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We apply the adiabatic time-dependent density functional theory �TDDFT� to the generation of coherent
optical phonons in Si crystals by intense laser pulses. The theory reproduces the main phenomena observed
experimentally: dependence on polarization, strong growth at the direct band gap, and the change in phase
from below to above the band gap. Both show that two mechanisms invoked in phenomenological theory,
namely, impulsively stimulated Raman scattering and displacive excitation, are present in the TDDFT. The
calculated phase of the coherent phonon is in qualitative agreement with experiment and with phenomenologi-
cal modeling in the vicinity of the direct band gap. At higher laser frequencies, the TDDFT predicts additional
structure not present in the modeling.
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I. INTRODUCTION

Since its first observation in Ref. 1, coherent optical
phonon generation by intense light pulses has been
an active area of research and has by now been studied in
many materials including insulators,2,3 semiconductors,4–9

metals,10 semimetals,11–15 ferroelectrics,16 ferromagnets,17

superconductors,18 and organic media.19 We also mention a
possible application to broadband comb generation.20 For a
review of the earlier work, see Ref. 21. A number of inter-
esting phenomena are observed in cubic crystals. The ampli-
tude and vibrational axis of the phonon is strongly dependent
on the polarization of the laser field, as expected from crys-
talline symmetry considerations. The phase of the vibration
is found to depend sensitively on the laser frequency, varying
by nearly � /2 as the threshold for direct transitions across
the band gap is passed.7

Traditionally, phenomenological theories have been em-
ployed to describe the phonon generation.22 Below the
gap, the underlying mechanism is the stimulated Raman ef-
fect, called “impulsively stimulated Raman scattering”
�ISRS� in this context.1,23 In molecular Raman scattering,
this is normally calculated by considering the polarizabil-
ity function and its dependence on the vibration coordi-
nates. In solids, the stimulated Raman effect may be
treated in third-order perturbation theory24 or in terms of the
dielectric polarizability function.25 Above the gap, the as-
sumed mechanism, called “displacive excitation of coherent
phonons”�DECP�,26–28 invokes a force on the phonon coor-
dinates associated with persistent electron-hole excitations. A
phenomenological model has also been developed to con-
sider both mechanisms together.7,29,30 In particular, the model
by Stevens, Kuhl, and Merlin �SKM� �Ref. 30� requires only
the dielectric function as input, apart from an overall factor.

In this work, we apply the time-dependent density func-
tional theory �TDDFT� to the laser-lattice interaction and the
calculation of coherent phonons. It appears that TDDFT is
the only computationally feasible ab initio method to treat
the effects of strong transient fields on systems containing

many electrons, and it is important to test it in new ways, as
well as to get a deeper insight into the physical process under
study. In this paper we report on the first application of the
method to silicon, for which there exist a number of experi-
mental measurements.6–8 We will show that the theory ap-
plies to both the ISRS and the DECP regimes of excitation,
thus providing a comprehensive framework for treating co-
herent laser-lattice interactions. We note that the static DFT
has already been successfully applied to calculate the needed
dielectric polarizability function for a macroscopic treatment
of Raman scattering in Si crystals.31 Calculations of the full
time-dependent theory have also been recently reported for
the coherent phonon generation in diamond.32

II. PHYSICAL DESCRIPTION

We start with a brief description of the pump-probe ex-
periments used to detect and measure the coherent phonons.
The pump laser pulse is directed on a �100� Si surface at
near-normal incidence. The laser field has a linear polariza-
tion, and for maximum effect, the electric field of the laser is

oriented along the �011� axis �or the equivalent �011̄� axis�.
The generated coherent phonon destroys the isotropy of the
dielectric tensor in Si crystal, causing the dielectric function
�ii along the �011� axis to differ from that along the perpen-

dicular �011̄� axis. The anisotropy is detected by a probe
pulse having a linear polarization along the �001� or �010�
axis. The electric field of the reflected pulse will be rotated
by an amount that depends on the anisotropy of the dielectric
tensor. The experimental results are conventionally reported
in terms of the anisotropy of the reflectivities perpendicular
and parallel to the electric field of the pump pulse,6 �Reo
=R�−R�. Experimentally, one sees an oscillation at the fre-
quency of the optical phonon �ph. An important observable
is the phase of the oscillation with respect to the pump pulse,
�, in the expression,
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�Reo�t� = �R0 cos��pht + �� + �R̄ . �1�

