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In electronic devices where a two-dimensional electron gas �2DEG� comprises one or both sides of a plane
capacitor, the resulting capacitance C can be larger than the “geometric capacitance” Cg determined by the
physical separation d between electrodes. This larger capacitance is known to result from the Coulomb corre-
lations between individual electrons within the low-density 2DEG, which lead to a negative thermodynamic
density of states. Experiments on such systems generally operate in the regime where the average spacing
between electrons n−1/2 in the 2DEG is smaller than d and these experiments observe C�Cg by only a few
percent. A recent experiment �L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, and R. Ashoori,
arXiv:1006.2847 �unpublished��, however, has observed C larger than Cg by almost 40% while operating in the
regime nd2�1. In this paper we argue that at nd2�1 correlations between the electronic charge of opposite
electrodes become important. We develop a theory of the capacitance for the full range of nd2. We show that,
in the absence of disorder, the capacitance can be 4d /a times larger than the geometric value, where a�d is
the electron Bohr radius. Our results compare favorably with the experiment of Li et al. �arXiv:1006.2847
�unpublished�� without the use of adjustable parameters.
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I. INTRODUCTION

In a standard parallel-plate capacitor, the capacitance C is
equal to the “geometric capacitance” Cg=�S /4�d �in Gauss-
ian units�, where � is the dielectric constant of the medium
separating the two plates, S is the area of each plate, and d is
the separation between them. The expression C=Cg is cor-
rect when both electrodes are made from a “perfect” metal,
which by definition screens electric field with a vanishing
screening radius, so that the charge of a given electrode is
located exactly on the electrode surface and the electric field
from the opposite electrode does not penetrate into the metal.
If one of the electrodes is made from a material with finite
�positive� Debye screening radius RD �for example, a doped
bulk semiconductor�, then the imperfect charge screening at
this electrode allows the electric field to penetrate a distance
RD into the electrode and the capacitance decreases. If one
describes the capacitance by the effective capacitor thickness
d�=�S /4�C, then the effect of positive screening radius is to
increase the effective capacitor thickness from d�=d to d�

=d+RD.
On the other hand, capacitors with d��d, or in other

words with effective three-dimensional electrode screening
radius RD�0, are known in semiconductor physics.1–17 Ex-
amples include Si MOSFETs and gated GaAs-AlGaAs het-
erostructures, where one electrode consists of a clean, low-
density, two-dimensional electron gas �2DEG�.3–9 In these
devices, the total capacitance can be written as

1

C
=

1

Cg
+

d�/dn

Se2 , �1�

where n is the electron area density, � is the chemical po-
tential of the 2DEG, and e is the elementary charge. In terms
of the effective thickness d�, Eq. �1� implies

d� = d + rD/2, �2�

where rD=�d� /dn / �2�e2� is the Debye screening radius of
the 2DEG. Capacitance larger than the geometric value, or
rD�0, is possible when the thermodynamic density of states
dn /d� of the 2DEG is negative �or, equivalently, when the
compressibility n−2dn /d��0�.

In the limit of low-electron density, such that the average
distance n−1/2 is much larger than the effective Bohr radius
a=��2 /me2 of the electrons, or in other words the dimen-
sionless parameter rs= ��na2�−1/2	1, a 2DEG is a classical
system whose physics is dominated by the Coulomb interac-
tion between electrons. This interaction leads to a Wigner
crystal-like strongly correlated liquid state with negative
chemical potential ��−2.9e2n1/2 /�. The corresponding De-
bye screening radius rD=−0.23n−1/2 produces a negative
correction1,18 to d�

d� � d − 0.12n−1/2, �n1/2d 	 1� . �3�

What happens to d� when n−1/2	d? This is the main
question addressed in this paper. Thermodynamic stability
criteria ensure that the capacitance cannot be negative,19 so
Eq. �3� must not apply at such low densities. In Sec. II of this
paper we find the function d��d ,n�=d · f�n1/2d�, valid over
the whole range of nd2. The dimensionless function f�x� is
shown in Fig. 3. We show that in the limit nd2�1 the effec-
tive thickness d� becomes very small

