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We present in detail a method we recently introduced [Phys. Rev. Lett. 103, 176404 (2009)] to describe
finite systems in and out of equilibrium, where the evolution in time is performed via the Kadanoff-Baym
equations within many-body perturbation theory. Our systems consist of small, strongly correlated clusters,
described by a Hubbard Hamiltonian within the Hartree-Fock, second Born, GW, and T-matrix approxima-
tions. We compare the results from the Kadanoff-Baym dynamics to those from exact numerical solutions. The
outcome of our comparisons is that, among the many-body schemes considered, the 7-matrix approximation is
superior at low electron densities while none of the tested approximations stands out at half filling. Such
comparisons permit a general assessment of the whole idea of applying many-body perturbation theory, in the
Kadanoff-Baym sense, to finite systems. A striking outcome of our analysis is that when the system evolves
under a strong external field, the Kadanoff-Baym equations develop a steady-state solution as a consequence of
a correlation-induced damping. This damping is present both in isolated (finite) systems, where it is purely
artificial, as well as in clusters contacted to (infinite) macroscopic leads. The extensive numerical character-
ization we performed indicates that this behavior is present whenever approximate self-energies, which include
correlation effects, are used. Another important result is that, for isolated clusters, the steady state reached is
not unique but depends on how one switches on the external field. When the clusters are coupled to macro-

scopic leads, one may reach multiple quasisteady states with arbitrarily long lifetimes.
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I. INTRODUCTION

The Kadanoff-Baym equations (KBEs) (Refs. 1 and 2) are
one of the fundamental theoretical schemes of a microscopic
description of quantum systems out of equilibrium.>* Due to
the growing interest in time-dependent phenomena, in recent
years the KBE have been the object of considerable attention
in several branches of physics. Notable applications of the
KBE are in the areas of molecular quantum transport, high-
energy coupled plasmas, nuclear matter, astrophysics, to
mention a few.>"!7 Another favorable element to the wide-
spread use of KBE is the constantly expanding capability of
today’s computers, which has made the full numerical solu-
tion of the KBE possible. A main strength of the KBE is that
one can, in a constructive way, build approximations of in-
creasing complexity for the one-particle Green’s function, G,
the key quantity in the KBE. These approximations are ob-
tained via many-body perturbation theory (MBPT) and are
known as conserving approximations since they guarantee
the conservation of important quantities such as total energy,
number of particles, linear and angular momentum.

However, the fulfillment of such conserving conditions is
no guarantee of the quality of the actual results obtained
within a specific many-body approximation (MBA). Hence,
it would be useful to have a way to assess the performance of
a given conserving MBA. One of the aims of this paper is to
evaluate the range of validity of a group of well-known
MBAs by comparing the one-particle densities with the exact
results for finite strongly correlated clusters out of equilib-
rium. The main attractive feature of such comparisons to
exact results is the possibility of scrutinizing the perfor-
mance of the MBAs in the nonequilibrium regime. This
knowledge is most valuable if one wishes to use approximate
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many-body schemes for systems (typically, infinite ones,
e.g., systems coupled to macroscopic leads as those we con-
sider toward the end of the paper) where exact solutions are
not available.

Describing small clusters with strong electronic correla-
tions, and subject to time-dependent fields, presents interest
not only from a conceptual point of view; there are very
many instances where the technological relevance of cluster
physics is manifestly evident.'®!® The main focus of this
work is to investigate the dynamics of finite clusters. In this
regard, we provide here a detailed account of a study per-
formed very recently,!” producing additional results for clus-
ters and presenting in great detail the methodology we de-
veloped. We will, however, present some results for a system
contacted to macroscopic contacts to generalize some of our
main findings. Similar clusters to those discussed here,
coupled to leads have already been considered either in the
stationary limit'! or in the real-time domain.'3-1>

As specific finite model systems, we consider open-ended
and ring-shaped short chains,?® with local Hubbard interac-
tions. We study their dynamics through exact diagonalization
methods and by propagating the KBE for different MBAs.
The approximations we consider are the Hartree-Fock ap-
proximation (HFA), the second Born approximation (BA),
the GW approximation (GWA),?! and the T-matrix approxi-
mation (TMA).?>? All these approximations are
conserving,! which clearly is of great importance when
propagating the KBE, and all of them, apart from HFA, have
self-energies which are nonlocal in space and time. For the
GWA, we will consider both a spin-independent and a spin-
dependent version.!!>* The latter has the advantage to alle-
viate the effect of self-screening.?>2°