One also sees a shift in the equilibrium value in the experi-
mental measurement which may be fit by adding a constant

term �R̄.
The physical origin of the effect can be seen from the

response to the field within a unit cell, depicted in Fig. 1. The
left panel shows a view of the atoms in the eight-atom unit
cell, bisected by a plane defined by the �011� and �100� axes.
The four atoms lying on the plane are shown together with
corresponding atoms from adjacent cells. In the right panel
we show a frontal view of that plane and the atoms on it. The
electric field axis is in the plane, shown by the large horizon-
tal axis. The relevant optical phonon coordinates are shown
by the vertical arrows.

There is no linear coupling between electric field and the
phonon coordinates but in second order there are two ways
that they may interact. The polarizability of the electrons
between silicon atoms obviously changes with the separation
of the atoms. As may be seen from the displacement vectors
of the optical phonon, the separation between atoms with

bonds in the �111� and �1̄11� directions increase. The bonds

in the �111̄� and �11̄1� directions, which are perpendicular to
the plane, decrease in length. Let us call these A and B
bonds, respectively. The polarizability can obviously differ
along the A-bond and B-bond directions when the atoms are
displaced as depicted for the optical phonon coordinate.

In the Raman mechanism, all changes in the electron
wave function are assumed to be adiabatic. Considering the
dielectric tensor as a function of the phonon coordinate, both
the effect of the pump pulse and the response of the probe
pulse can be calculated from knowledge of the macroscopic
dielectric function �ii for the two perpendicular directions i

= �011� and �011̄�. The dependence on the phonon coordinate
q gives rise to the force generating the phonon as well as the
change in reflectivities needed to observe it. In this mecha-
nism, the pump pulse produces an impulsive force and the
response is sinusoidal with a phase angle �=� /2 in Eq. �1�,
independent of the sign of ��ii /�q.

The other mechanism, displacive phonon generation, con-
siders the effect of the internal excitations created by the

pump pulse. For high-field intensity or with high-frequency
laser pulses, the pump pulse creates electron-hole excitations
that persist in the final state. Again, the electrons in the A and
B bond regions may be excited differently, going into differ-
ent orbitals in the conduction bands. The equilibrium lattice
in the presence of electron-hole excitations may show a non-
zero displacement in q. In that case, without any impulsive
force, the phonon amplitude with respect to the new equilib-
rium would be maximal at t=0. This implies that the phase
of the optical phonon would be �=0 or �.

III. FORMALISM

A. Equations of motion

The TDDFT equations for evolution of the electron wave
function are based on the Lagrangian formalism presented in
Ref. 33, treating the electron dynamics in solids induced by a
spatially uniform electric field. The formalism has been ap-
plied to calculations of the dielectric function in linear-
response regime33 and to the description of optical dielectric
breakdown in nonlinear regime.34 For the present applica-
tion, we treat the positions of the ions as additional variables
in the Lagrangian, adding a kinetic term to permit classical
time-dependent dynamics35 �Eq. �4.12��. Similar treatments
of mixing classical-quantum dynamics have been used in
quantum chemistry to describe molecular reactions and vi-
brational coupling.36 The combined Lagrangian for the
coupled electron-lattice dynamics in solids is

L = �
i
�

�

dr��	i
�i

�

�t
	i −

1

2m
	
− i�� +

e

c
A��	i	2�

− �
�
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1
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�

�
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+
�

8�c2
dA�

dt
�2

+
1

2�



M
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e
dR� 


dt
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�2�

Here 	i are the time-dependent electron orbitals, taken as
Bloch orbitals in a unit cell of volume �. The electromag-
netic fields are represented by two time-dependent terms:
A� �t� is the spatially uniform vector potential which describes
the macroscopic electric field. The field ��r� , t� is the Cou-
lomb potential, assumed to be periodic. Also, ne�r� , t�
=�i�	i�r� , t��2 represents the electron-density distribution. The
corresponding ion density is expressed nion�r� , t�=�
Z
��r�
−R� 
� with Z
 the charge numbers and R� 
 the coordinates of
the ions. Note also in the second line of Eq. �2� the
exchange-correlation term Exc associated with the energy
functional of DFT.

