jt=2U �see Table I� with
SO�4�c,o�SU�2�s continuous symmetry. Here, the SO�4�
symmetry unifies the charge and orbital degrees of freedom.
The coupling constants of the continuum limit of this model
are given by

g1 = − a0�2U −
JH

2
� ,

g2 = g7 = a0
JH

4
,

FIG. 4. �Color online� Phase diagram of the spin-3
2 cold fermi-

ons model at half filling �t=1�.

FIG. 3. Quantum phase transitions that can occur in the gener-
alized Hund model. The letter next to the arrows indicates which
degrees of freedom are critical: c=charge, s=spin, and o=orbital.
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g3 = − a0�2U +
JH

2
� ,

g4 = g9 = − a0
3JH

4
,

g5 = g6 = g8 = 2a0U , �54�

from which we deduce the phase diagram of Fig. 7. The
quantum phase transition between RS and RT phases for
JH=0 and U
0 is now governed by the spin degrees free-
dom and the SO�4�1 CFT.

5. Phase diagram of spin-orbital (charge) models

The generalized Hund model �1� reduces to the spin-
orbital model when Jt=−3JH /4 with a U�1�c�SU�2�o
�SU�2�s symmetry which has been studied in the context of
orbital degeneracy.35–39 The coupling constants of the con-
tinuum limit of this model read as follows:

g1 = − a0�U −
7JH

8
� ,

g2 = g3 = − a0�U +
JH

8
� ,

g4 = g5 = − a0�U +
9JH

8
� ,

g6 = a0�3U +
3JH

8
� ,

g7 = a0�U +
5JH

8
� ,

g8 = g9 = a0�U −
3JH

8
� . �55�

The phase diagram of the spin-orbital model is presented in
Fig. 8. In particular, it includes two nondegenerate Mott-
insulating phases: HO and RT phases.

FIG. 5. �Color online� Phase diagram of the SZH model �8� with
the fine tuning JSZH=4�USZH+VSZH� at half filling �t=1�.

FIG. 6. �Color online� Phase diagram of the SO�4� model �5�
with JH=0 �t=1� at half filling. The continuous symmetry group is
U�1�c�U�1�o�SO�4�s.

FIG. 7. �Color online� Phase diagram of the half-filled SO�4�
model with Jt=2U �t=1� which unifies charge and orbital degrees
of freedom.

FIG. 8. �Color online� Phase diagram of the spin-orbital model
at half filling with Jt=−3JH /4 �t=1�.
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Finally, we consider the related spin-charge model which
is defined for the fine tuning JH=−8U /3 with U�1�o
�SU�2�c�SU�2�s continuous symmetry at half filling. The
resulting model is similar to the spin-orbital model where
now spin and charge are put on the same footing. We find the
following continuum limit for the spin-charge model:

g1 = − a0�7U

3
+

Jt

2
� ,

g2 = − a0�5U

3
−

Jt

2
� ,

g3 = g7 = a0�U

3
−

Jt

2
� ,

g4 = g8 = a0�U +
Jt

2
� ,

g5 = − a0�U −
3Jt

2
� ,

g6 = g9 = a0�3U −
Jt

2
� . �56�

Its phase diagram is depicted in Fig. 9. Here, two nondegen-
erate Mott insulating phases appear: the HC and RT phases.

D. Effect of an interchain hopping term

Let us now consider the generalized Hund model �1� to
which we add an interchain hopping term,

H� = − t��
i,�

�c1�,i
† c2�,i + H.c.� . �57�

This problem has been previously studied and its phases are
known.5,11,12 We will show that all those phases �there are
eight of them� can be connected one-by-one �by a nontrivial

duality� to the phases of the generalized Hund model �1�.
Our approach will use a weak coupling analysis, and our
conclusion relies on the existence of a hidden orbital sym-
metry emerging at low energy. In Appendix C, we show that
this approach is also valid in the strong-coupling regime,
close to the orbital line Jt=−3JH /4.

In the presence of interchain hopping, the noninteracting
part of the Hamiltonian cannot be readily diagonalized. We
need to do a change in basis and introduce bonding and
antibonding operators,

dj� =
1
�2

�c1� + �− 1� jc2�� . �58�

Using this basis, the kinetic part can be diagonalized in mo-
mentum space; there are now two decoupled bands �bonding
and antibonding bands� and two Fermi points �provided t�

�2t� kF1
and kF2

such that, at half filling, kF1
+kF2

=� /a0.
One could proceed by linearizing around the four Fermi
points, by introducing continuous bonding and antibonding
fermionic fields Ra��x� and La��x� �with a=1,2, �= ↑ ,↓� by
bosonizing, refermionizing, and expanding the interactions
in this basis. Instead, we will follow an approach that is
based on the �continuous� symmetry content of the theory, by
showing that the symmetry of the low energy, continuous
theory is essentially the same for t��0 as for t�=0.

This is not obvious: naively, the interchain hopping term
breaks the U�1�o orbital symmetry and the analysis of the
preceding sections breaks down. However, as noticed
before,5,12 at low energy another U�1� symmetry emerges in
the orbital sector. To see this, let us consider the difference
�=kF1−kF2=2 arcsin�t� /2t�. It is a continuous function of
t�, and provided � is not commensurate to �, in the con-
tinuum limit and at weak coupling, one can safely ignore
umklapp terms that oscillate at wave vector that are integer
multiples of �. Retaining only marginal, four-fermion inter-
actions of the form �i=1

4 �ai�i

�i� , with ��i�=R ,L, one sees that
in order for this term to be nonoscillating and to give a
contribution to the interacting part of the continuous theory,
it has to conserve separately the quantities �+=N1R+N2L and
�−=N1L+N2R, where NaL=���dxLa�

† La� and NaR
=���dxRa�

† Ra� are the total number of left �right� fermions
in each of the bonding and antibonding bands. It results that
the difference �+−�−= �N1R−N2R�− �N1L−N2L� is conserved:
this is nothing but �twice� the total orbital current in the
bonding/antibonding basis along direction z. This quantity

generates a U�1� orbital symmetry U�1�o
˜. One thus con-

cludes that the low-energy continuous theory has a symmetry

U�1�c�SU�2�s�U�1�o
˜ �Z2, the same has in the t�=0 case.