A general outcome of our study is that the TMA performs
better than the other MBAs at low filling. At half filling, all
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MBAs which involve correlation effects are of comparable
quality. With the exact and KBE cluster dynamics at our
disposal, we also investigate numerically a well-established
relation between MBPT and another framework to treat non-
equilibrium phenomena, i.e., time-dependent density-
functional theory (TDDFT).?”?® Using a spin-independent
TDDFT description for the spin-compensated Hubbard
model,” we will obtain the exchange-correlation (XC) po-
tentials corresponding to the different MBAs via reverse en-
gineering from the time-dependent densities. While the topic
of TDDFT appears to be somewhat peripheral to the main
aim of this work, we wish to remark that finding good ap-
proximations for TDDFT is of major importance as this
method is a much more suitable candidate for treating real
systems as the quantities involved depend only on one time
coordinate.

Our results show that the time-dependent KBE present
two interesting features. The first is that for large external
fields, the KBE time evolution in clusters exhibits a damped
behavior induced by many-body correlations (hereafter, we
refer to this as correlation-induced damping). The second
feature is that the steady state one reaches in an isolated
cluster is not unique but depends on how the perturbation is
switched on. We also investigate clusters connected to mac-
roscopic leads, which we in this paper treat within the TMA
and BA. In this case, the correlation-induced damping is also
present. Moreover, if there are sharp resonances outside the
band continuum, the KBE will give rise to multiple quasi-
steady states, i.e., long-lived states which can take arbitrary
long time to decay to the true steady state.

In finite clusters, the correlation-induced damping and the
existence of multiple steady states is artificial and we show
that it is due to limitations of self-consistent many-body per-
turbation theory when applied to finite systems.

The question whether or not the correlation-induced
damping and the existence of multiple quasisteady states in
contacted systems is a mere consequence of MBPT is at
present not so straightforward to address in full generality.

The paper is organized as follows: we start with a descrip-
tion of our model system(s) in Sec. II; then, in Sec. III, we
discuss the general properties of the single-particle Green’s
function; the key ingredient in the KBE. Section IV is an
overview of the MBAs used in this work. Section V is de-
voted to the procedure to obtain the ground state within the
KBE. How to solve the KBE for the time evolution is re-
ported in Sec. VL. In Sec. VII, we detail how we extract the
TDDFT exchange-correlation potentials corresponding to a
chosen MBA. The ground-state and time-dependent results
are presented in Secs. VIII and IX, respectively. Section X
deals with the correlation-induced damping which occurs
during the KBE time evolution and the existence of multiple
steady and quasisteady states. Finally, in Sec. XI we present
our conclusions and direction for possible future work.

II. MODEL SYSTEMS

We will consider one-dimensional (1D) clusters with M
sites and with one orbital at each site. Thus, each site (or,
equivalently, each orbital) can accommodate a maximum of
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two electrons, with opposite spin. The clusters may either be
isolated, in which case the Hamiltonian in standard notation
is

He=-V E a};aaR’(r'i' UE ﬁmﬁm + 2 Wr(Diig,,
(RR"),o R R,o

(1)

or they may be attached to noninteracting leads of infinite
size, as discussed below. In Eq. (1), ﬁR(,:a;gaR(,, o=1,1,
and (RR') denotes pairs of nearest-neighbor sites. The hop-
ping parameter V=1 and w(?) is a local field which includes
the time-independent on-site energies as well as the time-
dependent external field, which can be of any shape in time ¢
and space. U and wg(z) are given in units of V. We will
consider clusters with M=2,4,6 sites and, without leads,
N,=2,6 electrons (in the presence of leads, the average num-
ber of electrons in the clusters is in general noninteger). Our
approach is valid for systems which are compensated as well
as uncompensated in spin. However, in what follows we will
only consider clusters (with/out leads) with an equal average
number of spin-up and spin-down electrons in the ground
state; this will hold at all times during the dynamics since H
has no spin-flip terms. Henceforth, n=n;=n|, where, n,
=Ny/M and N,=(ZpccAgy. For both isolated and con-
tacted clusters we refer to the dimensionless quantity, ng,
= (g, as the density per spin channel at site R. This con-
vention applies to all figures and discussions in the text.
In the presence of leads, L,, the Hamiltonian is

H=HC+HL+HLC’ (2)

where H; describes noninteracting one-dimensional semi-
infinite chains,

— il B A
H=S[-vi, S a0 S e,
a (R RLY.0 Rgy.0

Rgel
Ry.Rl €L, aSla

3)

and H;. describes hopping between the central region, C,
and the leads

He=2|-Vie 2 ag,ap,|+He (@)
a (RyR"),0
R,eLy.R' eC

Here V, _is the hopping parameter in the ath lead, wf is the
time-dependent bias in such lead and Vic is the cgupling
strength between the lead and the central region.