d� = 2.7d�nd2�1/2, �n1/2d � 1� . �4�

This dramatic capacitance growth is due to the coupling of
each electron in the 2DEG to its image charge in the metal
electrode. At low density, compact electron-image dipoles
are separated from each other by a distance much larger than
their dipole arm. These dipoles interact weakly with each
other, providing only a small resistance to capacitor charg-
ing.
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Until recently, only relatively small corrections to
the geometrical capacitor thickness d were observed
experimentally.3–9 The most recent paper on this subject,20

however, claims a much larger correction �d−d�� /d�0.4 for
a YBa2Cu3O7 /LaAlO3 /SrTiO3 �YBCO/LAO/STO� capacitor
with a 2DEG at the LAO/STO interface separated by d
=4 nm of LAO insulator from the metallic YBCO gate. The-
oretical estimates show that a�1 nm is by far the smallest
length scale in the problem, so that as a zero-order approxi-
mation one can use a classical description of the 2DEG. This
measurement calls for a comparison of our function d��d ,n�
with the experimental data of Ref. 20. Such a comparison is
shown in Fig. 1 and looks quite good without the use of
adjustable parameters. We return to a more detailed discus-
sion of this comparison in Sec. IV.

In Sec. III we study the case where both sides of the
capacitor are made from 2DEGs with equal electron density
n. Such a capacitor, in principle, can be realized in devices
with two parallel quantum wells with tunable concentrations
of electrons5 but we do not know of any published results.
The capacitance of such devices was addressed theoretically
in Ref. 17. In the limit nd2	1, the authors of Ref. 17 arrive
at a small correction to d which is twice larger than for that
of one 2DEG: d�=d+rD. In the classical limit rs	1, this
gives d�=d−0.23n−1/2. The authors of Ref. 17 assume that
this equation remains valid even at nd2�1, which leads
them to the prediction that C diverges and becomes negative
at a finite value of nd2. As the authors themselves recog-
nized, however, their assumption ignores correlations be-
tween the two 2DEGs. In Sec. III we account for these cor-
relations and demonstrate that they dramatically alter the
results of Ref. 17 for d�. Namely, d� vanishes and C diverges
only in the limit nd2→0, as in the case of a single 2DEG.
The transition from large to small nd2 for two 2DEGs is
described by the equation d�=d · f�n1/2d /2�, where f�x� is the
same function as for the single 2DEG case. Also similar to

the single 2DEG case, the diverging capacitance can be ex-
plained by strong correlations between the Wigner crystals of
the two 2DEGS, so that an electron transferred from one
2DEG to the other is still bound to its image charge �the hole
left behind in the opposite electrode, see Fig. 5�. Thus, at
nd2�1 only the weak dipole-dipole repulsion between two
electron-hole dipoles is responsible for resistance to charging
of the 2DEGs capacitor.

Of course, the divergence of the capacitance at nd2→0
takes place only at simultaneously vanishing Bohr radius a,
temperature, disorder, and, in the case of two 2DEGs, prob-
ability of tunneling through the insulator. At some strength
these factors destroy the Coulomb correlations between elec-
trons at a particular value of nd2 and truncate the capacitance
growth, so that at nd2→0 the capacitance remains finite.
Such a behavior is shown schematically by the thin line in
Fig. 1, which assumes vanishing temperature and disorder
but finite a=d /4. We see that the capacitance can grow as
much as 16 times from the geometrical value.

