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When a van Hove singularity is located in the vicinity of the Fermi level, the electronic scattering rate
acquires a nonanalytic contribution. This invalidates basic assumptions of Fermi liquid theory and within
treatments based on perturbation theory leads to a non-Fermi liquid self-energy and transport properties. Such
anomalies are shown to also occur in the strongly correlated metallic state within dynamical mean-field theory.
We consider the Hubbard model on a two-dimensional square lattice with nearest- and next-nearest-neighbor
hoppings within the single-site dynamical mean-field theory. At temperatures on the order of the low-energy
scale T0 an unusual maximum emerges in the imaginary part of the self-energy which is renormalized toward
the Fermi level for finite doping. At zero temperature this double-well structure is suppressed but an anomalous
energy dependence of the self-energy remains. For the frustrated Hubbard model on the square lattice with
next-nearest-neighbor hopping, the presence of the van Hove singularity changes the asymptotic low-
temperature behavior of the resistivity from a Fermi liquid to non-Fermi liquid dependency as function of
doping. The results of this work are discussed regarding their relevance for high-temperature cuprate
superconductors.
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I. INTRODUCTION

The question whether interacting fermions form a Landau
Fermi liquid state at low temperatures or rather transform
into something commonly referred to as singular or non-
Fermi liquid is a very fundamental one. A theoretical de-
scription requires at least a qualitative understanding of the
low-temperature phase in order to address the relevant de-
grees of freedom in that phase. But for strongly interacting
electronic systems this information is usually lacking and the
low-energy degrees of freedom might be very different from
free electrons. However, the Fermi liquid picture is often
appropriate at low temperatures and energies. Reasons for
this can be found in the stability of the Fermi liquid fixed
point of the renormalization-group analysis1 or phase-space
arguments.2 In both approaches, the analyticity of the scat-
tering vertices is crucial for the arguments.

In situations, where the Fermi liquid description fails, the
origin for this is linked to low dimensionality of the system,
long-range interactions, nested Fermi surfaces, or the prox-
imity to a quantum critical point, just to name a few �see,
e.g., Refs. 3–6�. The quasiparticle concept might still be
valid but the scattering rate is strongly enhanced and shows
an unusual, i.e., nonquadratic, temperature, and frequency
dependence. Alternatively the quasiparticle concept may also
break down completely.

In this work we will focus on the single-band Hubbard
model which is a minimal model for strongly correlated elec-
tron systems, and obtain a nonperturbative approximative so-
lution by means of the dynamical mean-field theory
�DMFT�.7,8 Within DMFT, where only local correlations are
included, the generic low-temperature state of the metallic
Hubbard model is a Fermi liquid.8–13 This is expected, since
the low-temperature phase of the spin-1

2 single-impurity
Anderson model—the model onto which the Hubbard model
is mapped within DMFT—is a local Fermi liquid under the
assumption of a “well-behaved” medium.14 The Fermi liquid

reveals itself via a low-energy many-body band structure
forming around the Fermi level at low temperatures.15,16 Due
to the neglect of momentum-dependent correlations in
DMFT the heavy quasiparticles possess the noninteracting
Fermi surface.9 A characteristic low-energy scale T0 is asso-
ciated with this lattice version of the Kondo effect and marks
the temperature scale for local-moment screening and the
emergence of coherent quasiparticles.

On the other hand it is known from perturbation theory
and renormalization-group treatments, that a van Hove sin-
gularity of the noninteracting density of states �DOS� in the
vicinity of the Fermi level leads to a marginal17 or non-Fermi
liquid form of the self-energy.18–31 This should be contrasted
to nested Fermi liquids,3 where due to the nesting property of
the Fermi surface the phase space volume for low-energy
scattering is also strongly enhanced and unusual low-energy
properties emerge as well.3,32

Van Hove singularities are a consequence of maxima or
saddle points in the dispersion relation tk�. For periodic en-
ergy bands in a crystal a certain number of these van Hove
singularities must occur on topological grounds �see, e.g.,
Ref. 33�. For example, all of the cubic lattices have notice-
able van Hove singularities in space dimensions D�3, typi-
cally logarithmic divergences or square-root cusps.

Anomalous low-energy behavior can already be antici-
pated by recognizing, that the usual arguments of micro-
scopic Fermi liquid theory break down if a maximum or
saddle point of the dispersion relation tk� is found at the Fermi
level. Then, tk� cannot be approximated by a linear dispersion,

i.e., tk��”
kF

m� ��k� �, with �k� =k� −k�F and k�F the Fermi wave vec-
tor. Around these points a quadratic �maximum� or hyper-
bolic �saddle-point� functional dependence tk� ��k�

2 ��k�
2

results, where k� and k� are two linear independent directions
in momentum space. The arguments leading to a quadratic
Fermi liquid energy and temperature dependence of the scat-
tering rate, i.e., Im �U��− i0+���2+�2T2, are thus not ap-
plicable. Instead, the phase-space volume for scattering is
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strongly enhanced and anomalous T and � dependencies
may result. If the singularity occurs in the vicinity of the
Fermi level, strong modifications of the low-energy and tem-
perature properties are still expected due to a pinning
effect.26,34–38

In the present work we show that the non-Fermi liquid
signatures which were encountered in previous studies18–31

of the self-energy and transport properties can also occur in
the paramagnetic phase of a strongly correlated metal within
DMFT. We use the two-dimensional �2D� square lattice with
nearest- and next-nearest-neighbor hoppings, t and t�,
respectively. For −0.5� t� / t�0.5 the dispersion relation tk�
has saddles at the X points in the Brillouin zone
�k�X= ��0, ��� , ��� ,0���. This leads to a logarithmic diver-
gence in the noninteracting DOS, which is located at the
Fermi level �=0 for t�=0 and moved to finite energies for
t��0.

The resulting anomalies consist of an unusual maximum
in the imaginary part of the self-energy Im �U��− i0+� in the
vicinity of the Fermi level at low but finite temperatures. The
concept of quasiparticles remains valid but they are strongly
scattered at the flat parts of the dispersion relation and the
Fermi liquid formation is disturbed. The anomalous double-
well structure persists over a range of doping and next-
nearest-neighbor hopping t�. At zero temperature and for
half-filled square lattice the double-well structure is removed
and the self-energy vanishes at the Fermi level. Even though
the self-energy exhibits a non-Fermi liquid energy depen-
dence, the quasiparticle weight is still finite. The pinning of
the van Hove singularity to the Fermi level, which has pre-
viously been found,18,26,34–38 is explicitly observed in the cor-
related metal.

Qualitatively similar non-Fermi liquid signatures are also
observed in more advanced theories which include nonlocal
correlations.39–45 These features are usually attributed to the
presence of strong nonlocal antiferromagnetic correlations.
However, in the present approach nonlocal correlations are
not included and we argue that an interpretation exclusively
in terms of nonlocal correlations is too simplified.

The paper is organized as follows. In Sec. II we shortly
present the Hubbard Hamiltonian and the basic equations of
DMFT. We elucidate the role of the nonanalyticities in the
noninteracting DOS by means of a simplified model DOS for
which analytical insights are obtained in Sec. III. Self-
consistent DMFT calculations for singular and nonsingular
model DOS reveal the nonanalyticity to be the cause for the
observed non-Fermi liquid signatures. In Sec. IV we present
finite- and zero-temperature calculations for the spectral
function and self-energy for a square lattice without next-
nearest-neighbor hopping t�=0. The anomalies are shown to
occur at temperatures on the order of the low-energy scale T0
and decrease with temperature. At T=0 a nonquadratic en-
ergy dependence in the imaginary part of the self-energy
remains. The case of the square lattice with next-nearest-
neighbor hopping t�=−0.2t is discussed in Sec. V. In addition
to the spectral function and the self-energy, we also study the
temperature dependence of the zero-frequency quasiparticle
scattering rate and the resistivity. We discuss in Sec. VI the
relevance of the present findings to the cuprate supercon-
ductors before we conclude the paper.