The total orbital current �+−�− can be mapped onto the
total orbital charge �all other conserved quantities, i.e., the
electric charge and the SU�2�s spin generators, being unaf-
fected� by the duality �� that leaves all Majorana fermions
��a�a�5 invariant but changes �L

5 to −�L
5. The duality �� is

highly nonlocal. A little algebra shows that it has the follow-
ing action on the bonding and antibonding modes �a=1,2�:

La↑ → La↓
† , La↓ → − La↑

† . �59�

FIG. 9. �Color online� Phase diagram of the spin-charge model
at half filling with JH=−8U /3 �t=1�. The symmetry is SU�2�s

�SU�2�c�U�1�o.
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With those elements at hand, the general form of the low-
energy Hamiltonian can thus be readily deduced from �19�
by performing the replacement �L

5 →−�L
5. While this ap-

proach tells nothing about the �bare� value of the coupling
constants ga, it tells us that the structure of the RG Eq. �51�
is the same, and is thus sufficient to �i� enumerate the phases
of the model and �ii� relate each of those phases to the phases
of the generalized Hund model �1�.

From the preceding sections �t�=0�, we deduce that there
are eight possible insulating phases. The effect of the duality
�� is to transform the bosonic field � f into its dual with a

shift of �� /2:� f→
��

� f +�� /2. We then obtain the pinnings
of the bosonic fields from those found for t�=0 via the du-
ality ��; they are summarized in Table II. In the language of
Ref. 31, �� is an outer duality �it affects only one Majorana
fermion, or equivalently, it maps a bosonic field onto its
dual�: it results that it maps degenerate phases onto nonde-
generate ones and vice versa.

The pinnings of Table II allow us to identify each phase
with one of the already known phases of the generalized
two-leg Hubbard ladder.5,11,12 The SP phase becomes an
S-Mott phase with order parameter,

OS-Mott = �
i,l

cl↑,icl↓,i. �60�

The CDW phase becomes the D-Mott phase, which is the
same phase as RS, and is characterized by the order param-
eter,

OD-Mott = �
i

c1↑,ic2↓,i − c2↑,ic1↓,i. �61�

The ODW �respectively, SP�� phase give an S�-Mott �respec-
tively, D�-Mott� state which differs from the S-Mott �respec-
tively, D-Mott� only in the pinning of the charge bosonic
field �c �see Table II�.11 Such order parameters have the

slowest decaying correlation function when the system is
doped. The nondegenerate RS phase will become the twofold
degenerate CDW� phase with an interleg phase difference,76

OCDW-� = �
i,l�

�− 1�i�− 1�l+1cl�,i
† cl�,i. �62�

The HC phase becomes a p-density wave �PDW� phase
which is described by the condensation of the order
parameter,77

OPDW = �
i,l�

�− 1�i�− 1�l+1�cl�,i
† cl�,i+1 + H.c.� . �63�

The HO phase gives a staggered flux �SF� phase �or a DDW
phase� whose ground states display currents circulating
around a plaquette, with order parameter

OSF = i�
i,�

�c1�,i
† c2�,i + c2�,i

† c2�,i+1 + c2�,i+1
† c1�,i+1 + c1�,i+1

† c1�,i

− H.c.� . �64�

This phase spontaneously breaks time-reversal symmetry. Fi-
nally, the RT phase will become a f-density wave �FDW�.
This phase consists in currents flowing along the diagonals
of plaquettes:

OFDW = i�
i,�

�c2�,i+1
† c1�,i − c1�,i

† c2�,i+1 + c1�,i+1
† c2�,i

− c2�,i
† c1�,i+1� . �65�

It also breaks time-reversal symmetry.
As already emphasized, the emergent duality symmetry

�� provides only a correspondence between the set of
phases with t�=0 with those of t��0. By no means, it maps
a given model defined by �t�=0,U ,JH ,Jt� onto the model
�t��0,U ,JH ,Jt�. In this respect, it is necessary to use the
one-loop RG calculation to map out the phase diagram of the

TABLE II. Pattern of the bosonic fields pinning for t�=0 and t��0.

Phase 	�c� 	�s� 	� f� 	� f� 	�sf� 	�sf�

SP 0 0 0 0

CDW �� /2 0 0 0

ODW 0 0 �� /2 0

SP�
�� /2 0 �� /2 0

RS 0 0 0 0

HC �� /2 0 0 0

HO 0 0 �� /2 0

RT 0 �� /2 0 �� /2

S-Mott 0 0 �� /2 0

S�-Mott �� /2 0 �� /2 0

D-Mott 0 0 0 0

D�-Mott �� /2 0 0 0

CDW� 0 0 �� /2 0

PDW �� /2 0 �� /2 0

SF 0 0 0 0

FDW 0 �� /2 �� /2 �� /2
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generalized Hund chain with a transverse hopping. Using Eq.
�51� and the initial conditions for that model,

g1 = a0�− U +
JH

2
−

Jt

2
� ,

g2 = a0�−
3JH

8
−

Jt

2
� ,

g3 = a0�− U +
JH

4
+

Jt

2
� ,

g4 = g2,

g5 = a0�U +
3JH

4
−

Jt

2
� ,

g6 = a0�3U −
Jt

2
� ,

g7 = a0�U +
JH

4
−

Jt

2
� ,

g8 = g2,

g9 = a0�U +
Jt

2
� , �66�

we find the presence of the eight insulating phases. Figure 10
presents a section of the phase diagram for U=−0.005t
where the eight phases are revealed. Interestingly enough,
the generalized Hund chain model with a transverse hopping
turns out to be the minimal model for two-leg electronic
ladder models which contains the eight insulating phases
found within the low-energy approach.11,12 In particular, one
does not need to add further interactions �first neighbors den-
sity interactions, for instance� contrarily to Refs. 11 and 12.