For isolated clusters, we use a short iterative Lanczos
propagation to obtain the exact time evolution. A description
of our approach for approximate solutions in isolated and
contacted clusters is the object of the next five sections.

III. ONE-PARTICLE GREEN’S FUNCTION

The one-particle Green’s function is a reduced quantity,
containing much less information than the underlying wave
function. In general, it describes a system initially connected
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FIG. 1. Keldysh contours.

to a bath with which energy and particle can be exchanged.
The knowledge of the Green’s function gives access to the
expectation values of all single-particle operators, excitation
energies, and the total energy of the system.

The general definition of the one-particle Green’s function
is

G(ry0121,1,0,2,)
= <1'10'1|Q(21,Zz)|1'20'2>
== (U= iB.0)T, [ihy(r 012 Y (r2022)]).  (5)

where (--+) denotes expectation values of the equilibrium

ensemble, zij and tZJL are the field operators in the Heisen-
berg picture, vy is the Keldysh contour, see Fig. 1 (i and ii),

T, is the path ordering operator, U is an evolution operator,
and B=1/kgT is the inverse temperature of the bath. The r
and the o denote the labels corresponding to space (site) and
spin coordinates of the adopted single-particle basis. In this
basis, the Green’s function becomes a matrix. The variable z
belongs to the Keldysh contour and is in general complex.
For notational convenience, we denote real (imaginary)
times by ¢ (i7). From the definition of the Green’s function,
one can derive the so-called Kubo-Martin-Schwinger
condition,*® G(z1,2,)=-G(z;,2, £ i ).

The expectation values of all the single-particle operators
are obtained according to

(A1) = - i Ti{A()G(1,17)], (6)

where the trace, Tr= Erlrztﬂf’ 5,1r25m, , is over space and spin
indices. As discussed later and in Appendix A, the total en-
ergy can be found by evaluating the Galitskii-Migdal (GM)
or Luttinger-Ward (LW) functionals.

Since in this paper we study only paramagnetic systems in
spin-independent fields, one-particle quantities such as the G
and the 3 become spin-diagonal and spin independent,

G(r 0121,1,0225) = G(r121,1522) 65 - (7

In the following, we will use the shorthand notation, 1
=(r,,z,), etc., for space time coordinates.

The Green’s function obeys an integral equation (the so-
called Dyson equation),

G(12) =Gy(12) + J Go(13)%(34)G(42)d34 (8)

Y

with the noninteracting Green’s function G, defined by
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(16, ~ h(1))Gy(12) =

In Eq. (9), & is the noninteracting Hamiltonian.3' It is con-
venient to decompose h as h(t)=f+w(t)—u, with (i) 7 the
one-particle kinetic energy (~=V7/2 in coordinate space), (ii)
w(r) a local external field which may depend on time, and
(iii) m the chemical potential. The latter is taken to be in
between the last occupied and the first nonoccupied level.
The inclusion of w in A implies that the Fermi energy is
placed at zero energy; electron/hole excitations thus have
positive/negative energies. The kernel of the Dyson equation,
3, is called the self-energy and is in general nonlocal in
space and time. In the exact theory as well as in conserving
approximations,' the self-energy is a functional of the
Green’s function, %[ G], and the Dyson equation must thus be
solved self-consistently. In equilibrium all quantities depend
only on z=z,—z; and the equations are then most easily
handled, in terms of Fourier-transformed quantities, in the
frequency domain. There, the corresponding Dyson equation
becomes a simple matrix equation in the single-particle ba-
sis. In this paper, we will work only in the zero-temperature
limit in which the system is initially in the ground state. The
entire ground-state calculation can be performed using real
times and the Dyson equation takes the form

G(€) = Gy(e) + Go()Z(e)G(e), (10)

where € is a real frequency. We alert the reader that using
real frequencies is only one of many possible ways of solv-
ing the Dyson equation. One advantage of our approach is
that we have direct access to the spectral functions.