Usually, disorder is so severe that it closes the window of
nd2 in which d� is substantially smaller than d. Nonetheless,
the experiment of Ref. 20 shows a large correction, so that
apparently such a window is open. In Sec. IV we discuss this
experiment in greater detail in an attempt to understand why
it represents a special case where large capacitance can be
observed. We also discuss the effects of the quantum kinetic
energy of electrons in the 2DEG, and show that in the ab-
sence of disorder it provides an upper limit for the capaci-
tance at d�=a /4.

We note that this paper represents an extension of an ap-
proach we have previously used to study large capacitance at
the interface between a metal and an ionic conductor �an
ion-conducting glass21,22 or an ionic liquid23�. Such inter-
faces block both ionic and electronic current, thereby form-
ing a capacitor even in the absence of an insulating layer.
The binding of discrete ions to their image charges in the
metal results in a weaker, dipole-dipole repulsion between
counterions and therefore in large capacitance of the inter-
face. The resulting effective thickness of the capacitor can,
surprisingly, be even smaller than the ion radius. This paper
describes a similar effect for systems where the counter-
charge consists of a 2DEG separated from the metal by an
insulator. Over a certain range of the electron density a2 /d4

�n�1 /a2, the capacitance in such systems is dominated by
the strong Coulomb interactions between discrete charges
and can therefore be described using a classical analysis
similar to that of Refs. 21–23. A very brief report about the
first part of this work was published in our recent preprint.23

Our general approach to calculating the capacitance in the
sections below is as follows. We first describe the total elec-
trostatic energy U�n� associated with the ground state con-
figuration of n electrons per unit area. If the two sides of the
capacitor are coupled through a voltage source with voltage
V, then the value of the charge Q of the capacitor is that
which minimizes the total energy U−QV, where the term
−QV represents the work done by the voltage source relative
to the situation V=0. Using the �zero-temperature� equilib-
rium condition d�U−QV� /dQ=0 along with dQ=eSdn gives

0 0.2 0.4 0.6 0.8 1
0

0.5

1

n1/2d

d*
/d

(4)

(3)

a/d

FIG. 1. The effective thickness d� /d of a capacitor made from a
2DEG and a metal electrode as a function of the dimensionless
parameter n1/2d. Open squares and circles correspond to data from
Ref. 20 for devices 1 and 2, respectively; in each case the geometric
capacitance Cg was assumed to be equal to the largest recorded
value of the capacitance. The thick solid curve, which contains no
adjustable parameters, is the prediction of this paper for a classical
2DEG. At relatively large density, there is a small downward cor-
rection to d�, described by Eq. �3�. At n1/2d�1, d� is described by
Eq. �4�. The thin solid line schematically shows the role of quantum
mechanical motion for finite a, which at d��a produces a deviation
from Eq. �4� and leads to a saturation of the capacitance at d�

=a /4. To draw it we used a=d /4.
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V =
dU

dQ
=

1

eS

dU

dn
. �5�

The differential capacitance �or “charge susceptibility”� of
the system C= �dV /dQ�−1 can therefore be written

C = e2S2�d2U

dn2 	−1

. �6�

We can solve for the capacitance as a function of voltage,
C�V�, by combining this relation with Eq. �5�. Finally, the
effective capacitor thickness d� is also defined by the total
energy U as

d� =
�

4�e2S

d2U

dn2 . �7�

In this way a description of the total energy is sufficient to
determine the capacitance, and it is not necessary to invoke
the Poisson equation or to make mean-field approximations
of the electric potential.

II. CAPACITOR WITH A CLASSICAL 2DEG AND A
METAL ELECTRODES

In this section we describe a 2DEG with area density n
separated from a perfect metal electrode by an insulator of
thickness d. This can be, for example, a Si MOSFET or a
gated GaAs-AlGaAs heterostructure, where a 2DEG is cre-
ated at the semiconductor-insulator interface and connected
to one terminal of a voltage source by ohmic contacts. The
metal electrode is connected to the opposite terminal of the
voltage source. For simplicity, we assume that the dielectric
constant � is uniform everywhere. We treat the 2DEG in the
classical limit na2�1.