II. MODEL AND METHOD

We study the single-band Hubbard model

Ĥ = 	
ij,	

tijĉi	
† ĉj	 + 	

i	


ĉi	
† ĉi	 + U	

i

n̂i↑n̂i↓, �1�

where the operator ĉi	�ĉi	
† � annihilates �creates� an electron

in a localized Wannier orbital at lattice site i with spin 	,
n̂i	= ĉi	

† ĉi	 represents the number operator for electrons, 
 is
the local ionic level position at each site, and U is the local
matrix element of the Coulomb repulsion.

In the following an external magnetic field is not included
and all spin-up and spin-down quantities are equal. The spin
label of Green’s function and self-energies will be sup-
pressed. We focus on the paramagnetic phase of the model
and exclude possible phase transitions to ordered phases
such as superconductivity or magnetism.

All information on the lattice is encoded in the one-
particle hopping amplitude tij. Its Fourier transform gives the
dispersion relation

tk� = − 2t�cos kx + cos ky� − 4t� cos kx cos ky , �2�

where we set the lattice constant a=1 and already specified
to the 2D square lattice with nearest- and next-nearest-
neighbor hoppings, t and t�, respectively.

The central quantity for the discussion of Fermi liquid
properties is the correlation self-energy �U�z�. The assump-
tion that it does not depend on momentum k� constitutes the
major approximation of DMFT. The lattice Green’s function
of the Hubbard model is then given by

G�tk�,z� =
1

z − tk� − �U�z�
, �3�

which only depends on k� via the dispersion relation tk�.
The latter also determines the noninteracting DOS
�0���= 1

N	k����− tk��.
Within DMFT the lattice model is mapped onto an effec-

tive impurity model, where the medium 
�z� of the impurity
model cannot be chosen arbitrarily, but has to be determined
from the self-consistency conditions


�z� =
T�z�

1 + G̃�z�T�z�
, �4�

T�z� =
1

N
	

k�

tk�
2

G̃�z�−1 − tk�

=
 dx
x2�0�x�

G̃�z�−1 − x
, �5�

G̃�z� =
1

z − 
 − �U�z�
. �6�

The functional form of the local scattering matrix T�z� is
completely determined by the noninteracting DOS. The cor-
relation self-energy enters only as an unspecified parameter

�via G̃�z�� and is obtained from the solution of the effective
impurity model for a given medium 
�z�. The self-
consistency cycle is closed by identifying the local Green’s
function of the lattice with the one of the impurity model,
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G�loc��z� =
1

z − 
 − �U�z� − 
�z�
=!

1

N	
k�

G�tk�,z� = G̃�z�

+ G̃�z�T�z�G̃�z� . �7�

For the finite-temperature calculations we use the enhanced
noncrossing approximation15,16,46–48 �ENCA� as the impurity
solver. There are no adjustable parameters and the method
works directly on the real frequency axis. This is crucial for
the observation of the small low-energy anomalies in the
self-energy. However, it cannot be employed at too low tem-
peratures T�T0 due to the NCA pathology.49 Within the
ENCA the pathologic behavior is considerably improved
compared to NCA.50 It can be reliably used down to tem-
peratures T�T0 /10 for moderate to large values of U and
not too far away from half filling.

At zero temperature we use the numerical renormalization
group51–53 �NRG� instead. For the NRG spectral functions
we use the complete Fock-space54,55 algorithm of Ref. 56
with a discretization parameter �=1.7 and keep approxi-
mately 1700 states in each NRG-iteration step. We average
over eight different discretizations57 of the conduction band
to minimize the errors.

We also performed finite-temperature DMFT �NRG� cal-
culations which were in accord with the DMFT �ENCA� re-
sults and confirmed the existence of the anomalous structures
in the self-energy. However, the anomalous features occur at
energies and temperatures where the results depend on the
actual values of NRG broadening parameters.56,58 Therefore,
we prefer the ENCA for the finite-temperature calculations.

III. MODEL DENSITY OF STATES

Before presenting DMFT results for the Hubbard model
on cubic lattices we elucidate the basic mechanism by means
of a simplified model DOS of the form

��
cusp��� =

1 + �

2�W

1 − � ���

W
���, � � 0 �8�

with −W���W. For ��2 this DOS has a nonanalytic
cusp at �=0 which turns into a logarithmic divergence for
�=0, ��=0

cusp���= 1
2W ln� W

��� �, while it is smooth for ��2 �see
inset of Fig. 1�. The case �=0 mimics the logarithmic diver-
gence of the 2D simple cubic lattice.

The explicit form �8� allows for the analytic calculation of
the effective medium 
�z� as shown in the Appendix. We
state the result for three values of �,


�=0�z� =
1

G̃�z�
+

2W

Li2�− G̃�z�W� − Li2�G̃�z�W�
, �9�


�=1�z� =
1

G̃�z�
−

W

1

G̃�z�W
ln�1 − �G̃�z�W�2� + 2 atanh�G̃�z�W�

,

�10�


�=2�z� =
1

G̃�z�
−

�2/3�W
1

G̃�z�W
+ �1 −

1

�G̃�z�W�2�atanh�G̃�z�W�
,

�11�

where Li2�z� is the dilogarithm. The crucial difference in the
analytic structure of the three results is the appearance of
nonanalytic logarithms for �=0 and �=1 which are absent
for �=2.

Suppose the system is about to form a Fermi liquid state
as it is expected within DMFT for the Hubbard model at low
T. Then, the correlation self-energy has the form

� − 
 − �U�� − i0+� =
1

Z
�� − 
̃ − i����T�2 + �2�� , �12�

where T is the temperature, � a measure for the residual
quasiparticle scattering, and Z the quasiparticle weight. The
renormalized single-particle energy 
̃=
+Re �U�−i0+� deter-
mines the Fermi wave vector via 
̃= tk�F

and vanishes in sym-
metric situations.

Using form �12� in expressions �9�–�11�, the imaginary
part of 
 develops a cusplike minimum at the Fermi level for
small � and ��2.59 Figure 1 illustrates this for the three
different values of the exponent �=0, 1, and 2. In the limit
�→0 the effective media for �=1 and �=2 approach the
values Im 
�=1=1 /� and Im 
�=2=4 / �3��, respectively,
while for �=0 the effective medium eventually reaches zero
�see Eqs. �A8�–�A10��. Thus, for �=0, we end up with a
soft-gap effective medium for which Kondo screening and
the local Fermi liquid behavior can be completely destroyed
under certain conditions.60–67 However, in the present case
the effective medium vanishes only logarithmically at the
Fermi level, i.e., Im 
�=0��− i0+��− 1

ln��� �see Eq. �A8��, and
therefore the low-temperature properties are still expected to
be characterized by the strong-coupling fixed point as will be
shown in Sec. IV D.
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FIG. 1. �Color online� Imaginary parts of the effective media

��− i0+� �see Eqs. �9�–�11�� as functions of energy � for the cases
�=0,1 ,2 and two values of the residual interaction �. The inset
shows the model DOS for the same values of �. W=Z=1 and
T= 
̃=0 was used.
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The topology of the Fermi surface does not enter the
present arguments at any point, only the nonanalyticity in the
noninteracting DOS does. The latter derives from flat parts in
the dispersion relation, which in the case of the 2D square
lattice are saddle points at the X points. It is therefore clear,
that no nesting property of the Fermi surface, which is
present in the square lattice at half filling, can be responsible
for these effects.