In equilibrium, all two-point propagators can be expressed
in terms of a spectral function. Specializing to the Green’s
function, the spectral decomposition has the form

Glo)= J Ale) e (11)
€ —e+insgn(e)

where the spectral function, A(e), is related to the anti-
Hermitian part of the corresponding propagator, which for
the G is A(e)=—7"'[G(€)-G'(€)]sgn(€). The fermionic
spectral function are positive definite and the one for G is
normalized,

(12). 9)

fA(e)dezl, (12)

where 1 represents the identity matrix in the single-particle
basis.

IV. MANY-BODY APPROXIMATIONS

In general one cannot construct the exact self-energy and
thus needs to rely on approximate schemes. In MBPT, one
can systematically construct self-energies of increasing com-
plexity. The main idea is making a diagrammatic expansion
of the self-energy, and selecting different classes of diagrams
which are then summed up to infinite order. There is a very
important group of approximations which conserve quanti-
ties such as the total energy, the number of particles, linear
and angular momentum, when the system is subject to exter-
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FIG. 2. Diagrammatic expansions of MBAs.

nal fields. These conserving properties are related to the fact
that the self-energy is a functional derivative of a generating
functional ®,!

5P
5G(21)"

S(12) = (13)

The use of conserving approximations is in general very im-
portant and, in fact, practically mandatory when studying
nonequilibrium phenomena. In general all MBAs are based
on partial summations in the sense that they do not take into
account all the diagrams of the self-energy. For clarity we
distinguish two types of conserving approximations (see Fig.
2), depending on if one includes or not all skeleton diagrams
up to a certain order in the interaction strength. The first
consists of the Hartree-Fock and the second Born approxi-
mations (HFA and BA). The second type contains the Har-
tree, GW, and T-matrix approximations (HA, GWA, and
TMA, respectively).?> The bare interaction is taken to be
local in time, U(ry,r;)8(t;,1,). The formalism we will
present is general but we remind the reader that in this paper
we will only consider local interactions, U(ry,r;)
=U¥8(ry,ry) When specialized to our Hubbard clusters with
one orbital/site (denoted by R), the on-site interaction can be
treated either as spin-dependent, UZXgngig, or as spin-
independent %U ERM,a;UaLU,aRU/aRU. These two ways are
evidently equivalent in any order by order expansion in skel-
eton diagrams such as the HFA or the BA. In approximations
where not all terms of a given order are included, however,
this equivalence may be lost. To illustrate this point, we con-
sider the GWA both spin-independently (GWA) and spin-
dependently GWA (SGWA). The TMA is treated only spin
dependently.

Hartree-Fock approximation. The simplest many-body
treatment is given by the HA, where one takes only the first-
order direct term into account (i.e., the exchange is ex-
cluded). Due to its rather simple nature, it will not be con-
sider further.
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The HFA includes also the first-order exchange diagram
and the Fock term. The inclusion of this diagram, among
other things, cures the self-interaction of the HA. The result-
ing self-energy is local in time and thus constant in fre-
quency space. The remaining diagrams are responsible for
the many-body correlations and give rise to self-energies
which are nonlocal in time.

It is often convenient to separate the time-local HFA and
correlation contributions and write

E(Zl’zz)=EHF6(Z1’Z2)+EC(Z1’Z2)’ (14)

Second Born approximation. The simplest scheme which in-
volves correlations is the second Born approximation (BA)
which corresponds to keeping all the diagrams up to second
order.

GW approximation. The GW approximation is the leading
term in the expansion of the self-energy in terms of the dy-
namically screened interaction W. The expression for the
self-energy in time space is given by

Sow(12) =34 +iG(12)W(12). (15)

It should be noted that this expression does not involve any
matrix multiplication. The screening of the bare interaction,
U, results from all possible electron-hole excitations which
are described by a series of bubble diagrams, involving an
irreducible polarization propagator, P. This series can be
summed, yielding in frequency space, for a spin-independent
interaction,

W=U+UPW (16)

and, for a spin-dependent interaction,
W =UPU + (UP)*W. (17)

We remind the reader that these Dyson-type equations in-
volve matrix multiplications. In both cases,*® the polarization
propagator, in time space, is

P(12) =-iG(12)G(21). (18)

T -matrix approximation. The T-matrix approximation comes
from building the T-matrix, 7, by summing all the ladder
diagrams, representing electron-electron or hole-hole
scattering.3* The expression for the self-energy is given by

S(12) =S e +i f U(13)G(43)THU42)d34. (19)

In the case of an on-site, site-independent interaction this
simplifies to

S(12) =3 p + iUPG(21)T(12). (20)