In the ground state for low-electron density n, the repul-
sion between electrons within the 2DEG causes them to form
a strongly correlated liquid, reminiscent of a two-
dimensional Wigner crystal, in which electrons are separated
from their nearest neighbors by a distance �n−1/2. Each elec-
tron, of charge −e, also induces an image charge, +e, in the
metal surface, which is effectively located a distance 2d from
the 2DEG. This situation is shown schematically in Fig. 2.
We suppose that the 2DEG is connected to some voltage
source which maintains a difference in electric potential V
between the 2DEG and the metal electrode. The charge Q of
the capacitor is defined as the amount of charge that has

moved through the voltage source relative to the state V=0.
A given electron within the 2DEG and its image charge

effectively form an electron-image dipole, with dipole mo-
ment 2ed, which repels an adjacent electron. In the limit
n−1/2	d, we can use the point-dipole approximation and the
repulsive energy between two adjacent electrons is
2e2d2n3/2 /�. More generally, we can write the total electro-
static energy of the nS electrons in the 2DEG by first calcu-
lating the electrostatic potential 
0 experienced by each elec-
tron relative to infinity. Specifically, for an electron located at
the origin,


0 =
e

2�d
− 


�i,j���0,0�

e

�
 1

ri,j
−

1

�ri,j
2 + �2d�2� , �8�

where the indices i , j label the set of electron locations and
ri,j is the distance between the electron �i , j� and the origin.
The term outside the sum in Eq. �8� indicates the potential
contributed by the electron’s own image charge, which is
added in place of the self-interaction term �i , j�= �0,0�. 
0
can be estimated by assuming that the electrons occupy a
regular square lattice with lattice constant n−1/2, in which
case


0 =
e

2�d
−

en1/2

�
· g�n1/2d� , �9�

where g�x� is a dimensionless function

g�x� = 4

i=1

�



j=0

� � 1
�i2 + j2

−
1

�i2 + j2 + 4x2	 . �10�

The sum in Eq. �10� is convergent for all x. We note that
while the true lowest energy configuration for the electrons is
to occupy a triangular lattice, the energy per unit area of a
square lattice of dipoles differs from that of a triangular lat-
tice by less than 2%,24 so for computational simplicity we
use a square lattice for all calculations.

The total energy of the configuration of electrons is

U = −
1

2
eSn
0 = −

e2S

4�d
n +

e2S

2�
n3/2g�n1/2d� . �11�

Combining Eqs. �11� and �7� gives

d�

d
=

1

32�

3g�x�

x
+ 5g��x� + xg��x�� � f�x� , �12�

where x=n1/2d.
The dimensionless function f�x� is plotted in Fig. 3. At

x�1, one can expand the summand in Eq. �10� to lowest
order in x and arrive at the point-dipole approximation for
the interaction among electron-image pairs, which after sum-
mation gives g�x��18x2. The resulting effective capacitor
thickness approaches zero linearly with x, and the function
f�x� is described by

f�x� � 2.7x, �x � 1� , �13�

which is equivalent to Eq. �4�. This vanishing of d� at x
→0 implies that the capacitance diverges when the electron
gas is very sparse. Such diverging capacitance is the result of
a vanishing dipole-dipole repulsion between adjacent

n-1/2

2dd

FIG. 2. Two neighboring electrons �black circles� in a 2DEG
formed at the semiconductor-insulator interface. The electrons are
separated from a metal electrode �solid area� by an insulator of
thickness d �hatched area�. The electrons form positive image
charges in the metal �white circles�.
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electron-image pairs as the electron density goes to zero.
At large electron density x	1, the effective thickness d�

approaches the geometric thickness d. In other words, C ap-
proaches Cg. In the region x	1, the difference between d�

and d can be viewed as a small correction associated with a
finite, negative screening radius of the 2DEG. In this case
f�x� approaches

f�x� = 1 − 0.12/x, �x 	 1� �14�

which is equivalent to Eq. �3�. It is only at much larger
density n�1 /a2, that quantum effects cause the 2DEG
screening radius rD to become positive, so that d� becomes
larger than d.