IV. SQUARE LATTICE

A. Half filling

In all calculations of this work the hopping matrix ele-
ment t is used as the energy scale and energies are measured
in units 2t=1, setting the effective half bandwidth
W=2dt=2. In this section the next-nearest-neighbor hopping
is set to zero, t�=0. The noninteracting DOS of this 2D
square lattice has the same logarithmic singularity at �=0 as
the model DOS of Eq. �8� for �=0.

Results of a DMFT �ENCA� calculation for the half-filled
n=1 Hubbard model on a square lattice are shown in Fig. 2

for various temperatures. In part �a� the noninteracting DOS
as well as the fully interacting local spectral function
����= 1

� Im G�loc���− i0+� are displayed for U=2W=4. The
well-separated Hubbard bands around the ionic level posi-
tions �� �U /2= �2 are clearly visible. Upon lowering the
temperature the lattice version of the Kondo effect leads to
the buildup of a pronounced many-body resonance at the
Fermi level.

The van Hove singularity in �0 leads to the unusual mini-
mum in the imaginary part of the effective medium
Im 
��− i0+� �see inset of Fig. 2�a�� as it was already found
in the previous section. In contrast to Fig. 1 the minimum in
Im 
��− i0+� is not cusplike at �=0 but smeared out due to
the imaginary part of the self-energy which is shown in part
�b� of the figure. However, the nonanalytic structure in the
lattice scattering matrix, Eqs. �5� and �9�, is sufficient to
produce this minimum at low temperatures.

The self-consistency of DMFT leads to an
accompanying maximum in Im �U��− i0+� at �=0,
which is in striking contrast to Fermi liquid behavior
Im �U��− i0+���2+�2T2 for small � and T. The position
of the two minima emerging at finite frequencies next to the
central maximum is moved toward the Fermi level with de-
creasing temperature so that the anomalous region shrinks.

Anomalous maxima in Im �U are also encountered within
the functional renormalization-group approach to the Hub-
bard model at finite temperatures.30,31 Crucial for these
anomalies to occur is the renormalization of the two-particle
interaction vertex. Within DMFT all local n-particle vertices
and their renormalizations are included.

As a side remark we add here, that we observe additional
kinks in the real part of the self-energy as shown in Fig. 2�b�,
which are associated with this non-Fermi liquid behavior. At
energies �� �0.2 the known kinks arising from the cou-
pling of the quasiparticles to local spin fluctuations are
observable.68,69 The additional kinks are clearly visible at
lower energies. In contrast to the kinks at higher energy, their
position is temperature dependent and moves toward the
Fermi level with decreasing T.

We extract the low-energy scale T0 as the temperature
where the effective screened local moment as calculated
from the local magnetic susceptibility via50 �eff

2 =T�loc
mag is

reduced to 70% of its high-temperature value ��
2 �see inset

of Fig. 3�. This yields the equivalent result to the width of the
many-body resonance at the Fermi level in the momentum-
resolved spectral function Im G�tk�F

,�− i0+� /� �not shown�.
The temperature evolution of the anomalous double-well

structure is governed by the low-energy scale as revealed by
Fig. 3. There, the position of the anomalous minimum �min
in Im �U as a function of temperature for three values of the
Coulomb repulsion is shown �the self-energies as well as the
minima at ��min are symmetric around �=0 for half filling�.
For all U, �min /T0 exhibits a dome-shaped curve with both,
maximum position and height determined by T0. The physi-
cal origin can therefore be directly linked to the emergence
of the low-energy quasiparticles. At high temperatures the
system is dominated by the incoherent charge and spin exci-
tations and the van Hove singularity is concealed. At tem-
peratures on the order of T0 the lattice version of the Kondo
effect leads to the screening of local magnetic moments. The
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FIG. 2. �Color online� �a� Local spectral function ���� for the
symmetric Hubbard model on a 2D square lattice for Coulomb re-
pulsion U=4 �
=−2�, half bandwidth W=2 �t=0.5�, and various
temperatures as functions of frequency within DMFT �ENCA�. The
thin dashed curve represents the noninteracting DOS �0��� and the
inset shows the imaginary part of the effective medium
Im 
��− i0+�. �b� Imaginary �left� and real �right� part of the self-
energy �U��− i0+� for the same parameters as in �a� and T as indi-
cated. The inset of the left panel shows the imaginary part on a
wider energy interval. The short arrows in the right graphs point at
the approximate positions of the kinks.
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breakup of screened magnetic moments gives rise to long-
lived low-energy quasiparticle excitations which manifest
themselves in the many-body resonance at the Fermi level as
observed in the spectral function of, e.g., Fig. 2�a�. But their
evolution into the coherent Fermi liquid quasiparticle is dis-
turbed by the enhanced scattering due to the van Hove sin-
gularity. This leads to the maximum in Im �U at the Fermi
level. Further lowering the temperature the phase space vol-
ume for quasiparticle scattering shrinks and so does the ex-
tension of the maximum.

B. Finite doping

The van Hove singularity is shifted away from the Fermi
energy �=0 when doping the system, n=1−�. The corre-
sponding anomalous minimum in the effective medium Im 

and the maximum in Im �U are too moved to finite energies.
This can be seen in Fig. 4, where the spectral function, the
self-energy, and the effective medium are shown for the
Hubbard model on a 2D square lattice �t�=0� with U=6 and
�=0.02 �filling n=0.98�.

The quasiparticle peak around �=0 in the spectral func-
tion, as displayed in the inset of Fig. 4�a�, acquires a pro-
nounced asymmetry due to the double-well structure in
Im �U. The shoulder in the curve for the lowest temperature
might even be interpreted as a precursor of a pseudogap.

The flat parts in the dispersion relation are located ener-
gies away from the Fermi level and the dispersion relation
can again be approximated linearly in a very narrow region
around the Fermi surface. In this region the usual arguments
of microscopic Fermi liquid theory hold and the system
forms a regular Fermi liquid at very low temperatures. This
is observed in the self-energy shown in Fig. 4�b� where a
quadratic minimum forms at �=0 at T=0.007. However, the
Fermi liquid parameters will be strongly renormalized as
compared to a situation without the van Hove singularity.

C. Self-consistent treatment with a model DOS

No true divergence in the noninteracting DOS is neces-
sary for the anomalies described above to occur. A nonana-
lytic cusp as in the model DOS of Eq. �8� for 0���2 is
sufficient. This is illustrated in Fig. 5 where fully self-
consistent DMFT calculations for several model DOS are
considered. The first two plots �a� and �b� are for ��

cusp���
with �=1 at and away from half filling, respectively. Figures
5�c� and 5�d� are for asymmetric DOS which are constant
below the Fermi level and have �c� linear and �d� a square-
root cusp at �=0. The imaginary parts of the effective media
and self-energies show the characteristic minima and
maxima induced by the nonanalyticities in �0. For the half-
filled cases �a�, �c�, and �d� the anomalies are situated at the
Fermi level while for finite hole doping as in �b� these are
moved to positive energies.

D. Zero temperature

Figure 6�a� displays the spectral function for the Hubbard
model on a square lattice with U=4 at zero temperature and
for different doping �. These spectra were obtained with the
NRG �Ref. 56� as impurity solver.
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FIG. 3. �Color online� Position of the minimum �min in
Im �U in units of the low-energy scale T0 as a function of the
rescaled temperature T /T0 for three different Coulomb repulsions.
The inset shows the screened local magnetic moment normalized
to its high-temperature value ��

2 as a function of temperature
for the same values of the Coulomb repulsions. The horizontal
line indicates the value where �eff

2 reaches 70% of ��
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FIG. 4. �Color online� �a� Local DOS for the asymmetric Hub-
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shows the low-energy region. �b� Imaginary part of the self-energy
around the Fermi level for the same parameters as in �a� and tem-
peratures as indicated. The inset shows the imaginary part of the
effective medium in the low-energy region.
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As the hole doping is increased, the lower Hubbard band
moves toward the Fermi level and eventually merges with
the quasiparticle peak. For very large doping the lower Hub-
bard band is moved above the Fermi level and ���� re-
sembles the noninteracting DOS as the system becomes ef-
fectively noninteracting.