Variation of the Lagrangian with respect to � immediately
yields the Poisson equation for the Coulomb potential,

�2��r�,t� = − 4�e�− ne�r�,t� + nion�r�,t�� . �3�

Variation with respect to 	i yields the time-dependent Kohn-
Sham equation,

FIG. 1. �Color online� Geometry of the electric field and the
optical phonon displacement in the eight-atom unit cell. On the left
is shown the geometry of the cell with a cut through the �011�
� �100� plane. The atoms on the plane are highlighted in white. The
plane with its atoms is shown at the right in a face view. The long
arrow shows the axis of the electric field and the small arrows show
the direction of the optical phonon coordinates.
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The DFT is often carried out with a reduced number of ac-
tive electrons and an ionic pseudopotential Vion to take into
the core electrons. It is nonlocal, giving rise to an additional
term �i�dr�dr��	i

��r��Vion�r� ,r���	i�r��� in the Lagrangian and in
the Kohn-Sham equation. Note that the nonlocality makes
the pseudopotential gauge dependent.

Variation with respect to A� yields

�

4�c2

d2A� �t�
dt2 =

e

c
�

�

dr�j�ion − j�e� −
e2

mc2NeA� �t� ,

where j�ion and j�e represent ion and electron currents, respec-
tively, and Ne is the number of electrons in the unit cell.

To introduce the external laser field, we express the vector
potential as a sum of an external field A� ext�t� and the induced
field A� ind�t�. All the equations of motion are the same except
the dynamic equation for A� . It becomes

�

4�c2

d2A� ind�t�
dt2 =

e

c
�

�

dr�j�ion − j�e� −
e2

mc2NeA� �t� �5�

with

A� �t� = A� ext�t� + A� ind�t� . �6�

In the formalism for calculating the linear response,33 the
external field was imposed by a step-function change in A� �t�
at time t=0, so it was not necessary to keep the distinction
between external and internal contributions for the later evo-
lution. In this work, we simulate the time-dependent electric
field of the laser pulse and take A� ext�t� to have the form

A� ext�t� = �t

dt�E�0 sin2
�t�

Tp
�sin �t� �7�

for 0 tTp and zero otherwise.
Physically, the external field A� ext�t� defined this way cor-

responds to an electric field outside the medium and perpen-
dicular to the surface, as in the geometry of a capacitor with
a dielectric slab between two plates. For excitation of the
medium by a laser pulse, the electric field is parallel to the
surface and A� ext has no direct physical significance. How-
ever, we may use it to generate the full field through the
equations of motion, and derive the intensity of the laser
from that field strength. To make a quantitative connection,
one has to take into account also the transmission of the laser
beam through the interface. It is a simple exercise in electro-
magnetic theory to derive the needed formula; the relation-
ship of Aext to the field strength in the incident laser beam is

Aext =
2�

1 + �1/2Ain, �8�

where Ain is the field strength of the laser beam in vacuum.
The remaining equation of motion is the one for the ionic

coordinates R� 
. It is given by

M


d2R� 


dt2 = −
e

c
Z


dA�

dt
−

�

�R� 


�
�

dr�enion� . �9�

The right-hand side is the force on the ion and is the focus
objective of our study.

B. Adiabatic limit

The TDDFT theory respects the well-known adiabatic re-
lationship between the macroscopic polarizability � and the
force on the ions, encapsulated in the formula,22

d2q

dt2 + �ph
2 q = F�t� =

1

2

��

�q
�E�t��2, �10�

where q is a phonon coordinate linearly related to the ion
positions R� 
. This fundamental connection between the force
and � is not obvious from the equations of motion, Eq. �9�,
so we outline here a derivation. We start with the second-
order expression for the electronic wave function ��t� in the
presence of the laser field. Consider the electromagnetic field
of the form A=A0 sin��t� acting as the perturbation.22 The
electronic wave function is expanded to second order as

��t� = e−i�E0+E2�t
�0 + �
n=−2

2

e−in�t�n�� , �11�

where E0 is the ground-state electronic energy in the absence
of the field A. ��� and �0�, ��2� are, respectively, first-
and second-order corrections to the ground-state wave func-
tion �0. The second-order contribution E2 to the overall
phase of � is found to be

E2 =
e2A0

2

4m2c2 ��0�P�
 1

− H + E0 + �
+

1

− H + E0 − �
�P� ��0�

+
Ne2

4mc2A0
2, �12�

where P� is a momentum operator, P� =�ip� i. This is nothing
more than the electromagnetic energy associated with the
susceptibility of the medium. Considering E2 as a function of
ionic displacements, we can immediately identify it as an
effective potential in the phonon coordinate whose gradient
gives the force on the ions.