We can also derive a relation between the voltage of the
capacitor and the electron density n by using Eq. �5�. If we
define Vt to be the “threshold voltage” at which the electron
gas is completely depleted �n=0�, then the derivative of Eq.
�11� implies that

V − Vt =
e

4�d
x�3g�x� + xg��x�� . �15�

Combining the results of Eqs. �12� and �15� allows us to
create a plot of the capacitance as a function of V−Vt. The
result is shown in Fig. 4, with the capacitance and voltage
plotted in the dimensionless forms C /Cg and V / �e /�d�, re-
spectively. At small voltages 0�V−Vt�e /�d, the capaci-
tance diverges as C
 �V−Vt�−1/3. At large voltages V−Vt
	e /�d, the capacitance approaches its geometric value.

III. CAPACITOR MADE FROM TWO 2DEGS

One can also imagine a capacitor where 2DEGs comprise
both electrodes, as was treated theoretically in Ref. 17. Such
a situation is possible in devices with two parallel quantum
wells with tunable concentrations and separate contacts. This
can be, for example, a GaAs-AlGaAs-GaAs heterostructure,

where 2DEGs are formed at both heterojunctions. The den-
sities of the two 2DEGs can be tuned by applying a large
bias voltage VB above each of them. If a small additional
voltage V is applied between the two 2DEGs, then the re-
sponse to this small voltage can be used to determine the
capacitance of the two-2DEG system. This setup is shown
schematically in Fig. 5�a�.

In this section we consider the case of two identical
2DEGs oriented parallel to each other and separated by a
distance d. They are connected to opposite terminals of a
voltage source maintained at a particular voltage V. We as-
sume that at V=0 both 2DEGs have the same density n of
electrons and that charge neutrality is maintained by a uni-
form plane of surface charge with density +en that coincides

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

x

f(
x)

(13)

(14)

FIG. 3. The dimensionless function f�x� defined in Eq. �12�. The
function gives the effective thickness d� /d of a capacitor composed
of a 2DEG separated from a metal surface by an insulator of thick-
ness d as a function of the dimensionless electron density x=n1/2d.
The left side of the plot corresponds to a very sparse 2DEG, where
the electrons can be thought to form an array of discrete electron-
image dipoles and d� is described by Eq. �13�. The right side cor-
responds to a relatively dense packing of electrons, where the elec-
trons form an almost uniform layer of charge and d� is described by
Eq. �14�.

0 1 2 3
0

1

2

3

4

(V − V
t
)/(e/εd)

C
/C

g

FIG. 4. The zero-temperature capacitance of a capacitor made
from a 2DEG parallel to a perfect metal electrode, plotted as a
function of voltage.

d

VB + V/2 VB - V/2

(a)

(b)

FIG. 5. �a� A schematic picture of a capacitor made from two
parallel, depleted electron gases �black circles on top of white
squares�. A large bias voltage VB is applied from either side of the
2DEGs by metallic gates �shaded squares� in order to deplete the
2DEGs to some small density n. An additional small voltage V is
applied between the two 2DEGs and determines the capacitance.
Insulating layers separating the metallic gates from the 2DEGs and
the 2DEGs from each other are not shown. �b� A frontal view of the
2DEGs, as indicated by the thick arrow in �a�. On the upper 2DEG,
electrons �black circles� form a lattice with lattice constant �n−1/2.
Electrons on the lower 2DEG �white circles� also form a lattice but
this lattice is offset from the other so that electrons in the two
2DEGs minimize their Coulomb interaction energy.
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with the plane of each 2DEG. We also assume, for simplicity,
that the dielectric constant � is uniform everywhere.