The position of the quasiparticle peak is attracted
to the Fermi level up to considerable values of doping
�roughly ��0.2�. This pinning becomes more visible in the
inset, where the position �max of the maximum in ���� is
plotted as a function of doping � for U=4 and U=0. In the
interacting case �max depends quadratically on the doping,
�max��2 and is considerably reduced compared to U=0.
The many-body correlations renormalize the van Hove sin-
gularity toward the Fermi level especially at small doping
��0.2.

The imaginary part of the self-energy shown in Fig. 6�b�
does not display any anomalous double-well structure. The
logarithmic van Hove singularity in �0 is a rather weak di-
vergence and at zero temperature the usual arguments lead-
ing to a vanishing self-energy at the Fermi level apply.70

However, Im �U shows an anomalous frequency dependence
at low energies, as it grows like Im �U��− i0+�����3/2

which was also previously found in perturbation
theory.20,21,71 The upper inset reveals this low-energy behav-
ior more clearly in a double logarithmic plot.

The quasiparticle peak at the Fermi level for half filling
�=0 shows a logarithmic divergence as was already ob-
served recently.72 But in contrast to what was stated in Ref.
72, the quasiparticle weight

Z =
1

1 −� � Re �U

��
�

�=0

�13�

does not vanish at half filling in our calculation, as can be
seen in the inset of Fig. 6�b�. �The quasiparticle weight in
Fig. 3 of Ref. 72 also seems to extrapolate to a finite value
at half filling but a contradicting statement is made in
the text of that reference.� The slope of the real part of the
self-energy does consequently not diverge at the Fermi
level. This is in accord with the low-frequency
dependency of the imaginary part ����3/2 from which
the real part is obtained via Kramers-Kronig relation,
Re �U��− i0+�������acoth��+arccot���−2�.

The system is therefore well characterized by a general-
ized Fermi liquid61–63 where Im �U shows some anomalous
frequency dependence but still vanishes at the Fermi level
and the quasiparticle weight remains finite.

0

0.2

0.4

0.6

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Im
Σ

U

ω

U = 2.5
n = 1

0.3

0.4

0.5

0.6

0.7

Im
Γ

(a)

T=0.12
0.06
0.05

0

0.2

0.4

0.6

-0.04 0 0.04 0.08 0.12

Im
Σ

U

ω

U = 4
n = 0.97

0.4

0.5

0.6

0.7

Im
Γ

(b)

T=0.032
0.018
0.013

0

0.2

0.4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Im
Σ

U

ω

U = 2.5
n = 1

0.6

0.7

0.8

0.9

1

Im
Γ

(c)

T=0.29
0.23
0.2

0

0.2

0.4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Im
Σ

U

ω

U = 2.5
n = 1

0.4

0.5

0.6

0.7

0.8
Im

Γ
(d)

T=0.2
0.12
0.08

FIG. 5. �Color online� The imaginary parts of the effective me-
dium �upper graphs� and self-energy �lower graphs� of the Hubbard
model within DMFT �ENCA� for different noninteracting DOS,
which are shown in the insets. The vertical dashed line indicates the
position of the Fermi level. The parameters are indicated in the
plots.

0

0.5

1

1.5

-4 -2 0 2 4 6 8

ρ
(ω

)

ω

T = 0

(a)

0

0.5

1

1.5

0 0.2 0.4 0.6
δ

ωmax

δ = 0.00
0.06
0.16
0.29
0.39

U = 4
U = 0
∼ δ2

0

0.02

0.04

0.06

0.08

0.1

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Im
Σ

U
(ω

−
i0

+
)

ω

(b)

10−4

0.01

1

0.001 0.01 0.1 1 10
ω

ImΣU

0
0.2
0.4
0.6
0.8

0 0.2 0.4
δ

Z

U = 4
4.5

5
∼ |ω|3/2

FIG. 6. �Color online� �a� DMFT �NRG� spectral function at
T=0 for the Hubbard model on a 2D square lattice for U=4 and
varying hole doping. The inset shows the position of the maximum
as a function of doping for U=4 and U=0. The dashed line is a fit
�max=2.2�2. �b� Imaginary part of the self-energy at half filling
�=0 for three values of the Coulomb repulsion U. The curves for
U=4.5 and U=5 were rescaled in order to lie on top of the U=4
curves at low �. The dashed line is a fit with a function a���3/2. The
upper inset shows the low-energy behavior in a double-logarithmic
plot. The lower inset shows the quasiparticle weight for U=4 as a
function of doping.

SEBASTIAN SCHMITT PHYSICAL REVIEW B 82, 155126 �2010�

155126-6



V. NEXT-NEAREST-NEIGHBOR HOPPING

A. Spectral function and self-energy

In this section we extend the study to an additional next-
nearest-neighbor hopping t�=−0.2t. The local spectral func-
tions and self-energies displayed in Fig. 7 for U=4.25, vari-
ous fillings and temperatures show pronounced particle-hole
asymmetries.

At low temperatures the anomalous minima in Im 
 and
corresponding maxima in the self-energy Im �U can be ob-
served slightly below the Fermi level for filling n=1.04,
n=1, and n=0.98. This correlates with the logarithmic van

Hove singularity in �0 shifted below the Fermi level, as dis-
played in the right inset of Fig. 7�b�. For decreasing filling
�increasing hole doping� the van Hove singularity is moved
toward the Fermi level and the anomalous structures in
Im �U and Im 
 narrow.

For the largest hole doping n=0.92 the imaginary part of
the self-energy exhibits only one narrow minimum at very
low temperature. Within DMFT the Fermi surface does not
change upon increasing the interaction U,9 due to the mo-
mentum independence of the self-energy. The filling at which
the van Hove singularity moves across the Fermi level can
be calculated with the noninteracting DOS to be n�0.82,
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�ENCA� spectral functions ����
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which is much less than n=0.92 Therefore a double-well
structure would be expected but is not observed. The reason
is found in the lower Hubbard band reaching the Fermi level.
A growing number of empty lattice sites are created and
disturb the quasiparticle formation. Additional quasiparticle
scattering results and conceals the effect of the van Hove
singularity.

Due to the pinning of the singularity to the neighborhood
of the Fermi level its influence is strong for all values of
filling. The anomalies correlate with the low-energy scale
and occur at temperatures following the trend given by T0 as
function of filling n. T0 reaches a minimum for n�0.98 to 1
where correlations are strongest and the system is closest to
the Mott insulator.

B. Transport

The anomalous behavior found in the self-energy affects
the temperature dependence of transport properties. The
static quasiparticle scattering rate at the Fermi level
Im �U�−i0+� is shown in Fig. 8�a� as a function of tempera-

ture for different filling.
For a 2D Fermi liquid the expected temperature

dependence of the scattering rate is given by
Im �U�−i0+,T��T2 ln�1 /T�. This behavior is found for low
temperatures at half filling �lowest curve in Fig. 8�a�� and
above, i.e., n�1 �not shown�. Hole doping induces qualita-
tive changes in the low-temperature behavior since the van
Hove singularity is moved toward the Fermi level. For filling
n=0.98 and n=0.96 power-law behavior with an exponent
close to one is observed, Im �U�−i0+,T��T1.1. For large
hole doping, n=0.92, the scattering rate is again found to be
in accord with usual Fermi liquid variation, �T2 ln�1 /T�.
This is expected to hold for even larger hole doping
n�0.92 but could not be checked within the present ap-
proach due to restriction of the ENCA to relatively high tem-
peratures at large doping.