The sum of the ladder terms in the 7-matrix results in
T=¢-QUT, (21)

where the so-called irreducible vertex ¢ is defined as

#(12) = - iG(12)G(12). (22)
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V. GROUND STATE

The ground state is obtained by solving the Dyson equa-
tion, Eq. (10), self-consistently. For clusters contacted to
noninteracting leads, the problem can be expressed entirely
in terms of propagators which refer only to the central region
and an embedding self-energy,33-3

2emb(e) = E |VLaC|2§La(€)» (23)

where gLa(e) is the noninteracting Green’s function of the
uncontacted lead L,. The full Green’s function in the central
region will now obey a Dyson equation with both a many-
body and an embedding self-energy. The presence of 2.,
gives rise to continuous spectra, and standard techniques can
be used to find self-consistent solutions.

For the isolated clusters, we used a meromorphic repre-
sentation, as described below.

A. Meromorphic representation of finite systems

For convenience all one-body quantities are represented
as matrices in a single-particle basis, e.g., Ggg/(€)
=(R|G(€)|R’). In a finite system with a finite phase space, all
the spectral functions are discrete,

Agpr(€) = 2 Al 8(€-a)), (24)
J
where A‘QR, is a residue matrix and a; is a pole position.

From Eq. (11), we see that the propagators themselves
become meromorphic,
Al
RR’
Grpr(€) = E

J

— . (25)
e—a;+insgn(e)

One main advantage in using a meromorphic representation
is that convolutions and cross correlations are made
analytically.’” Given the two functions

A Bl
Aggr(€)= 2 , Bre(e)=2> ) (26)
j €-4q; j €= b
then their cross correlation
! ! de,
Crrr(€) = | Agpi(€)Bgpi(e+€)— (27)
27ri
becomes
: 1
Cppr(6)=2 A% BI —— . 28
RR (6) jzk RR'P RR e+ak—bj ( )

A second important attractive feature of a meromorphic rep-
resentation is that one can compute at once the equilibrium
many-body quantities with any time argument, both real and
imaginary. For our Hubbard clusters, each of the quantities
G.,2,P,W,¢, T will be expressed in such representation dur-
ing in the actual calculations.

B. Solution to the Dyson equation

The solution to the Dyson equation for the G can formally
be written as®®
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Ge=[Gy(9-2(e] ' =[e-h-3(]".  (29)

The solution of this matrix equation is obtained in two
steps:37 (1) search of the pole position and (2) calculation of
the residue matrix.

(1) The pole positions of G correspond to the zeros of

detfe—h—3(€)], (30)

which we find by ordinary root finding algorithms.

(2) Once the pole positions are found, we calculate the
residue matrices by integration in the complex plane. We
have in general

jﬁf(e) =2mi >, Res(f.a,), (31)
J
where
flo=3 A, (32)
€E—da;

J

If we now perform a closed integration around the pole a; we
obtain directly the residue matrix

A= ﬁijf(e)- (33)

This integration is, in practice, performed numerically.

C. Self-consistency

To reach self-consistency, we start by constructing the
self-energy with some initial G, normally taken to be G, and
then solve the corresponding Dyson equation. The resulting
G is then used to build the new self-energy and the procedure
is carried on until convergence. In order to keep the number
of poles under control (such number increases rapidly from
iteration to iteration), we make use of a “decimation” proce-
dure, where poles are merged if there are small or close
enough. When two poles are merged, the new pole position
is the old center of mass position (“mass” being the trace of
the residue matrix) and the new residue matrix is the sum of
the two old residue matrices. To improve the convergence we
update G by making a linear combination of the new (solu-
tion of the Dyson equation) and the old G’s. There are dif-
ferent functionals which yield the total energy of a system,
all of which are equivalent at the point of stationary solution
to the Dyson equation. However, away from self-
consistency, they do in general not coincide. One indepen-
dent way of evaluating the degree of self-consistency is thus
by comparing the values of different energy functionals, see
Appendix A.

VI. TIME DEPENDENCE

When an external field is applied to a system, the latter is
in general driven out of equilibrium. When the system is out
of equilibrium and away from the steady-state regime, all the
quantities will intrinsically depend on the two time argu-
ments (;,2,) separately and the Keldysh formalism becomes
essential. To explicitly show which convention we used in
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this paper for the path-ordered two-point Keldysh functions,
IC, we give some definitions.
A general Keldysh function can be written as

K(12) = K%(12)8(z1,25) + O(12)K~(12) + O(21)K=(12),
(34)

where > (<) refers to the electron (hole) part, and /C? the
time-local part.