Our task is to show that this force is identical to that
calculated by Eq. �9�. This can be done quite generally mak-
ing use of Floquet states. In the Floquet representation, the
time-dependent wave function ��t� is expressed as

��t� = e−i�Ft�F�t� , �13�

where the Floquet state �F�t� is periodic with a period T
= �2���−1. It satisfies the equation

H�F = �F�F, �14�

where H=H− i� /�t. We can also express �F as the integral
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�F =
1

T
�

0

T

dt��F�H��F� . �15�

In fact this last equation is a variational principle for �F and
�F. This is the crucial point for making the connection. Since
�F is stationary with respect to variations in �F, the condi-
tions for the Feynman-Hellman theorem apply and the de-
rivative of �F with respect to a phonon coordinate may be
calculated from the expectation value of �H /�q=�H /�q,

d�F

dq
=

1

T
�

0

T

dt��F�
�H

�q
��F� . �16�

The expectation value in the integrand is just the force cal-
culated directly from the TDDFT equation of motion, Eq.
�9�.

IV. CALCULATIONAL DETAILS

Our calculations are based on the local-density approxi-
mation �LDA� density functional,37 treating the four valence
electrons of Silicon explicitly and using the Troullier-Martins
pseudopotential.38 We employ the real-time, real-space
scheme which was developed by us.32–34,39 The geometry is
taken to be a simple cubic unit cell containing eight Si atoms
�lattice constant a=10.26 a.u.�. The electron orbitals are rep-
resented by amplitudes on a Cartesian lattice. For the deriva-
tives of the orbital wave functions, we use the nine-point
difference formula for both the first and the second deriva-
tives. The wave vectors for occupied orbitals are discretized
on a three-dimensional lattice covering the Brillouin zone.
The code first calculates the Kohn-Sham ground-state orbit-
als to initialize the time-dependent calculation. The time evo-
lution is carried out by a fourth-order expansion that is stable
for time steps smaller than �t= �2 /9�1/2��x�2 in atomic units,
where �x is the mesh spacing of the spatial lattice. In gen-
eral, the results are insensitive to the choice of �t provided
the stability condition is satisfied. In the following calcula-
tions, we fix the positions of Si atoms and calculate the force
acting on atoms according to the right-hand side of Eq. �9�.

We now show some comparisons of the force calculation
as a function of the number of lattice points. The numerical
demands on the theory are more severe for photon energies
above the direct band gap than for lower energies, so we
make the comparison at a relatively high energy, ��=4 eV.
Figure 2�a� shows the convergence of the force in �100� di-
rection with respect to the number of grid points in the eight-
atom unit cell. In this plot, the 243 subdivision is used for
K-space grid. The calculated force changes sign between 123

and 163 lattices. It appears that a 163 lattice is sufficient to
calculate the force to the needed accuracy of our semiquan-
titative theory. The sensitive to the coarseness of the wave
number mesh is shown in Figs. 2�b� and 2�c�, calculated
using the 163 spatial lattice. It is important here to have a fine
enough subdivision of points so that the absorptive part of
the response does have large fluctuations due to the discreti-
zation. One sees that 83 mesh is quite inaccurate but there is
convergence for the force at 163. The excitation energy
shows some change from 163 to 243, so we adopt the finer

mesh 243 for the calculations reported below. For the spatial
mesh, we use the 163 lattice and a corresponding time step of
�t=0.08 a.u.�2�10−18 s. Denser lattices are possible in
wave number lattice because the code has been parallelized
by distributing the calculations for different wave vectors
onto different processors. The system is evolved for a total
time of 50–100 fs, which is sufficiently long to cover a cycle
of vibration in the optical phonon. A typical computational
wall time is 20 h with 32 nodes of four quad-core Opteron
CPU �2.3 GHz�, 512 cores in total.