We want to emphasis that the van Hove singularity in-
duces qualitative changes in the asymptotic low-temperature
behavior of the scattering rate when moved closer to the
Fermi surface by doping. Im �U�−i0+,T� decreases much
slower with temperature for fillings around n�0.96 when
the double-well structure is found in the vicinity of the Fermi
level.

With the self-energy at hand one can also calculate trans-
port coefficients. No vertex corrections occur in DMFT due
to the momentum independence of the self-energy and two-
particle vertex.73–75 The current-current correlation function
is completely determined by the particle-hole bubble. Trans-
port quantities can be expressed in terms of a generalized
transport lifetime �see, e.g., Ref. 8 and 12�

L�� =
 d��−
� f���

��
���xx�������−1, �14�

where f���=1 / �e�/T+1� is the Fermi function. The general-
ized transport lifetime is given by

�xx��� =
1

N�2	
k�
� �tk

�kx
�2

�Im G�tk�,� − i0+��2 �15�

=
1

�2 
 d
�̃0�
��Im G�
,� − i0+��2. �16�

The function

�̃0�
� =
1

N
	

k�
� �tk�

�kx
�2

��
 − tk�� �17�

can be calculated for the cubic lattices and turns out to be a
smooth function where the singularities of �0 are removed
due to the derivative.

Only in the Fermi liquid regime is �xx���
�1 / Im �U��− i0+� and the linearized Boltzmann theory is
recovered.76

The resistivity

� =
�0

L11
�18�

with �0= 2�a
�e2 �a is the lattice spacing and e the electronic

charge� is shown in Fig. 8�b� for different filling. Typical

10−2

10−1

100

101

102

103

104

0.01 0.1 1

Im
Σ

(−
i0

+
)

T

∼ T 2 ln(b/T )

∼ T 1.1

∼ T 1.1

∼ T 2 ln(a/T )

×10

×100

×1000

(a)

n = 1
0.98
0.96
0.92

100

101

102

103

104

105

0.01 0.1 1

�
/�

0

T

∼ T 1.5

∼ T 1

∼ T 2

∼ T 2

×10

×100

×1000

(b) 0
100
200
300

0 0.5 1

n = 1
0.98
0.96
0.92

FIG. 8. �Color online� �a� Static quasiparticle scattering rate
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characteristics of strongly correlated systems can be ob-
served for not too large doping. The resistivity � changes
from insulating �or semiconducting� behavior at high tem-
peratures to metallic behavior at low temperatures due to the
emergence of �coherent� low-energy quasiparticles �see
inset�.12 The high-temperature resistivity is much larger than
the value expected from the Ioffe-Regel condition valid for
usual metals, where � is bound by a minimal scattering
length on the order of the lattice spacing.77 At intermediate
temperatures 0.1�T�0.5 linear regimes with increasing
slope for decreasing doping can be recognized, in accord
with earlier studies.8,10

The log-log plot �main panel� reveals that the low-
temperature Fermi liquid behavior ��T��T2 is found for
n=1 and above �not shown�.78 A T2 dependency is also ob-
served for n=0.92. But for the intermediate values n=0.98
and n=0.96 a qualitative different behavior is found. ��T�
more closely resembles power laws with exponents 1 and
1.5, respectively. The van Hove singularity is close to the
Fermi level and the enhanced scattering increases the resis-
tivity. In summary, the interplay between the reduction in
phase space volume for scattering and the qualitative
changes in the frequency dependence of the self-energy
within the temperature window causes the qualitative
changes in the transport properties.

VI. RELEVANCE FOR THE THEORY OF CUPRATE
SUPERCONDUCTORS

The t-t�-Hubbard model might be suitable to describe the
low-energy physics of cuprate superconductors. Even though
DMFT is nonperturbative and includes nontrivial local
many-body correlations, it represents a rather poor approxi-
mation for the two-dimensional cuprate layers due to the
neglect of nonlocal correlations. Therefore, we want to point
out that we neither try to model the cuprate superconductors
nor can our results be directly transferred to those systems.

However, even in more appropriate theories such as
cluster-DMFT �Ref. 40� the van Hove singularities associ-
ated with the lattice structure are retained and therefore the
findings of this work have some bearings on the pseudogap
and strange metal phase of cuprate superconductors. In the
following we will elaborate on some of these aspects.

The van Hove singularity provides an additional mecha-
nism for kinks68,69,79–83 in the real part of the self-energy �see
Fig. 2�b��. The location of the kinks is temperature depen-
dent which should make it possible to discriminate these type
of kinks in experiment or calculations.

The non-Fermi liquid self-energy induces an unusual tem-
perature dependence of the generalized quasiparticle
weight84

Z�T� =
1

1 −
Im �U�i�0�

�0

�19�

=
1

1 +
 d�

�

Im �U�� − i0+�
�2 + ��T�2

, �20�

where �0=�T is the smallest fermionic Matsubara frequency
�form �19� is useful when the self-energy is obtained only at

the imaginary Matsubara frequencies like in quantum Monte
Carlo calculations�. The generalized quasiparticle weight as
calculated with Eq. �20� is shown in Fig. 9 for the Hubbard
model on the square lattice with next-nearest-neighbor hop-
ping as function of temperature and three different filling. All
curves show a change in curvature at the temperature where
the anomalous double-well structure emerges. This behavior
closely resembles that found in Ref. 85 for a crossover from
a marginal Fermi liquid at high temperatures to a Fermi liq-
uid at low T. Since the self-energies do not show any signs of
marginal Fermi liquid behavior �see the previous sections�
this reveals a difficulty when interpreting imaginary Matsub-
ara data at finite temperatures. Due to the integral in Eq. �20�
the temperature dependence of Z�T� is not determined by the
asymptotic low-frequency form of Im �U��− i0+� but by its
average spectral weight in the temperature window
�����T. Therefore, the discrimination between different
characteristic low-energy forms of �U��− i0+� given the self-
energy at imaginary Matsubara frequencies seems rather
delicate at finite temperature.

The partial destruction of the Fermi surface �Fermi arcs�
and the emergence of a pseudogap86–88 is of current interest.
These phenomena are usually explained to arises from the
coupling to strong nonlocal antiferromagnetic
correlations.41–44 In the present study no nonlocal fluctua-
tions are included but instead the van Hove singularity pro-
duces similar features such as a non-Fermi liquid maximum
in Im �U��− i0+� and the concomitant reduction of spectral
weight �see Fig. 4�a��, However, a true pseudogap is not
observed in our approach indicating the importance of non-
local fluctuations.

The existence of Fermi arcs and the asymmetry for mo-
mentum vectors along the nodal k� =��� ,�� �0���1� and
antinodal k� =��0,�� direction is natural in the present sce-
nario. The flat parts in the dispersion relation occur at the X
point in the Brillouin zone where the low-temperature qua-
siparticles are most strongly affected and consequently the
Fermi liquid description breaks down there first.30,31 Also the
stability of the induced non-Fermi liquid behavior up to a
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FIG. 9. �Color online� Generalized quasiparticle weight for the
Hubbard model on a square lattice with next-nearest-neighbor hop-
ping t�=−0.2t and U=4.25 as function of temperature for three
different filling obtained from DMFT �ENCA� calculations and Eq.
�20�.
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doping on the order of 20% which was encountered in other
studies41 can be explained by the pinning of the van Hove
singularity to the Fermi level.