IV. DMRG CALCULATIONS

We now carry out numerical calculations using DMRG in
order to investigate the various phase diagrams. For simplic-
ity, we will restrict ourselves to the t�=0 case for which we
can use a purely one-dimensional implementation of the
model. Moreover, for a system of finite size L, we can fix the
total number of particles N=2Qc=2�inc,i=2L, the z compo-
nent of the total spin Sz=�ins,i as well as the z component of
the total orbital operator Tz=�inf ,i �see Eq. �39�� so that the
states are labeled by the triplet �Qc ,Sz ,Tz�. Typically, we
keep up to 1600 states, which allow to have an error below
10−6, and we use OBCs.

As it has been revealed by the low-energy approach, there
are eight possible insulating phases, which are related by
duality transformations. In order to characterize them, we
can either compute local quantities �bond kinetic energy, lo-
cal density, etc.� to identify states that break a given symme-
try, or investigate the presence or absence of various edge
states to detect nondegenerate Mott phases. Thus, the three
possible Haldane phases that have been predicted �RT, HC,
and HO� can be characterized by looking for the presence of
edge states with quantum numbers �Qc ,Sz ,Tz�, respectively,
equal to �L ,1 ,0�, �L+1,0 ,0�, and �L ,0 ,1� �see details in
Appendix B�.

From these measurements, we can draw various cuts of
the phase diagram in the �U ,JH ,Jt� parameter space. In Fig.
11, we present our data for fixed U=−t. Seven �out of eight�
insulating phases are found and the overall topology nicely
agrees with the low-energy predictions shown in Fig. 2, al-
though those were obtained with a much weaker interaction
U=−0.005t. As another example, we consider a highly sym-
metric case, namely, the SZH model �see Sec. III C 3�, which
corresponds to the case JH=8U. We recall that the low-
energy phase diagram of this model is shown in Fig. 5. The
numerical phase diagram �Fig. 12� is in excellent agreement
not only for the overall topology but also for the location of
the phase boundaries.

Finally, we also did simulations for the spin-orbital model
obtained by fixing Jt=−3JH /4. In that case as well, we ob-
serve that the low-energy predictions �see Fig. 8� and our
numerical data �see Fig. 13� coincide very well.

FIG. 10. �Color online� The eight fully gapped phases of the
generalized Hund chain with a transverse hopping at half filling
�U=−0.005t�.
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FIG. 11. �Color online� Numerical phase diagram of the gener-
alized Hund model at half filling for U=−t. Notations are the same
as in Fig. 2.
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In brief, for all the cases we considered when t�=0, we
obtain an excellent agreement between the low-energy pre-
dictions �obtained for very weak couplings� and the numeri-
cal phase diagram �obtained at moderate couplings�. This is
an important result of our paper.

The case of a transverse hopping t��0 is much more
difficult to analyze with respect to the low-energy approach.
As discussed in Sec. III D, in the latter approach, there is an

emergent U�1�˜ symmetry in the orbital space which is not
present on the lattice. It means that we need to consider
long-size systems in the DMRG calculations in order to com-
pare with the low-energy predictions. A second difficulty
arises with respect to the numerical discrimination between
the S-Mott �respectively, D-Mott� phase and the S�-Mott �re-
spectively, D�-Mott� phase. A numerical analysis of relevant
string-order parameters is clearly called for to distinguish
them. To the best of our knowledge, we are not aware of any
numerical study which reports the existence of the
�S,D��-Mott phases in generalized two-leg electronic lad-
ders. We plan to investigate elsewhere the numerical phase
diagram of the generalized Hund model with a transverse
hopping.

V. CONCLUDING REMARKS

In summary, we have investigated the phase diagram of
the generalized Hund model �1� with global symmetry group
H=U�1�c�SU�2�s�U�1�o�Z2 at half filling by means of
complementary low-energy and DMRG techniques. The in-
terest of this model is manifold. First, it covers and unifies
several highly symmetric lattice models: the SO�5�-
symmetric model describing spin-3

2 cold fermions; another
�different� SO�5�-symmetric model introduced by Scalapino,
Zhang, and Hanke that unifies antiferromagnetism and
d-wave superconductivity; and two
SU�2��SU�2�-symmetric spin-orbital models. While its or-
bital U�1� symmetry can seem a little odd from the point of
view of applications to the description of Hubbard two-leg
ladders, we show that at weak coupling, it shares the same
continuous low-energy effective theory with the well known
Hubbard two-leg ladder with interchain hopping. Third, it is
directly relevant to the description of ytterbium 171 loaded
into an optical 1D trap. We are able to treat on an equal
footing all the phases appearing in those models coming
from different contexts. The rich phase diagram of the gen-
eralized Hund model has to be contrasted with the minimal
character and simplicity of this model, which only depends
on three microscopic couplings.

We briefly recall our main results: by means of a duality
approach, we predict that the phase diagram for half-filled
four-component fermions with global symmetry H=U�1�c
�SU�2�s�U�1�o�Z2 consists in eight Mott-insulating
phases. These phases fall into two different classes. A first
class consists of twofold degenerate fully gapped density
phases which spontaneously break a discrete symmetry
present on the lattice. The second class comprises four non-
degenerate Mott-insulating phases which are characterized
by nonlocal string order parameters: RS, RT, HC, and HO
phases. A one-loop RG calculation for model �1� reveals the
existence of seven phases out of the eight ones consistent
with the duality approach. The missing phase, which can be
found by adding further nearest-neighbor interactions, is an
alternating bond ordered phase �SP��. These results have
been confirmed numerically by means of a DMRG approach
for moderate couplings. In this respect, we found an excel-
lent agreement between the two complementary approaches.