At zero temperature, the electron positions are strongly
correlated, with electrons in a 2DEG seeking to maximize
their separation both from each other and from electrons in
the opposite plane. As a result, at V=0 electrons form inter-
locking lattices of electron positions on the two electrodes,
as shown schematically in Fig. 5�b�. The exact configuration
of the two lattices can take on one of three arrangements,
depending on the value of the parameter nd2.25 However, the
energy of these different lattice types differs by only a few
percent, so for illustrative purposes we have shown the sim-
plest case of two interlocking square lattices.

In order to give the two-2DEG capacitor a finite charge Q,
some number of electrons must be transferred from one
2DEG to the other. For one electron, this process requires a
finite amount of energy �u, associated with creating a defect
in the two lattices. While a careful calculation of �u is not a
major goal of this paper, we make an estimate of its value at
the end of this section.

When the voltage applied between the two 2DEGs is
smaller than �u /e, no charge transfer is possible and the
capacitance C=0. At V��u /e, some finite area density of
electrons �n is transferred from one 2DEG to the other and
the corresponding capacitor charge is Q=eS�n. These “ex-
cess electrons” also repel each other, and they seek to maxi-
mize their distance from each other by forming a Wigner
crystal-like lattice of defects in the ground state “checker-
board” of electrons. At low temperature, excess electrons re-
main coupled to the “holes” they leave behind in the oppo-
site 2DEG and therefore they repel each other by a dipole-
dipole repulsion. The form of this repulsion is identical to
that of the previous section, where the image charge was
formed in the metal electrode, except that in the present case
the dipole arm is d rather than 2d and there is an overall
factor 2 associated with the presence of a repulsive force at
both positive and negative sides of the dipole. This similarity
allows us to use previous results in writing the total electro-
static energy U of the system relative to the ground state.
Namely,

U = S�n�u +
e2S

�
��n�3/2 · g���n�1/2d/2� , �16�

where g�x� is the same function defined in Eq. �10�.
The density of excess electrons �n can be related to the

voltage V by V=dU /dQ=dU /d�eS�n�. If we define y
= ��n�1/2d, then this relation gives

V −
�u

e
=

e

2�d
·

y

2

3g�y/2� +

y

2
g��y/2�� . �17�

As in Eq. �7�, the corresponding effective thickness is d�

=� /4�e2S ·d2U /d��n�2, which gives

d�

d
= f�y/2� , �18�

where f�x�, plotted in Fig. 3, is the same function as in Eq.
�12�.

Equation �18� is correct when the applied voltage V is low
enough in absolute value that neither 2DEG is depleted. At
some critical voltage Vc, however, no additional charge
transfer is possible between the two 2DEGs and the capaci-
tance collapses. The value of Vc can be estimated by setting
�n=n, which corresponds to substituting x=n1/2d for y in Eq.
�17�.

We now comment on the threshold energy �u required to
transfer a single electron from one 2DEG to the other at zero
voltage. A rough estimate of �u can be made by imagining
that an electron is transferred to the site directly across from
it in the opposite 2DEG and that all other electrons remain in
their ground state positions. In this case �u can be evaluated
as

�u =
e2n1/2

�
h�n1/2d� , �19�

where h�x� is a dimensionless function

h�x� = 4�2

i=1

�



j=0

� 
 �− 1�i+j+1

�i2 + j2
−

�− 1�i+j+1

�i2 + j2 + 2x2� . �20�

Here, for simplicity, we have again assumed a square lattice
of electron positions, as in Fig. 5. The function h�x�, which is
convergent for all x, is plotted in Fig. 6. The estimate of Eqs.
�19� and �20� assumes that the lattice of electron positions is
undisturbed by the transfer of one electron, which is valid
when the 2DEGs are relatively sparse, x�1, which is the
major focus of this paper. At larger x the lattice is more
easily deformed and Eq. �19� represents an upper bound for
�u.