Unarguably, nonlocal correlations are vital for the under-
standing of cuprate superconductors. But as the above as-
pects suggest, some of the non-Fermi liquid signatures can
be produced—or at least aided—by the presence of a van
Hove singularity in the vicinity of the Fermi surface. This is
especially important for lattices without nesting or with frus-
tration, where nonlocal antiferromagnetic spin fluctuations
are usually suppressed and thus might be too weak to pro-
duce non-Fermi liquid signatures. Therefore, we argue that
the interpretation solely in terms of collective modes which
couple to the electronic degrees of freedom is too simplified
and the influence of the saddle points in the Brillouin zone
has to be reconsidered.

VII. CONCLUSIONS

In the present work we have focused on the influence of a
van Hove singularity in the noninteraction density of states
on the low-temperature properties of the Hubbard model. In
order to include nonperturbative correlation effects we used
the DMFT to calculate the spectral function and self-energy.
As impurity solvers we employed the enhanced noncrossing
approximation for finite temperatures T�0 and the numeri-
cal renormalization group for T=0. Both methods yield dy-
namic quantities directly on the real frequency axis, which
avoids the inaccuracies connected with a numerical analytic
continuation of imaginary time data.

The van Hove singularity causes profound changes of the
low-energy Fermi liquid properties usually encountered
within DMFT for the Hubbard model. For the strongly cor-
related metal close to the Mott Hubbard metal-insulator tran-
sition the imaginary part of the self-energy develops an un-
usual double-well structure at finite temperatures. This
anomalous structure appears at temperatures on the order of
the many-body scale T0 which also determines its energy
spread. It originates from an enhanced scattering of the low-
energy quasiparticles at the saddle points in the dispersion
relation associated with the van Hove singularity.

Using a model DOS, we have shown analytically that the
non-Fermi liquid signature in the quasiparticle self-energy is
directly linked to nonanalytic logarithmic contributions to
the lattice scattering matrix. As a consequence the medium
for the effective impurity develops a dip at the van Hove
singularity. In case of a logarithmically diverging noninter-
acting DOS this dip produces a soft gap in the effective
medium at T=0.

At zero temperature the interacting spectral function for a
square lattice exhibits a logarithmic divergence for half fill-
ing. The system is well characterized by a generalized Fermi
liquid where the quasiparticle weight remains finite and the
imaginary part of the self-energy vanishes at the Fermi level.
But the frequency-dependent scattering rate increases with a
non-Fermi liquid exponent �1.5�2. Upon doping a pinning
of the van Hove singularity to the Fermi level is observed. Its
signature in the spectral function is always renormalized to-
ward the Fermi level and stays close to it up to rather large
doping ��0.2.

For the square lattice with a finite next-nearest-neighbor
hopping t�=−0.2t the van Hove singularity in the noninter-
acting DOS is located below the Fermi level and moved
toward it upon increasing hole doping. This trend is also
observed in the anomalous maximum in the self-energy.

In case of half filling and electron doping, as well as for
large hole doping, the zero-frequency quasiparticle scattering
rate exhibits a low-temperature dependence which is consis-
tent with that of a two-dimensional Fermi liquid. In between
these fillings the decrease is much slower and follows a
power law with exponent close to 1.

A similar signature of the van Hove singularity was found
in the resistivity. A Fermi liquid T2 dependence emerged for
n�1 and n�0.92 while for 0.92�n�1 the resistivity was
enhanced and a decrease with exponents less than 2 was
observed.

The findings of this work bear some implications on theo-
ries for cuprate superconductors. Even thought no nonlocal
fluctuations were included, we still produced qualitative fea-
tures usually only obtained within more advanced theories
where those correlations are incorporated. This raises the
question concerning the origin and physical mechanism be-
hind such features and we think the role of the van Hove
singularity in connection with strong correlations should be
further explored in the future.
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APPENDIX: DETAILS OF THE MODEL
DOS CALCULATION

The scattering matrix can be calculated analytically via

Eq. �5� for any G̃ �omitting the arguments�,

T = 

−W

W

dx
x2��

cusp�x�

G̃−1 − x
�A1�

=
��01 + �

�

1

G̃
�− 1 +

1

G̃W
atanh�G̃W�

−
�G̃W�2

3 + � 2F1
1,
3 + �

2
;
5 + �

2
;�G̃W�2�� �A2�

=
�=0 1

G̃

− 1 +

Li2�G̃W� − Li2�− G̃W�

2G̃W
� , �A3�

where 2F1 is the Gauss’s hypergeometric function and Li2 the
dilogarithm. Equation �4� then yields the effective medium
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 =
��0 1

G̃
−

W�

�1 + ��atanh�G̃W� − G̃W −
1 + �

3 + �
�G̃W�3

2F1
1,
3 + �

2
;
5 + �

2
;�G̃W�2� �A4�

=
�=0 1

G̃
+

2W

Li2�− G̃W� − Li2�G̃W�
. �A5�

For �=0, Eq. �9� already constitutes the final expression
while for the �=1,2 Eq. �A4� can be further simplified.

For �=1 the hypergeometric function reduces to

2F1�1,2;3;z2� = −
2

z4 �z2 + ln�1 − z2�� , �A6�

leading to the effective medium displayed in Eq. �10�. In
case of �=2,

2F1�1,
5

2
;
7

2
;z2� = −

5

3

1

z5 �3z + z3 − 3 atanh�z�� , �A7�

yields the effective medium of Eq. �11�.
Assuming a Fermi liquid as in Eq. �12� and taking the

limit �→0 the effective media take the approximate low-
energy forms, ��W=1 �Z=1, T=0, and 
̃=0�

Im 
�=0�� − i0+� � −
2

�

ln���
�2

4
+ �ln����2

, �A8�

Im 
�=1�� − i0+� �
��1 − ����

�2�1 − ����2 + 4�2�1 − ln����2 ,

�A9�

Im 
�=2�� − i0+� �
�

3

1 − �2

�2

4
+ �4 −

�2

2
��2

. �A10�

For �=0 the effective medium reaches zero at zero energy.
For �=1 it saturates at a value 1 /� but the nonanalytic cusp
still remains while for �=2 the cusp is removed and
Im 
�=2�−i0+�=4 / �3��.

*sebastian.schmitt@tu-dortmund.de
1 R. Shankar, Rev. Mod. Phys. 66, 129 �1994�.
2 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics �Prentice-Hall,
Englewood Cliffs, USA, 1963�.

3 A. Virosztek and J. Ruvalds, Phys. Rev. B 42, 4064 �1990�.
4 J. Voit, Rep. Prog. Phys. 58, 977 �1995�.
5 C. Varma, Z. Nussinov, and W. van Saarloos, Phys. Rep. 361,

267 �2002�.
6 M. Vojta, Rep. Prog. Phys. 66, 2069 �2003�.
7 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
8 T. Pruschke, M. Jarrell, and J. Freericks, Adv. Phys. 44, 187

�1995�.
9 E. Müller-Hartmann, Z. Phys. B: Condens. Matter 76, 211

�1989�.
10 M. Jarrell and T. Pruschke, Phys. Rev. B 49, 1458 �1994�.
11 T. Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev. B 47, 3553

�1993�.
12 J. Merino and R. H. McKenzie, Phys. Rev. B 61, 7996 �2000�.
13 R. Bulla, Phys. Rev. Lett. 83, 136 �1999�.
14 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, 1993�.
15 N. Grewe, Ann. Phys. 14, 611 �2005�.
16 N. Grewe, S. Schmitt, T. Jabben, and F. B. Anders, J. Phys.:

Condens. Matter 20, 365217 �2008�.
17 C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams,

and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 �1989�.