V. RESULTS

A. Dielectric response

We first show dielectric properties of Si calculated with
our LDA functional using the real-time method.33 Figure 3
shows the comparison of the computed dielectric function
with experiment. First we note that the LDA density func-
tional gives a quite satisfactory account of the low-frequency
dielectric function, predicting �LDA=14 at ��=1 eV com-
pared to the experimental value �exp=12. However, as is well
known the LDA theory underpredicts band gaps. In Si the
calculated direct band gap is 2.4 eV compared to the experi-
mental value of 3.3 eV. Since the mechanism to generate the
coherent phonons is very dependent on the direct band gap,
any comparison with experiment has to take into account the
0.9 eV shift. It is also of interest to see how closely the
induced field follows the dielectric response when the excit-
ing field has the form of a femtosecond-scale pulse. For the
pulse excitation, we shall take the form �Eq. �7�� with a pulse
duration of Tp=16 fs. We show below the response to a
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FIG. 2. �Color online� �a� Convergence of the force with respect
to spatial lattice subdivision, �b� convergence of the force with re-
spect to K-space grid, and �c� convergence of the excitation energy
with respect to K-space grid.
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driving field whose strength Aext is fixed to a peak electro-
magnetic wave intensity of I=1012 W /cm2. This corre-
sponds to a peak electric field strength of E=2.7 V /nm
=0.005 a.u. The total energy fluence per pulse is
0.08 J /cm2. We note that the actual strength of the laser
intensity should be estimated with Ain given by Eq. �8�. Fig-
ure 4 shows the exciting electric field and the medium re-

sponse for photon energies ��=1.0, 2.5, 3.5, and 6.0 eV. The
red solid curve shows the driving field, Eext=
−�1 /c�dAext /dt, and the green dashed curve shows the total
field, E=−�1 /c�dA /dt, including screening by the crystal.
Panel �a� shows the two fields for ��=1.0 eV. We see that
the total field is in phase with the driving field and goes to
zero after the end of the pulse, as it must be when the photon
energy is below the direct band gap. The total field has been
scaled up by a factor of �=14 to facilitate the comparison.
Panel �b� shows the two fields for ��=2.5 eV, close to the
direct band gap. Panel �c� shows the two fields for ��
=3.5 eV. In this case, the frequency is near a maximum of
the imaginary part of �−1. One can see that the driving field
and total field are somewhat out of phase. The ratio between
total and driving fields is about 44, which roughly coincides
with the absolute value of the dielectric function at 3.5 eV, as
seen from Fig. 3. For ��=2.5 and 3.5 eV cases, the oscilla-
tion persists after the end of the pulse, showing that electron-
hole pairs having optical transition strength persist into the
final state. Finally, panel �d� shows the two fields at ��
=6 eV. This is beyond the main peak in the absorptive
strength function, and the two fields are seen to have oppo-
site phases.

The derivative of the dielectric function �or the suscepti-
bility� with respect to the phonon coordinate should also be
explicitly examined since it mediates the coupling in the
adiabatic regime. The specific derivative, called the Raman
tensor, was calculated with the same LDA density functional
but using a quite different methodology in Ref. 31. The the-
oretical value was found to agree well with experimental
data on incoherent phonon generation. With our methodol-
ogy, we can compute the effective Raman tensor from the
TDDFT calculation of the response to a laser pulse. The
susceptibility tensor of the distorted lattice is expressed as
�Eq. �4� of Ref. 31�

�xy
�1� = 8Pq/a2, �17�

where the phonon coordinate q is defined �R� �� �
= �qa�0,0 ,1� in terms of the lattice constant a. The external
field �Eq. �7�� with ��=1 eV is applied in the �110� direc-
tion and the response is measured by the induced polariza-
tions in the same direction. The fractional change in the di-
electric function as a function of the displacement q is
obtained by comparing the applied and induced fields and is
shown in Fig. 5. From this figure, one may extract the value
of the Raman tensor, d�xy

�1� /dq at q=0. This is 7.8, 25%
higher than the measured value 6.8�1 �Ref. 40� and 10%
higher than the calculated value, 7.1, in Ref. 31.

B. Electron dynamics

In this section, we examine how the character of the elec-
tronic excitation changes as the laser frequency increases
from below to above the direct band gap. Characteristics of
the excitation as a function of time are shown for frequencies
��=2.25, 2.5, and 2.75 eV in Fig. 6. The top panel shows
the total increase in energy in the unit cell, including both
electronic excitation energy and the electromagnetic field en-
ergy. The red solid curve shows the results for a frequency
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Real and imaginary parts of � are shown in upper and lower panels,
respectively.