Finally, we have connected our low-energy results to the
eight previously known insulating phases found in general-
ized two-leg ladders with a transverse hopping t� term.
When t��0, the U�1� orbital symmetry is lost on the lattice
but becomes an emergent symmetry at low energy. The du-
ality approach with global symmetry group H can then still
be applied in the presence of an interchain hopping t� term.
In this respect, we discovered a nonlocal duality which maps
the eight Mott-insulating phases for t�=0 onto the eight
phases previously known for t��0. The one-loop RG ap-
proach to the generalized Hund model with interchain hop-
ping predicts the stabilization of the eight Mott-insulating
phases. The latter model is thus the minimal model for two-
leg electronic ladders which displays the eight Mott-
insulating phases at weak coupling. We also discuss the fate
of this emergent U�1� orbital symmetry when going from the
weak-coupling to the strong-coupling regime. We show that
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FIG. 12. �Color online� Numerical phase diagram of the SZH
SO�5� model with the fine tuning JSZH=4�USZH+VSZH� at half fill-
ing. Notations are the same as in Fig. 5. Dashed lines indicate
models with higher symmetry �see Table I�.
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FIG. 13. �Color online� Numerical phase diagram of the spin-
orbital model �Jt=−3JH /4� at half filling. Notations are the same as
in Fig. 8. Dashed lines indicate models with higher symmetry �see
Table I�.
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the weak- and strong-coupling phases coincide in the vicinity
of the orbital symmetric line but our analysis suggests a
breakdown of this picture away from this special line.

We hope that future experiments on 171Yb or alkaline-
earth cold fermions atoms loaded into a 1D optical lattice
will reveal some of the exotic insulating phases found in our
study.
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APPENDIX A: CONTINUUM LIMIT

In this appendix, we present the technical details of the
continuum limit of the generalized Hund model �1�. The
starting point of the low-energy approach is the linearization
around the Fermi points �kF of the dispersion relation for
noninteracting fermions. Four left- and right-moving Dirac
fermions Ll� ,Rl� �l=1,2 and �= ↑ ,↓� are then introduced to
describe the lattice fermions cl�,i in the continuum limit �see
Eq. �16��.

The next step of the approach is the introduction of four
chiral bosonic fields �l�R,L through the Abelian bosonization
of Dirac fermions,3,4

Rl� =
�l�

�2�a0

exp�i�4��l�R� ,

Ll� =
�l�

�2�a0

exp�− i�4��l�L� , �A1�

where the bosonic fields satisfy the following commutation
relation:

��l�R,�l���L� =
i

4
�ll�����. �A2�

The presence of the Klein factors �l� ensures the correct
anticommutation of the fermionic operators. The Klein fac-
tors satisfy the anticommutation rule ��l� ,�l����=2�ll�����
and they are constrained so that �2=1, with �
=�1↑�1↓�2↑�2↓. Hereafter, we will work within the �=1 sec-
tor. It will be convenient to work with a pair of dual non-
chiral bosonic fields: �l�=�l�L+�l�R and �l�=�l�L−�l�R.
Last, let us introduce a SU�4� basis that will allow us to
separate charge and non-Abelian �spin� degrees of freedom,

�1↑ =
1

2
��c + �s + � f + �sf� ,

�1↓ =
1

2
��c − �s + � f − �sf� ,

�2↑ =
1

2
��c + �s − � f − �sf� ,

�2↓ =
1

2
��c − �s − � f + �sf� . �A3�

In sharp contrast with incommensurate fillings, there is no
spin charge separation at half filling. Indeed, in this special
case, chiral umklapp processes couple those degrees of free-
dom. Consequently, the resulting low-energy Hamiltonian
corresponding to model �1� takes the form: H=Hc+Hs
+Humklapp.

The charge degrees of freedom are described by

Hc =
vF

2
���x�c�2 + ��x�c�2� + �vc��x�c�2, �A4�

where vF=a0t is the Fermi velocity.
The part of the bosonized Hamiltonian corresponding to

the nonabelian degrees of freedom is

Hs =
vF

2 �
a=s,f ,sf

���x�a�2 + ��x�a�2� + �
a=s,f ,sf

�va��x�a�2

+ A1�CsfR
�16� + CsfL

�16�� + A2�Cs
�4� + Cf

�4��C̃sf
�4�

+ A3Cs
�4�Cf

�4� + A4Cs
�4�Csf

�4� + A5Cf
�4�Csf

�4�, �A5�

where we used the compact notation: Ca
�=cos���a�, and

C̃a
�=cos���a�. The bare parameters are

�vc =
a0

�
�3U

2
−

Jt

4
� ,

�vs = −
a0

�
�U

2
−

JH

4
+

Jt

4
� ,

�v f = −
a0

�
�U

2
−

3Jt

4
� ,

�vsf = −
a0

�
�U

2
+

JH

4
+

Jt

4
� ,

A1 = −
JHa0

4�2 ,

A2 = −
JHa0

2�2 ,

A3 =
a0

�2�U −
JH

4
−

Jt

2
� ,

A4 =
a0

�2�U +
Jt

2
� ,

A5 =
a0

�2�U +
JH

4
−

Jt

2
� . �A6�

Finally, the umklapp part of the Hamiltonian reads
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Humklapp = A6Cc
�4�Cs

�4� + A7Cc
�4�Cf

�4� + A8Cc
�4�Csf

�4�

+ A9Cc
�4�C̃sf

�4� �A7�

with

A6 =
a0

�2�− U −
JH

4
+

Jt

2
� ,

A7 =
a0

�2�− U −
Jt

2
� ,

A8 =
a0

�2�− U +
JH

4
+

Jt

2
� ,

A9 = A2 = −
JHa0

2�2 . �A8�

In the end, a refermionization procedure will allow us to
make the exact U�1�c�SU�2�s�U�1�o�Z2 continuous sym-
metry explicit in the effective Hamiltonian. For this purpose,
we introduce eight left- and right-moving Majorana fermions
through