18 D. M. Newns, P. C. Pattnaik, and C. C. Tsuei, Phys. Rev. B 43,
3075 �1991�.

19 D. M. Newns, C. C. Tsuei, P. C. Pattnaik, and C. L. Kane, Com-
ments Condens. Matter Phys. 15, 273 �1992�.

20 S. Gopalan, O. Gunnarsson, and O. K. Andersen, Phys. Rev. B
46, 11798 �1992�.

21 R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 �1995�.
22 I. Dzyaloshinskii, J. Phys. I 6, 119 �1996�.
23 R. S. Markiewicz, J. Phys. Chem. Solids 58, 1179 �1997�.
24 D. Menashe and B. Laikhtman, Phys. Rev. B 59, 13592 �1999�.
25 F. Onufrieva and P. Pfeuty, Phys. Rev. Lett. 82, 3136 �1999�.
26 G. Kastrinakis, Physica C 340, 119 �2000�.
27 V. Y. Irkhin and A. A. Katanin, Phys. Rev. B 64, 205105 �2001�.
28 A. A. Katanin and A. P. Kampf, Phys. Rev. B 68, 195101

�2003�.
29 R. Roldán, M. P. López-Sancho, F. Guinea, and S.-W. Tsai, Phys.

Rev. B 74, 235109 �2006�.
30 A. A. Katanin and A. P. Kampf, Phys. Rev. Lett. 93, 106406

�2004�.
31 D. Rohe and W. Metzner, Phys. Rev. B 71, 115116 �2005�.
32 P. Schlottmann, Phys. Rev. B 68, 125105 �2003�.
33 W. Jones and N. H. March, Theoretical Solid State Physics

�Wiley, London, 1973�.
34 V. Y. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev.

Lett. 89, 076401 �2002�.
35 Q. Si and K. Levin, Phys. Rev. B 44, 4727 �1991�.
36 P. Majumdar and H. Krishnamurthy, arXiv:cond-mat/9604057

�unpublished�.

NON-FERMI-LIQUID SIGNATURES IN THE HUBBARD… PHYSICAL REVIEW B 82, 155126 �2010�

155126-11

http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1103/PhysRevB.42.4064
http://dx.doi.org/10.1088/0034-4885/58/9/002
http://dx.doi.org/10.1016/S0370-1573(01)00060-6
http://dx.doi.org/10.1016/S0370-1573(01)00060-6
http://dx.doi.org/10.1088/0034-4885/66/12/R01
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1007/BF01312686
http://dx.doi.org/10.1007/BF01312686
http://dx.doi.org/10.1103/PhysRevB.49.1458
http://dx.doi.org/10.1103/PhysRevB.47.3553
http://dx.doi.org/10.1103/PhysRevB.47.3553
http://dx.doi.org/10.1103/PhysRevB.61.7996
http://dx.doi.org/10.1103/PhysRevLett.83.136
http://dx.doi.org/10.1002/andp.200510151
http://dx.doi.org/10.1088/0953-8984/20/36/365217
http://dx.doi.org/10.1088/0953-8984/20/36/365217
http://dx.doi.org/10.1103/PhysRevLett.63.1996
http://dx.doi.org/10.1103/PhysRevB.43.3075
http://dx.doi.org/10.1103/PhysRevB.43.3075
http://dx.doi.org/10.1103/PhysRevB.46.11798
http://dx.doi.org/10.1103/PhysRevB.46.11798
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1051/jp1:1996127
http://dx.doi.org/10.1016/S0022-3697(97)00025-5
http://dx.doi.org/10.1103/PhysRevB.59.13592
http://dx.doi.org/10.1103/PhysRevLett.82.3136
http://dx.doi.org/10.1016/S0921-4534(00)00383-X
http://dx.doi.org/10.1103/PhysRevB.64.205105
http://dx.doi.org/10.1103/PhysRevB.68.195101
http://dx.doi.org/10.1103/PhysRevB.68.195101
http://dx.doi.org/10.1103/PhysRevB.74.235109
http://dx.doi.org/10.1103/PhysRevB.74.235109
http://dx.doi.org/10.1103/PhysRevLett.93.106406
http://dx.doi.org/10.1103/PhysRevLett.93.106406
http://dx.doi.org/10.1103/PhysRevB.71.115116
http://dx.doi.org/10.1103/PhysRevB.68.125105
http://dx.doi.org/10.1103/PhysRevLett.89.076401
http://dx.doi.org/10.1103/PhysRevLett.89.076401
http://dx.doi.org/10.1103/PhysRevB.44.4727
http://arXiv.org/abs/arXiv:cond-mat/9604057


37 J. González, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B
485, 694 �1997�.

38 S. Odashima, A. Avella, and F. Mancini, Phys. Rev. B 72,
205121 �2005�.

39 A. Macridin, M. Jarrell, T. Maier, and G. A. Sawatzky, Phys.
Rev. B 71, 134527 �2005�.

40 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 �2005�.

41 A. Liebsch and N.-H. Tong, Phys. Rev. B 80, 165126 �2009�.
42 B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M.

Civelli, and G. Kotliar, Phys. Rev. B 73, 165114 �2006�.
43 A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and E.

D’Azevedo, Phys. Rev. Lett. 97, 036401 �2006�.
44 A. A. Katanin, A. Toschi, and K. Held, Phys. Rev. B 80, 075104

�2009�.
45 A.-M. S. Tremblay, B. Kyung, and D. Snchal, Low Temp. Phys.

32, 424 �2006�.
46 T. Pruschke and N. Grewe, Z. Phys. B: Condens. Matter 74, 439

�1989�.
47 J. Holm and K. Schönhammer, Solid State Commun. 69, 969

�1989�.
48 H. Keiter and Q. Qin, Physica B 163, 594 �1990�.
49 N. E. Bickers, Rev. Mod. Phys. 59, 845 �1987�.
50 S. Schmitt, T. Jabben, and N. Grewe, Phys. Rev. B 80, 235130

�2009�.
51 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 �1980�.
52 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1044 �1980�.
53 R. Bulla, T. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

�2008�.
54 F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 �2006�.
55 F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801

�2005�.
56 R. Peters, T. Pruschke, and F. B. Anders, Phys. Rev. B 74,

245114 �2006�.
57 V. L. Campo and L. N. Oliveira, Phys. Rev. B 72, 104432

�2005�.
58 R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103

�2001�.
59 S. Schmitt, Ph.D. thesis, TU Darmstadt, 2008.
60 R. Bulla, T. Pruschke, and A. Hewson, J. Phys.: Condens. Matter

9, 10463 �1997�.
61 C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254

�1998�.
62 D. E. Logan and M. T. Glossop, J. Phys.: Condens. Matter 12,

985 �2000�.
63 M. Glossop and D. Logan, Eur. Phys. J. B 13, 513 �2000�.
64 K. Ingersent and Q. Si, Phys. Rev. Lett. 89, 076403 �2002�.
65 M. T. Glossop and D. E. Logan, J. Phys.: Condens. Matter 15,

7519 �2003�.
66 L. Fritz and M. Vojta, Phys. Rev. B 70, 214427 �2004�.
67 L. Fritz, S. Florens, and M. Vojta, Phys. Rev. B 74, 144410

�2006�.
68 K. Byczuk, M. Kollar, K. Held, Y.-F. Yang, I. A. Nekrasov, T.

Pruschke, and D. Vollhardt, Nat. Phys. 3, 168 �2007�.
69 C. Raas, P. Grete, and G. S. Uhrig, Phys. Rev. Lett. 102, 076406

�2009�.

70 J. M. Luttinger, Phys. Rev. 121, 942 �1961�.
71 The exponent 3/2 is found in perturbation theory for quasiparti-

cles excited at the Fermi level, but away from the van Hove
singularity, which scatter from quasiparticles at the van Hove
singularities. For quasiparticles at the van Hove singularity
Im �U��− i0+����� and scattering processes not involving the
saddle points produce the usual 2D Fermi liquid result
Im �U��− i0+���2 ln 1 / ���. DMFT does not resolve the differ-
ent momentum dependencies in the interaction channels and av-
erages over the whole Brillouin zone. Due to its large phase
space, the contribution ����3/2 dominates this average and is
therefore observed in the DMFT. This is confirmed by fitting the
imaginary part with a function A���3/2+B��� which yields a very
small linear contribution B /A�1–2% without changing the
range of validity of the fit. The usual 2D Fermi contribution
��2 ln 1 / ��� vanishes too fast for �→0 to make a significant
contribution at low energies.