(a)

-2
-1
0
1
2 Eext

14.2 × Etot

(b)

-2
-1
0
1
2 Eext

29 × Etot

(c)

-2
-1
0
1
2

E
le

ct
ric

fie
ld

[V
/n

m
]

Eext
44 × Etot

(d)

-2
-1
0
1
2

0 5 10 15 20 25 30

Time [fs]

Eext
-8.5 × Etot

FIG. 4. �Color online� Dielectric response of Si. The red solid
line shows the electric field associated with an external laser pulse
of the form of Eq. �7�, and the green dashed line shows the total
electric field inside the crystal, scaled up by a factor S to facilitate
the comparison. The panels show results for different laser frequen-
cies. The peak intensity is the same �I=1012 W /cm2� for all cases.
�a� ��=1.0 eV, S=14. �b� ��=2.5 eV, S=29. �c� ��=3.5 eV,
S=44. �d� ��=6.0 eV, S=−8.5.

COHERENT PHONON GENERATION IN TIME-DEPENDENT… PHYSICAL REVIEW B 82, 155110 �2010�

155110-5



below the band gap. Here the energy drops almost to zero
after the pulse is over, as to be expected. The green dashed
curve, corresponding to a frequency at the band gap, shows
that some excitation energy remains after the end of the
pulse, comparable in magnitude to the total energy at the
peak. Finally, the blue dotted curve shows that above the gap
the laser-electron interaction is highly dissipative, leaving a
large excitation energy in the final state. The lower panel in
the figure shows the number of excited electrons as a func-
tion of time. This is calculated by taking the overlaps of the
time-dependent occupied orbitals with the initial state static
orbitals as in Ref. 34. The results are qualitatively very simi-
lar to what we found for the energy. Below the direct band
gap, the excited electron shows a peak during the pulse and
then drops off to a very small value in the final state. At
higher frequencies, the excitations remain in the final state
and it is not possible to distinguish the real excitation from
the virtual one during the pulse. In summary, one sees an
adiabatic response below the gap switching rather abruptly to
a strongly dissipative response above the gap.

We next show the electron dynamics in real space. Figure
7 shows the electron density in the plane of Fig. 1. The left
panel shows the ground-state electron density, and the
middle and right panels show the change in electron density
from that in the ground state when the laser pulse of fre-
quency ��=2.5 eV, close to the band gap, is irradiated. The
external and the total electric fields for this laser pulse are

shown in the panel �b� of Fig. 4. The middle and right panels
correspond to the time t=8.1 fs and t=26.7 fs, respectively.
In the middle and right panels, red and blue indicate an in-
crease or decrease in electron density, respectively. At t
=8.1 fs, the electric field is maximum and there is a strong
virtual excitation of the electrons. In the middle panel of Fig.
7, a movement of electrons is seen in the bond connecting
two Si atoms. At t=26.7 fs, the external electric field ended.
Since the ultrashort laser pulse includes frequency compo-
nents above the direct band gap, there appear real electron-
hole excitations. In the right panel of Fig. 7, one can see that
the excitation results in a decreased density in the bond re-
gion and an increase near the Si atoms but away from the
bond. One should note that the coloring of the middle and
right figures are different by a factor of 40 to improve the
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FIG. 7. �Color online� Left panel shows the ground-state electron density in the plane shown in Fig. 1. The middle and right panels show
the change in the electron density from that in the ground state by the laser pulse corresponding to the panel �b� of Fig. 4. The middle panel
corresponds to the time t=8.1 fs and the right panel to the time t=26.7 fs, respectively. In the middle and right panels, the red color
indicates the increase in the electron density while blue color indicates the decrease.
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visibility of the density change at time t=26.7 fs.
We now examine in more detail the distribution of elec-