IV. DISCUSSION

In this section we discuss the truncation of the capaci-
tance divergence of a classical 2DEG, concentrating prima-
rily on the case of a single 2DEG parallel to a metal elec-
trode. So far we have dealt only with a clean, classical
2DEG. Of course, at zero temperature and in the absence of
disorder the capacitance cannot diverge without bound in the
limit nd2→0 because of the effects of quantum kinetic en-
ergy. This conclusion can be reached by considering that
each electron within the 2DEG sits in a potential well created
by neighboring electron-image dipoles. If this potential w is
expanded to second order in the electron’s displacement �

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x = n1/2 d

h(
x)

FIG. 6. The dimensionless function h�x�, as defined in Eq. �19�.
This function determines the energy required to move a single elec-
tron from one 2DEG to the other at zero temperature.
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from the potential well minimum, then we get w���
=�e2d2n5/2 /� ·�2+e
0, where ��54 is a numerical coeffi-
cient and 
0�18ed2n3/2 /� is the electrostatic potential de-
scribed by Eq. �9�. This potential w��� is that of a two-
dimensional harmonic oscillator, and therefore it has a
ground-state energy ��+e
0, where � is defined so that
w���=m�2�2 /2+e
0. When ���e
0, the 2DEG retains its
strongly correlated, Wigner crystal-like structure and the
contribution of the quantum kinetic energy to the capacitance
is small. At n1/2d�0.2a /d, however, the quantum kinetic
energy becomes larger than e
0 and the 2DEG loses its elec-
trostatic correlations. This point corresponds to d��a. At
vanishingly small values of n1/2d, the energy of the 2DEG is
that of a noninteracting fermion gas, which produces d�

=a /4. For the experiments of Ref. 20, d=4 nm and a
�1 nm, so that apparently in this system a capacitance C
�16Cg is possible �see Fig. 1�.

The analysis above has also ignored disorder, which can
truncate the divergence of the capacitance by destroying
dipole-dipole correlations. The presence of disorder modu-
lates the density of the correlated dipole liquid with some
characteristic amplitude �nd. At small enough average den-
sity n, the overall electron density becomes smaller than �nd.
This means that screening becomes nonlinear10 and multiple
pores open in the 2DEG. Electric field lines starting at the
metal gate electrode leak through these pores. As a result, the
Debye screening radius rD changes its sign4–15 from negative
to positive at some n=nm. At smaller n the effective thick-
ness d� grows sharply, similar to the thin full line plotted in
Fig. 1�. In a 2DEG with moderate mobility and large distance
to the gate, nmd2	1 and the minimum of d� /d is very shal-
low. For example, for the classical 2D hole gas �with large
rs� in GaAs/GaAlAs heterojunctions studied in Ref. 9, nmd2

=5 while as we see in Fig. 3 the crossover between the
nd2	1 and nd2�1 asymptotic dependencies happens only
around n1/2d�0.25 or nd2�0.06.

Larger deviations from the geometrical capacitance can be
observed in the cleanest p-GaAs/GaAlAs heterojunction-
insulated-gate field-effect transistors �HIGFETs�.26 In such
devices a 2D hole gas is created with concentration as small
as n=7�108 cm−2 by a metallic gate at a distance d from
the 2D gas which can be as small as 250 nm. This gives
nd2�0.5, so that if disorder permits �d−d�� /d�0.2 can be
reached. There is no published data on capacitance for this
case but there are indications that screening of the Coulomb
interaction between 2D holes by the gate �hole images� plays
an important role for transport properties.26

One may be able to reach even larger �d−d�� /d for the
capacitance between two 2DEGs residing in two parallel
quantum wells, because in this case d can be as small as 30
nm �Refs. 4 and 5� so that nd2�1 already at n�1011 cm−2.
We are not aware of any such measurements. Another system
which may provide a good opportunity for studying capaci-
tance larger than Cg is that of a very low-density 2DEG
which floats on the top of a thin liquid helium film covering
a metallic electrode.27,28