72 R. Žitko, J. Bonča, and T. Pruschke, Phys. Rev. B 80, 245112
�2009�.

73 A. Khurana, Phys. Rev. Lett. 64, 1990 �1990�.
74 H. Schweitzer and G. Czycholl, Phys. Rev. Lett. 67, 3724

�1991�.
75 E. Müller-Hartmann, Z. Phys. B: Condens. Matter 74, 507

�1989�.
76 N. W. Ashcroft and N. D. Mermin, Solid State Physics �Saunders

College, Philadelphia, 1976�.
77 O. Gunnarsson, M. Calandra, and J. E. Han, Rev. Mod. Phys.

75, 1085 �2003�.
78 The reason, why we observe a quadratic temperature depen-

dence, which is characteristic for Fermi liquids in dimensions
d�2 and not the two-dimensional form ��T2 ln�1 /T�2 is not
completely clear to us at present. It is probably related to the
neglect of vertex correction within DMFT. Ignoring the momen-
tum dependence in the two-particle vertex leads to a violation of
momentum conservation at internal vertices �Ref. 89�. The re-
sultant mean-field decoupling in the Bethe-Salpeter equations
�Refs. 59, 90, and 91� for the two-particle current-current corre-
lation function introduces additional averages over the Brillouin
zone and mimics an effectively higher dimensionality for trans-
port quantities.

79 A. Lanzara et al., Nature �London� 412, 510 �2001�.
80 Z. X. Shen, A. Lanzara, S. Ishihara, and N. Nagaosa, Philos.

Mag. B 82, 1349 �2002�.
81 A. Macridin, M. Jarrell, T. Maier, and D. J. Scalapino, Phys.

Rev. Lett. 99, 237001 �2007�.
82 T. Valla, T. E. Kidd, W.-G. Yin, G. D. Gu, P. D. Johnson, Z.-H.

Pan, and A. V. Fedorov, Phys. Rev. Lett. 98, 167003 �2007�.
83 J. Graf et al., Phys. Rev. Lett. 98, 067004 �2007�.
84 J. W. Serene and D. W. Hess, Phys. Rev. B 44, 3391 �1991�.
85 N. S. Vidhyadhiraja, A. Macridin, C. Sen, M. Jarrell, and M. Ma,

Phys. Rev. Lett. 102, 206407 �2009�.
86 M. R. Norman et al., Nature �London� 392, 157 �1998�.
87 A. Kanigel et al., Nat. Phys. 2, 447 �2006�.
88 H.-B. Yang, J. D. Rameau, P. D. Johnson, T. Valla, A. Tsvelik,

and G. D. Gu, Nature �London� 456, 77 �2008�.
89 M. Jarrell, T. Maier, C. Huscroft, and S. Moukouri, Phys. Rev. B

64, 195130 �2001�.
90 M. Jarrell, Phys. Rev. B 51, 7429 �1995�.
91 S. Schmitt and N. Grewe, Physica B 359-361, 777 �2005�.

SEBASTIAN SCHMITT PHYSICAL REVIEW B 82, 155126 �2010�

155126-12

http://dx.doi.org/10.1016/S0550-3213(96)00620-7
http://dx.doi.org/10.1016/S0550-3213(96)00620-7
http://dx.doi.org/10.1103/PhysRevB.72.205121
http://dx.doi.org/10.1103/PhysRevB.72.205121
http://dx.doi.org/10.1103/PhysRevB.71.134527
http://dx.doi.org/10.1103/PhysRevB.71.134527
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/PhysRevB.80.165126
http://dx.doi.org/10.1103/PhysRevB.73.165114
http://dx.doi.org/10.1103/PhysRevLett.97.036401
http://dx.doi.org/10.1103/PhysRevB.80.075104
http://dx.doi.org/10.1103/PhysRevB.80.075104
http://dx.doi.org/10.1063/1.2199446
http://dx.doi.org/10.1063/1.2199446
http://dx.doi.org/10.1007/BF01311391
http://dx.doi.org/10.1007/BF01311391
http://dx.doi.org/10.1016/0038-1098(89)90006-9
http://dx.doi.org/10.1016/0038-1098(89)90006-9
http://dx.doi.org/10.1016/0921-4526(90)90279-4
http://dx.doi.org/10.1103/RevModPhys.59.845
http://dx.doi.org/10.1103/PhysRevB.80.235130
http://dx.doi.org/10.1103/PhysRevB.80.235130
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1044
http://dx.doi.org/10.1103/PhysRevB.21.1044
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevB.74.245114
http://dx.doi.org/10.1103/PhysRevB.74.245114
http://dx.doi.org/10.1103/PhysRevB.72.104432
http://dx.doi.org/10.1103/PhysRevB.72.104432
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1088/0953-8984/9/47/014
http://dx.doi.org/10.1088/0953-8984/9/47/014
http://dx.doi.org/10.1103/PhysRevB.57.14254
http://dx.doi.org/10.1103/PhysRevB.57.14254
http://dx.doi.org/10.1088/0953-8984/12/6/320
http://dx.doi.org/10.1088/0953-8984/12/6/320
http://dx.doi.org/10.1007/s100510050063
http://dx.doi.org/10.1103/PhysRevLett.89.076403
http://dx.doi.org/10.1088/0953-8984/15/44/007
http://dx.doi.org/10.1088/0953-8984/15/44/007
http://dx.doi.org/10.1103/PhysRevB.70.214427
http://dx.doi.org/10.1103/PhysRevB.74.144410
http://dx.doi.org/10.1103/PhysRevB.74.144410
http://dx.doi.org/10.1038/nphys538
http://dx.doi.org/10.1103/PhysRevLett.102.076406
http://dx.doi.org/10.1103/PhysRevLett.102.076406
http://dx.doi.org/10.1103/PhysRev.121.942
http://dx.doi.org/10.1103/PhysRevB.80.245112
http://dx.doi.org/10.1103/PhysRevB.80.245112
http://dx.doi.org/10.1103/PhysRevLett.64.1990
http://dx.doi.org/10.1103/PhysRevLett.67.3724
http://dx.doi.org/10.1103/PhysRevLett.67.3724
http://dx.doi.org/10.1007/BF01311397
http://dx.doi.org/10.1007/BF01311397
http://dx.doi.org/10.1103/RevModPhys.75.1085
http://dx.doi.org/10.1103/RevModPhys.75.1085
http://dx.doi.org/10.1038/35087518
http://dx.doi.org/10.1080/13642810210142735
http://dx.doi.org/10.1080/13642810210142735
http://dx.doi.org/10.1103/PhysRevLett.99.237001
http://dx.doi.org/10.1103/PhysRevLett.99.237001
http://dx.doi.org/10.1103/PhysRevLett.98.167003
http://dx.doi.org/10.1103/PhysRevLett.98.067004
http://dx.doi.org/10.1103/PhysRevB.44.3391
http://dx.doi.org/10.1103/PhysRevLett.102.206407
http://dx.doi.org/10.1038/32366
http://dx.doi.org/10.1038/nphys334
http://dx.doi.org/10.1038/nature07400
http://dx.doi.org/10.1103/PhysRevB.64.195130
http://dx.doi.org/10.1103/PhysRevB.64.195130
http://dx.doi.org/10.1103/PhysRevB.51.7429
http://dx.doi.org/10.1016/j.physb.2005.01.224