trons and holes in the excitation. Figure 8�a� shows the cal-
culated electronic density of states in Si as a function of
energy with respect to the Fermi level. This was computed
with the 243 mesh of wave numbers and smoothing the dis-
tribution with a Gaussian function. Note that the gap that is
visible in Fig. 8�a� at e−eF�0 is indirect and much smaller
than the direct gap. The change in the electron and hole
occupation factors is shown for several frequencies in Figs.
8�b� and 8�c�. Figure 8�b� shows the distribution at the peak
of the pulse, for three frequencies below the gap. The exci-
tations are virtual here, and the character of the distribution
does not depend strongly on the frequency. As the frequency
increases from 1.0 to 2.25 eV close to the direct band gap,
the magnitude of the electron-hole excitation increases. This
agrees with the increase in the real part of the dielectric
function, as seen in Fig. 3. Figure 8�c� shows the distribution
of electrons and holes in final state for three frequencies
above the gap. One sees a progression of distributions with
the highest frequency pulse exciting much deeper levels than
the pulse just above the gap produces. We will see below that
this will have some consequences for the coherent optical
phonon.

C. Coupling to the lattice

We now turn to the force on the ions during and after the
laser pulse. Figure 9 shows the calculated induced force for
the same three frequencies spanning the direct gap that we
examined earlier. Note that the ion positions are fixed in
these calculations; the accelerations are small and the result-
ing displacements would be inconsequential.

The lowest frequency, shown by the red solid curve, gives
a force envelope that follows the shape of the pulse intensity.
This is just what one would expect from the adiabatic for-
mula, Eq. �10�. Here force is proportional to the square of the
field strength averaged over a Floquet cycle of the wave
function. One also sees high-frequency oscillations superim-
posed on the envelope of the curve. The frequency of these
oscillations is twice the laser frequency, again as expected
from the adiabatic formula.

The green dashed curve shows the force for a laser fre-
quency of ��=2.5, nearly at the direct band gap. One still
sees a large peak at 10 fs associated with instantaneous high-
field intensity. However, there is a residual force after the
end of the pulse which is rather constant with time. This is
just what one expects for displacive mechanism. At this
point, we have shown that TDDFT reproduces at a qualita-
tive level the role of the two mechanisms. Beyond that, the
relative sign associated with them can be extracted from the
graph. The last case shown, ��=2.75, is 0.35 eV above the
direct gap. Here the displacive mechanism is completely
dominant, although one can still see an enhancement of the
force during the pulse.

We now integrate the time-dependence force to get the
lattice distortion associated with the phonon coordinate. In
principle, the restoring potential for the lattice vibration is
included in the evolution equations but the amplitude of the
lattice displacement is extremely small and it would be prob-
lematic to treat its effects numerically. So for this part of the
analysis we simply assume a harmonic restoring potential
consistent with the observed optical phonon frequency,
fphonon=15.3 THz. The results of the integration are shown
in Fig. 10 for a Si atom depicted in Fig. 1. One sees that the
amplitude increases greatly above the threshold. To analyze
the characteristics of the coherent phonon more quantita-
tively, we fit the oscillation of the displacement in the time
interval 40–90 fm to a cosine function similar to Eq. �1�,

q�t� = − q0 cos��pht + �� + q̄ , �18�

where we choose q0�0.
The results for the dependence of amplitude q0, phase �,

and shift q̄ on laser frequency are shown in Fig. 11. Below
the direct-gap energy the phase is close to � /2 as expected
for the Raman mechanism. The amplitude remains almost
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constant and the shift is vanishingly small in this frequency
region, also consistent with the Raman mechanism. One sees
a quite sharp drop from that value to �=0 as the direct gap is
crossed, showing the transition to the displacive behavior.
The amplitude and the shift also show a sudden increase
across the direct gap. Several experimental measurements are
also shown on the figure for the phase. Two of them7,8 are in
the Raman regime. The theory supports the results of Ref. 7,
which reports a value close to � /2. The other measurement
does not appear consistent with our theory or indeed with the
other experiment. The phase has also been measured in the
gap6 region, shown by the square in Fig. 11�b�. This point
should be compared with the theory at the corresponding
calculated gap energy, 2.4 eV. In both theory and experiment
the phase has decreased from the Raman value but decrease
seems larger for the experimental measurement. Both results
are in a range where the mechanism is changing rapidly. All
in all, we find the agreement quite satisfactory on a qualita-

tive level, particularly since the phase could have come out
with an opposite sign �����.