�L
2 + i�L

1 =
	1

��a0

exp�− i�4��sL� ,

�R
2 + i�R

1 =
	1

��a0

exp�i�4��sR� ,

�L
4 − i�L

5 =
	2

��a0

exp�− i�4�� fL� ,

�R
4 − i�R

5 =
	2

��a0

exp�i�4�� fR� ,

�L
6 + i�L

3 =
	3

��a0

exp�− i�4��sfL� ,

�R
6 + i�R

3 =
	3

��a0

exp�i�4��sfR� ,

�L
8 + i�L

7 =
	4

��a0

exp�− i�4��cL� ,

�R
8 + i�R

7 =
	4

��a0

exp�i�4��cR� , �A9�

where 	1,2,3,4 are again Klein factors which ensure the ad-
equate anticommutation rules for the fermions. Using this
correspondence rules, Eqs. �A4�, �A5�, and �A7� can be ex-
pressed in terms of these eight Majorana fermions. We thus
finally obtain the low-energy effective theory for the gener-
alized Hund model �1� at half filling,

H = −
ivc

2 �
a=7

8

��R
a�x�R

a − �L
a�x�L

a� −
ivs

2 �
a=1

3

��R
a�x�R

a − �L
a�x�L

a�

−
ivt

2 �
a=4

5

��R
a�x�R

a − �L
a�x�L

a� −
iv0

2
��R

6�x�R
6 − �L

6�x�L
6�

+
g1

2
��

a=1

3

�R
a�L

a�2

+ g2��
a=1

3

�R
a�L

a���
a=4

5

�R
a�L

a�
+ �R

6�L
6
g3�

a=1

3

�R
a�L

a + g4�
a=4

5

�R
a�L

a� +
g5

2
��

a=4

5

�R
a�L

a�2

+
g6

2
��

a=7

8

�R
a�L

a�2

+ ��R
7�L

7 + �R
8�L

8� � 
g7�
a=1

3

�R
a�L

a

+ g8�
a=4

5

�R
a�L

a + g9�R
6�L

6� , �A10�

where the different velocities and couplings are given by

vc = vF +
a0

�
�3

2
U −

Jt

4
� ,

vs = vF −
a0

2�
�U −

JH

2
+

Jt

2
� ,

vt = vF −
a0

2�
�U −

3Jt

2
� ,

v0 = vF −
a0

2�
�U +

3JH

2
+

Jt

2
� ,

g1 = − a0�U −
JH

2
+

Jt

2
� ,

g2 = − a0�U −
JH

4
−

Jt

2
� ,

g3 = − a0�U +
JH

2
+

Jt

2
� ,

g4 = − a0�U +
3JH

4
−

Jt

2
� ,

g5 = − a0�U −
3Jt

2
� ,

g6 = a0�3U −
Jt

2
� ,

g7 = a0�U +
JH

4
−

Jt

2
� ,

g8 = a0�U +
Jt

2
� ,
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g9 = a0�U −
3JH

4
−

Jt

2
� . �A11�

APPENDIX B: EDGE STATES

In this appendix, we investigate the possible existence of
edge states in the nondegenerate gapful phases Haldane
charge, orbital and spin, when open-boundary conditions are
used. The nature of the edge states will reinforce our char-
acterization of, respectively, the HC, HO, and RT phases as
being pseudospin-1 chains in, respectively, the charge, or-
bital, and spin degrees of freedom. Since the occurrence of
edge states in the RT phase has already been discussed at
length in Ref. 66, we restrict our attention in the following to
the HC and HO phases.

1. Open-boundary formalism

The OBC are taken into account by introducing two fic-
titious sites 0 and N+1 in Eq. �1� and by imposing vanishing
boundary conditions on the fermion operators:
c0=cN+1=0.78–80 The resulting boundary conditions on the
Dirac fermionic fields of Eq. �16� are thus

Ll��0� = − Rl��0� ,

Ll��x = L� = − �− 1�L/a0Rl��x = L� , �B1�

with L= �N+1�a0 and l=1,2, �= ↑ ,↓. The left- and right-
moving Dirac fermions are no longer independent due to the
presence of these open boundaries. Using the bosonization
formula �A1�, we deduce the boundary conditions on the
chiral bosonic fields,

�l�L�0� = − �l�R�0� +
��

2
+ ��pl�,

�l�L�x = L� = − �l�R�x = L� +
��

2
� L

a0
− 1� + ��ql�,

�B2�

where pl� and ql� are integers. The total bosonic field �l�
with internal degrees of freedom l� thus obeys Dirichlet
boundary conditions,

�l��0� =
��

2
+ ��pl�,

�l��x = L� =
��

2
� L

a0
− 1� + ��ql�. �B3�

The next step of the approach is to introduce the mode de-
composition of the bosonic field �l� compatible with these
boundary conditions,

�l��x,t� =
��

2
+

x

L

��

2
� L

a0
− 2� + �̃0l��

+ �
n=1



sin�n�x/L�

�n�
�anl�e−in�vFt/L + H.c.� , �B4�

where �̃0l� is the zero-mode operator with spectrum ��ql�
and anl� is the boson annihilation operator obeying:
�anl� ,aml���

† �=�n,m�l�,l���. The mode decomposition of the
dual field �l� can then be obtained from the property:
�t�l�=vF�x�l�,

�l��x,t� = �̃0l� +
vFt

L

��

2
� L

a0
− 2� + �̃0l��

+ i�
n=1



cos�n�x/L�

�n�
�anl�e−in�vFt/L − H.c.�

�B5�

with ��̃0l� ,�̃0l����= i�l�,l���. In particular, �l� and �l�

=�x�l� satisfy the equal-time canonical commutation rela-
tion for bosons: ��l��t ,x� ,�l����t ,y��= i�l�,l����L�x−y�,
�L�x� being the delta function at finite size: �L�x�
=�nein�x/L /2L. Using the definitions �l�R,L= ��l���l�� /2,
the mode decomposition of the chiral bosonic fields �l�R,L
can then be deduced from Eqs. �B4� and �B5�. One can then
show that these chiral fields satisfy the following commuta-
tion relations when L�a0:

��l�R,L�x�,�l���R,L�y�� = �
i

4
�l�,l��� sgn�x − y� ,

��l�R�x�,�l���L�y�� = −
i

4
�l�,l��� 0 � x,y � L , �B6�

sgn�x� being the sign function. At this point, one should note
a technical subtlety which will play its role in the investiga-
tion of the possible edge states of the Haldane phases. When
considering OBC, the sign of the commutator between
��l�R ,�l���L� is the opposite of the bulk one �Eq. �A2��. The
latter comes from the identity often used in the bosonization
approach,3

�l�R,L�x� =
1

2
�l��x� � �
−


x

dy�l��y�� , �B7�

which does not take properly into account the boundary con-
ditions on the fields. This subtlety has no effect on the deri-
vation of the low-energy Hamiltonian �19� which is still
valid in presence of OBC as it can be easily shown. How-
ever, it will be important for the discussion of edge states as
first observed in Ref. 66 for the determination of boundary
excitations of the semi-infinite two-leg spin ladder.