Let us now turn to the most spectacular data, obtained
from a YBCO/LAO/STO capacitor.20 We see from Fig. 1 that
in this case a much smaller value nd2�0.02 has been
reached than in other cases, resulting in the record for larger-

than-geometrical capacitance �d−d�� /d=0.4. This became
possible because of the very small distance between the
2DEG and the gate d�4 nm. Even at relatively large con-
centration n=1011 cm−2, such small thickness leads to nd2

�0.04. In Fig. 1 the agreement of our theory �which has no
adjustable parameters� with the experimental data of Ref. 20
looks so good that disorder apparently plays a minor role.
The relatively large concentration of electrons may result in
a significant resistance to disorder but the relative unimpor-
tance of disorder is nonetheless difficult to understand. No
independent estimates of disorder effects in YBCO/LAO/
STO capacitor are currently available in literature.

Our comparison with the data of Ref. 20 assumes that the
2DEG is localized within a very narrow layer of STO, on the
order of one lattice constant, as was shown in Refs. 29 and
30. There are arguments that the electron layer is actually
much wider31,32 but these are based on calculations of the
nonlinear screening radius of STO using its huge low-
temperature dielectric constant ��20 000. We disagree with
using the dielectric constant of STO as measured in uniform
crystals when describing nonlinear screening. Indeed, the
large dielectric constant of STO �as well as that of displace-
ment ferroelectric crystals� has a strong spatial dispersion.
Below we discuss the origin of this dispersion following Ref.
33.

The large, low-temperature, zero-frequency dielectric
constant of STO is related to the anomalously small fre-
quency of the transverse optical mode ��q� at q=0. At q
=0, the dielectric constant ��0�
�−2�0�. For finite wave vec-
tor q, the dielectric constant ��q�
�−2�q�. The soft mode is
known to have very strong dispersion, so that at large q it
returns to the normal optical mode frequency. This disper-
sion has the form ��q�=��0� / �1+ �q��2�, where �=a0�1/2�0�
and a0 is the lattice constant.33 Using such a strongly disper-
sive dielectric constant for the description of nonlinear
screening by electrons in STO self-consistently leads to the
conclusion that the nonlinear screening radius, or in other
words the width of the 2DEG, is on the order of the lattice
constant a0. �This same dispersion also explains why the
large dielectric constant of STO does not lead to strong
electron-phonon coupling and a large increase in the critical
temperature of superconductivity.34�

V. CONCLUSION

In this paper we have shown that in devices where a
2DEG comprises one or both electrodes of a plane capacitor
the correlations between electronic charge in opposite elec-
trodes dramatically affect the capacitance at low electron
density n. In the absence of disorder, this leads to a capaci-
tance that grows strongly with decreasing nd2, with a maxi-
mum value corresponding to d�=a /4 at nd2→0. We have
presented a prediction for the effective capacitor thickness d�

which is valid over the entire range of nd2 and which is
based on the Coulomb correlations between electrons and
their image charges. The cases of a 2DEG parallel to a metal
electrode and of two parallel 2DEGs were considered sepa-
rately. Our results compare favorably to the recent experi-
ments of Ref. 20, which operate at nd2�1 and report C
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larger than Cg by as much as 40%, without the use of adjust-
able parameters.

The experiments of Ref. 20, which use a 2DEG created at
the an LAO/STO interface, are consistent with the 2DEG
occupying a very thin layer of STO on the order of one
lattice constant, so that the 2DEG can indeed be treated as a
two-dimensional system up to fairly high-electron density.
Further studies on such systems with low disorder and small
LAO thickness may provide even better insight into the be-
havior of the capacitance at small nd2. Systems of very clean

HIGFETs, parallel quantum wells, and electrons floating on
liquid helium may also provide good opportunities for study-
ing larger-than-geometrical capacitance.
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