At higher frequencies, the theoretical phase goes to zero
as expected for the displacive mechanism. We find a change
in the phase from ��0 to ��� between 4.5 and 5 eV. The
amplitude also shows minimum around this frequency re-
gion, and the equilibrium position of the phonon coordinate
q̄ changes sign. In the case of laser frequency of 4.75 eV, a
number of electron-hole pairs contribute destructively, yield-
ing a small shift q̄. We note that the phase � may not be
defined accurately at this frequency. Physically, this suggests
that different electron orbitals are excited at the high fre-
quency, and those orbitals have an opposite sign contribution
to the displacive shift. In fact, we found earlier that the
deeper hole excitations are favored at the higher frequencies.

D. Laser intensity dependence

We show in Fig. 12 the amplitude and phase of the coher-
ent phonon as a function of the intensity of the laser pulse.
The dependence on intensity is calculated for a frequency
well below the gap �1.0 eV� and one well above �4.0 eV�.
One sees in Fig. 12�a� that the amplitude of the phonon is
proportional to the laser intensity in both frequency regions.
In the impulsive Raman mechanism which applied to 1.0 eV
case, this is expected from the adiabatic, Eq. �10�. In the
displacive mechanism, this behavior is consistent with a pro-
cess of electron-hole formation in one-photon absorption.

Figure 12�b� shows the phase of the phonon as a function
of the laser intensity. At low intensity, the impulsive Raman
mechanism is responsible for a laser pulse of 1.0 eV fre-
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quency. However, as the laser intensity increases, real
electron-hole excitation caused by multiphoton absorption
becomes significant. This explains the reason why the pho-
non phase gradually decreases from � /2.

VI. DISCUSSION AND SUMMARY

We have derived and carried out a computational method-
ology to apply time-dependent density functional theory to
laser-lattice interactions, taking as an example the excitation
of coherent optical phonons by femtosecond-scale laser pulse
in silicon. The theory merges with the macroscopic theory in
the adiabatic limit, where the process is controlled by the
dielectric response function. Our TDDFT calculation goes
beyond the previous work in that it is the first ab initio cal-
culation extending to the nonadiabatic frequency domain.
However, there are a number of limitations of TDDFT that
should be kept it mind. The quality of the calculated results
is limited by the accuracy of the energy functional which
relies on the adiabatic local-density approximation. As is
well known, the local-density approximation significantly
underestimates the band gap of insulators and semiconduc-
tors. The behavior of the dielectric function around the band
gap, which is very important for a quantitative description of
the generation of coherent phonon, is not described accu-
rately, as seen from Fig. 3. While the shift of the direct band
gap is a well-known problem of the LDA functional that
might be ameliorated with a different functional, the fact that
there is absorption below the direct gap is beyond the scope
of the theory. We also note that the TDDFT does not treat the
damping of excitations by electron-electron collisions. The
lifetime of the displacive excited state was found to be sig-
nificant to the coherent phonon phase in Ref. 7, and that can
only be calculated with inclusion of collisions.

It is of interest to compare the ab initio results with the
predictions of the much simpler SKM model,30 which also
spans the frequency domain from the adiabatic to the displa-
cive regions. In that model, the phase is given by �
=arctan���r� /2�i�. Taking the dielectric function �=�r+ i�i
from the TDDFT calculation �Fig. 3�, we find a predicted �
shown by the green line in Fig. 13. One sees that there is
very sharp drop from �=� /2 just above the direct band gap
at 2.4 eV. The phase is entirely dominated by upper band
displacive mechanism for all higher frequencies. This is
compared with our calculated results, shown here as black

circles. It appears that the SKM model is consistent with the
full TDDFT calculation in the threshold region, although it is
not clear from the sampling of frequency points how sharply
the phase changes in the TDDFT. At the higher frequencies
where more bands come into play, the SKM model is obvi-
ously inconsistent with the full calculation.

There are several areas where the theory can be refined or
developed further. We have only given an approximate treat-
ment of the laser field in the solid, generating it by the nu-
merical expedient of adding the external field A� ext to Eq. �5�.
A more complete theory would treat the propagation of the
electromagnetic pulse through the medium. The electric field
part of the vector potential A� is generated by the magnetic
term �� ��� �A� in the wave equation, and that would act as
the source of the field. Certainly, at the higher frequencies
where absorption is important the propagation should be
treated explicitly, as has been done in Ref. 41. Once the
propagation has been incorporated into the theory, it will be
possible to treat the amplitudes of the coherent phonon above
the transition region in a more quantitative way.
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