With this formalism at hands, we are now in position to
investigate the possible edge states in the generalized Hund
model �1� with OBC. To simplify the discussion, we will
consider a semi-infinite geometry where the OBC is located
at the i=0 site and L→+
. The low-energy effective Hamil-
tonian density is still given by Eq. �19�, but now we see,
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using the bosonic boundary conditions �Eq. �B2��, the
change in basis �Eq. �A3��, and the refermionization �Eq.
�A9��, that the eight Majorana fermions �R,L

A �A=1, . . . ,8�
must verify the following boundary conditions,

�L
A�0� = �R

A�0� . �B8�

2. Edge states in the Haldane charge phase

Let us set our investigation on the symmetry line JH=
−8U /3 where the charge degrees of freedom display an ex-
tended SU�2� symmetry and form the pseudospin-1 in
charge. For strong attractive U, we expect that the spin and
orbital gaps will be larger than the charge gap. This is con-
firmed numerically by DMRG calculations, for instance, for
U / t=−3 and Jt=0, the spin and orbital gaps are close respec-
tively to 6t and 5t while the charge gap is roughly 0.1t.
Within this hypothesis, we can safely integrate out spin and
orbital degrees of freedom of model �19�. For simplicity, let
us choose to work on the line Jt=JH /4, where the spin and
orbital degrees of freedom are unified. Keeping only the rel-
evant terms and again neglecting velocity anisotropy, the re-
sulting effective Hamiltonian then reads

H = −
ivc

2 �
a=6

8 �
0




dx��R
a�x�R

a − �L
a�x�L

a� − imc�
0




dx�
a=6

8

�R
a�L

a

�B9�

with the mass mc given by �g7=g3 on the line JH=−8U /3�,

mc = ig7�
a=1

5

	�R
a�L

a� . �B10�

Model �B9� is the sum of three decoupled semi-infinite
free massive Majorana fermion models. Hence, let us now
consider a single Majorana fermion �R,L model,

Hm = −
iv
2
�

0




dx��R�x�R − �L�x�L� − im�
0




dx�R�L

�B11�

with boundary condition: �L�0�=�R�0�. Model �B11� is qua-
dratic with dispersion relation �k=�v2k2+m2 and with the
fermionic decomposition66

�R�x,t� =
1

�2L
�
k
0

��k�cos�kx + �k� + i sin�kx��e−i�kt + H.c.�

+�m

v
��m�e−mx/v	 ,

�L�x,t� =
1

�2L
�
k
0

��k�cos�kx + �k� − i sin�kx��e−i�kt + H.c.�

+�m

v
��m�e−mx/v	 , �B12�

where �k is fermion annihilation operator with wave vector k,
� is the step function, and 	 is a zero-mode real fermion

normalized according to 	2= 1
2 . In Eq. �B12�, �k is defined by

exp�i�k� =
vk + im

�k
. �B13�

The key point of Eq. �B12� is the existence of an exponen-
tially localized Majorana state with zero energy inside the
gap �midgap state� for a positive mass m. In contrast, for
negative m, such a zero-mode contribution does not occur
since it is not a normalizable solution.

The presence of edge states for the HC phase thus de-
pends on the sign of the mass mc. Using definition �A9� and
commutator �B6�, we find

mc = −
g7

�a0
�Cs

�4� + Cf
�4� +

1

2
�Csf

�4� + C̃sf
�4��� . �B14�

In the HC phase, we have 	�s�= 	� f�= 	�sf�=0 �see Table
II� so that mc=−5g7 /2�. Hence, since g7=a0U, the mass
mc
0, which signals the emergence of three localized Ma-
jorana modes 	a�a=6,7 ,8� from the mode decomposition
�B12�. Moreover, three local Majorana fermion modes are
known to define to a local pseudospin-1

2 operator Ja thanks
to the identity81

Ja = −
i

2
�abc	5+b	5+c, �B15�

that is a consequence of the anticommutation relations
�	a ,	b�=�ab. We thus conclude on the existence, in the HC
phase, of a pseudospin-1

2 edge state at the boundary which
can be viewed as a holon edge state.

One recognizes that the pseudospin projection along J1

=−i	7	8 is proportional to the total charge generating U�1�c:
in the continuum limit, within the convention �A9�, one has66

Qc= 1
2�ini→−i�dx��R

7�R
8 +�L

7�L
8�=J1−2i�k
0��k

7�k
8†−�k

8�k
7†�,

showing that the zero-mode contributes the total charge. In a
finite-size system of size L with two boundaries, the edge
states come into pairs, which organize into a pseudospin sin-
glet and a pseudospin triplet. Edge states at the two end of
the chain interact, leading to a singlet/triplet splitting that
goes to zero in the thermodynamical limit. It results that one
observes a midgap state with quantum numbers �Qc ,Sz ,Tz�
= �L�1,0 ,0�.

3. Edge states in the Haldane orbital phase

Let us now sit on the symmetry line Jt=−3JH /4 where it
is the orbital degrees of freedom that display an extended
SU�2� symmetry and form a pseudospin 1. For the sake of
simplicity, let us choose to look at line JH=8U when charge
and spin degrees of freedom are unified into an SO�5� sym-
metry. For repulsive U, we expect that the charge and spin
gap will be higher than the orbital gap �which is confirmed
numerically by DMRG simulations, for instance, for U / t
=1: the charge and spin gaps are both equal to 6.4t while the
orbital gap is 0.08t� so that we can safely integrate out the
corresponding degrees of freedom. The resulting leading ef-
fective Hamiltonian is �neglecting velocity anisotropy�,
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H = −
ivt

2 �
a=4

6 �
0




dx��R
a�x�R

a − �L
a�x�L

a� − imo�
0




dx�
a=4

6

�R
a�L

a

�B16�

with the mass mo given by

mo = ig8�
a=1

5

	�R
a�L

a� . �B17�

The latter mass can be expressed in terms of the ground-
state expectation value of the bosonic fields for the charge
and spin degrees of freedom,

mo = −
g8

�a0
�Cc

�4� + Cs
�4� +

1

2
�Csf

�4� + C̃sf
�4��� �B18�

so that mc=−5g8 /2� in the HO phase �see Table II�. As on
the considered line, g8=−2a0U, the mass mo
0. We thus
conclude on the existence of three localized Majorana modes
which form a pseudospin-1

2 �orbital� edge state at the bound-
ary in the HO phase.

Repeating the same argument as in the HC phase leads to
the expectation—in a finite geometry with size L and two
OBC—of a midgap state with quantum numbers
�Qc ,Sz ,Tz�= �L ,0 , �1�.

APPENDIX C: STRONG COUPLING AROUND THE
ORBITAL LINE

In this appendix, we give a description of the effect of an
interchain hopping t� in the strong-coupling regime. We will
first show that close to the orbital symmetric line �Jt=
−3JH /4�, a low-energy effective continuous theory can be
derived and trivially solved, allowing for the identification of
the phases and the phase transitions. Then, we will show that

a U�1�˜ symmetry emerges at low energy, similarly to what is
known at weak coupling �see Sec. III D�.

1. Continuous theory

The effect of the interleg hopping in the strong-coupling
regime is in general a complicated problem since the hop-
ping term breaks the U�1� orbital symmetry, this process will
induce transitions among on-site states �depicted in Fig. 1�
that belong to different symmetry multiplets.

However, as noticed in Sec. II B, for a special fine tuning
of the couplings Jt=−3JH /4 the lattice model enjoys a SU�2�
symmetry in the orbital sector. Close to this line, the orbital
symmetric line, a strong coupling expansion can be per-
formed: orbital degrees of freedom are the only low-energy
modes, and an effective Hamiltonian for the orbital operators
Ta can be derived, that governs their dynamics. Noticing that
the interchain hoping term can be expressed in terms of or-
bital degrees of freedom, t���,i�c1�,i

† c2�,i+c2�,i
† c1�,i�

=2t��iTi
x, one remarks that the effect of t� close to the

SU�2�o line amounts to the analog of a transverse magnetic
field in direction x for orbital degrees of freedom, resulting in
the following effective Hamiltonian:

Heff = Jo�
i

T� i · T� i+1 + Do�
i

�Ti
z�2 + ho�

i

Ti
x, �C1�

where Jo=16t2 / �9JH+8U�, Do=Jt+3JH /4, and ho=2t�. Or-
bital operators Ti being spin-1 operators, close to the orbital
line the problem is thus equivalent to a spin-1 Heisenberg
model with single-ion anisotropy under a transverse mag-
netic field.

In the absence of a magnetic field ho, it is known that the
spin-1 Heisenberg chain with a single-ion anisotropy can be
described in terms of continuous degrees of freedom,
namely, three Majorana fermions82 �to be consistent with the
main text, we call them �a, a=4,5 ,6�, that are related as
follows to the uniform components of the spin operators:
Ti

a→Ta�x�= i �abc

2 ��L
3+b�L

3+c+�R
3+b�R

3+c�+¯, where the dots indi-
cate oscillating terms. The low-energy spectrum of the theory
is well described, at lowest order, by a theory of three free
massive fermions, corresponding to three branches of mag-
nons. Now the magnetic field also yields a term that is qua-
dratic in fermions. Neglecting velocity anisotropies, we thus
end up with the following quadratic Hamiltonian:

Hcont = −
ivo

2 �
a=4

6

��R
a�x�R

a − �L
a�x�L

a� + i�
a

ma�R
a�L

a + iho��L
5�L

6

+ �R
5�R

6� . �C2�

The masses ma are phenomenological parameters. When
Do= t�=0, one has a single mass scale m�Jo �the gap of the
spin-1 Heisenberg chain�, and in the general case one can
parametrize them as m4=m5=m−� and m6=m+�, with �
�Do at first order in Do /Jo. One immediately sees that the
fermion �4 decouples. Fourier transforming the remaining
fermions, �L�R�

a �k�=�dxe−ikx�L�R�
a �x�, and introducing �k

= ��L
5�k� ,�R

5�k� ,�L
6�k� ,�R

6�k�� the Hamiltonian reads
�k
0�−kUk�k. The one-particle spectrum is obtained from
the eigenvalues of the matrix,

Uk =�
vok im5 iho 0

− im5 − vok 0 iho

− iho 0 vok im6

0 − iho − im6 − vok
� . �C3�

This yields two branches with energies: ���k�
=��0

2�k�+h0
2+�2�2�ho

2�0
2�k�+m2�2, where �0�k� is the spec-

trum at Do= t�=0: �0�k�=�vo
2k2+m2.

We can now identify several phase transition lines, for
which the spectrum is massless, i.e., admits modes of arbi-
trary low energy. A first Ising transition line is readily ob-
tained when �=m: then m4=0.

Other critical lines are found by solving the equation
�−�k��=0 �the branch �+�k� is always gapful�: one finds that
for ho

2+�2=m2, this equation has a solution k�=0, and for
�=0 and 
ho

m, two solutions k�= � 
k�
�0, with vo

2k�2

=ho
2−m2. On the former critical line, the massless degrees of

freedom consist in a single Majorana mode and one has a
central charge c= 1

2 . The latter critical line has central charge
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c=1, and corresponds to the well-known commensurate/
incommensurate transition of the isotropic spin-1 Heisenberg
chain under a magnetic field.

To identify the phases of the ladder lying on both sides of
those lines �see Fig. 14�, one notices that by continuity with
what happens at t�=0, the phase with m4�0 �obtained at
large enough �� must be a RS phase �which coincides with
the D-Mott phase�. The phase at m4
0 is readily identified
by means of the duality transformation �L

4 →−�L
4 that

amounts to � f ↔�� /2−� f �see Eq. �A9��: it is a SF phase.
By continuity with t�=0, the pocket �2+ho

2�m2 corre-
sponds to a HO phase. The last phase to be mapped out is the
one lying at ho

2+�2
m2 and ��0: it is adiabatically con-
nected to the ODW phase that one has obtained at t�=0 and
Do�0 so that it is an ODW or CDW� phase, as we named it
in the context of the ladder with an interchain hopping.

2. Effective low-energy theory

We now make a qualitative connection with the weak-
coupling analysis of Sec. III D, which crucially relies on the

existence of an extended U�1�˜ symmetry in the orbital sector,
and show that this symmetry is also emergent at low energy
in the strong-coupling regime. In the strong-coupling limit,
in the vicinity of the orbital symmetric line, the interchain
hopping t� amounts to a magnetic field in orbital space, that
will eventually drive the system to a incommensurate state:
when �=0, as soon as ho
m the Fermi points shift to kF

= �
2a0

+k�. Now if the “magnetic field” is large enough, i.e., if
k� is large enough, this leaves the space for a low-energy

description built on fields expanded around the new Fermi
points. In this effective low-energy description, 4kF umklapp
terms have no effect as being strongly oscillating. This re-
mains true if one departs from the orbital symmetric line �
=0: in this case, the spectrum of the low-energy band, �−�k�,
develops a gap but the incommensuration is still present in
the form of a minimum �which becomes infinitely deep in

the limit ho�m� in �−�k� at a value vokmin=�ho
2−m2�1+ �2

ho
2 �.

This happens �see Fig. 14� when � is small enough, 
�
��c

=ho
� ho

2

m2 −1. But is there an associated emergent symmetry,
as it was the case in the weak-coupling limit?

To investigate this, one has to enter into further details.
Denoting by Ak the unitary matrix diagonalizing Uk, with
Ak

†UkAk=diag��−�k� ,−�−�k� ,�+�k� ,−�+�k��, and introducing

�̃k=Ak
−1�k= ��−�k� ,�+�k��, one can represent in the eigen-

mode basis the orbital U�1� generators along x, Ttot,�
x

= i�dx��L
5�L

6 ��R
5�R

6�=�k
0�̃k
†Tk

����̃k. Ttot,�
x are the total No-

ether charge and current. The Hermitian matrix elements
Tk,��

��� are too cumbersome, and not particularly enlightening,
to appear here, but the matrix Tk

�−� has a remarkable block
structure,

Tk
�−� = � t1�k�I t2�k��z + t3�k��x

t2�k��z + t3�k��x − t1�k�I � . �C4�

Let us now introduce two quantities characterizing the
spectrum: the absolute minimum E0 of the lower band, and
the gap � from the minimum of the lower band E0 to the
upper band �see insets of Fig. 14�. Now, if the two bands
�+�k� and �−�k� are well separated, i.e., if ��E0, it makes
sense to describe the theory at low energies in terms of the
two Majorana fermions �−�k�. Introducing the projector P−

that projects on this subspace, the effective Hamiltonian
Heff

− = P−HP−=�k�−�k��−
†�k��z�−�k� commutes with

P−Ttot,−
x P−. Thus, the total orbital current along x is asymp-

totically conserved in the limit of large � /E0, and the low-

energy theory is effectively U�1�˜ symmetric. For a physical

quantity computed in the low-energy, U�1�˜ -symmetric
theory, violation of this emergent symmetry by processes
connecting the two bands will result in corrections of order
�E0 /��2.

Now, the parameters E0 and � bear qualitatively distinct
forms in the commensurate and incommensurate regions. For
simplicity, we restrict our attention to the case ho
m. In the
commensurate region, one has

E0 = ��2 + ho
2 − m ,

� = 2m �C5�

so that in general E0 /� is not small.
In contrast, in the incommensurate region, one has

E0 = ��1 −
m2

ho
2  O��� ,

m

E0
+ε

E0

k

ε

ε−∆

+ε

ε−

kmin

RS=D−Mott

π
in
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m
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FIG. 14. �Color online� Phase diagram of the generalized Hund
ladder with interchain hopping. The coordinate on the horizontal
axis is proportional to t� whereas that on the vertical axis is the
distance Do to the SU�2� orbital symmetric model. Bold �blue�
dashed lines indicate c= 1

2 critical lines, while the bold �red� one is
a c=1 critical line. See the main text for the definition of the phases.
The dotted line, with equation m2�2=ho

2�ho
2−m2�, indicates the lo-

cation where incommensuration appears: on the right of this curve,
the lower band �− displays a minimum for a wave vector kmin. The
two insets display the typical spectrum in the commensurate and
incommensurate regions, respectively.
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� = �4ho
2 + E0

2 − E0 �C6�

so that the symmetry U�1�˜ is violated by terms of order

�� /2ho�2: the symmetry U�1�˜ is asymptotically exact in the
limit ho��. One thus concludes that close to the line Jt=
−3JH /4, the situation at large coupling coincides with that at
small coupling. One can thus reasonably infer that this sym-

metry is emergent in all regimes at least close to the line Jt

=−3JH /4. Our strong-coupling analysis suggests that the

emergent U�1�˜ is broken when moving far away from the
orbital symmetric line; however, the question of the exis-
tence of such an emergent symmetry in the strong-coupling
regime of the generic electronic two-leg ladder goes far be-
yond the scope of this paper.
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