The time coordinates are on the Keldysh contour and may
be real or complex. For real times we may also introduce
retarded and advanced propagators,

KR(12) = K2(12)8(z4,25) + O(11,6,)[ K7 (12) - K=(12)],
(35)

KA(12) = K2(12) 8(z1,20) — O(t,1) [ (12) = £=(12)].
(36)

Note that for the K’s considered in the paper, only % and W
have parts which are local in time.

When both time arguments are imaginary, the Keldysh
function reduces to the corresponding equilibrium Matsubara
function,

KM(r=7)==iK(-ir—i7). (37)

In Eq. (34), ©(12) should be understood as O(z;,z,), a gen-
eralized Heaviside function for z;,z, on the ordered Keldysh
contour. It is worth noting that when both time arguments lie
on the imaginary (Matsubara) axis, the quantities represent
the initial, equilibrium, state which, as already said, depend
only on the time differences. As an example of how these
terms are found in equilibrium in the meromorphic represen-
tation, we display the hole contribution to the Green’s func-
tion,

G=(1.1y) =i 2 Age™) (38)
i<wm

when both time arguments are real,

G=(1,-im) =i 2, Ajelilei™ (39)
J<p

when both one time argument is real and one imaginary, and
G (=i, i) =i, A 4nm) (40)

i<wm

when both time arguments are imaginary.

A. General symmetries

We recall some prominent symmetry relations which will
be used during the time propagation. From the definition of
the Green’s function, Eq. (5), one can derive a very impor-
tant symmetry,3® which enters many relevant and useful re-
lations,

G=(12)=-G=(21)". (41)

Additionally, from the definition of the retarded and ad-
vanced Green’s functions we obtain

PHYSICAL REVIEW B 82, 155108 (2010)

GFA(12) = GMR(21)". (42)

From the expansion of the 7 and W in terms of ¢ and P it
follows that 7"and W will have the same symmetry properties
of ¢ and P. The symmetries of ¢ and P can be deduced from
their definitions

P=(12)=-P=21)'=>W=(12)=-Ww=21)"  (43)
and
o~ (12)=-¢=21)'=>T=(12) =-T=21D".  (44)

In a similar way we find a symmetry relation, valid for all
approximations, for the self-energy,

3=(12)=-3=(21)". (45)
An additional symmetry fulfilled by W is
W=(12) = W=(21), (46)

which implies
W7 (2,2) =W=(z,2), Re Wgpi(z,2)=0 V¥V R,R'.
(47)

No equivalent relation exists for 7.

B. Solving for the nonequilibrium Green’s function

To obtain the nonequilibrium Green’s function, we need
to solve the corresponding equations of motion, called the
KBEs,

[ia, - h(1)]G(12) = &(12) + f S(13)G(32)d3, (48)
Y

[~ id, ~ h(2)]G(12) = 8(12) + J G(13)3(32)d3. (49)
Y

The kernel of these equations, the 2, will in general be a
contraction of the Green’s function with an other quantity
which involves an infinite order summation such as the 7 or
W. These quantities are defined by corresponding integral
equations. Specializing to the case of 7, we have

7(12) = (12) - f S(1IUBHTA2)d34,  (50)
Y

7(12) = ¢(12) - f TA)UBH) p(A2)d34.  (51)
Y

We thus have two sets of coupled integral equations which
need to be solved simultaneously at all times.

C. Solution of coupled integral equations

From the symmetry relations (41), (43), and (44) we see
that G and W, T are only needed on the upper/lower time
matrix. We choose the lesser components on the upper tri-
angle 7, =1, and the greater ones on the lower triangle #;
<1,.40 Propagation is thus made by expanding the Keldysh
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FIG. 3. (Color online) The time-propagation square.

functions, K, on the time square from T,to TP+A, see Fig. 3.
In the integral equations, Egs. (48)—(51), the function to be
determined appears in both the right- and left-hand sides. To
solve these equations we use a self-consistent predictor-
corrector method.*! The method can be described schemati-

cally by an external loop, where an approximate G at T,
+A is generated by propagating Egs. (48) and (49), and an
internal loop, where Egs. (50) and (51) are solved self-

consistently for a fixed kernel ¢[G] or P[G]. The external
loop is performed by a predictor-corrector method described
below while the internal one is solved by the same iteration
method as described for the ground state. The external loop
is initiated by an extrapolated value of the collision integrals
J,2.G, while the internal loop is started by an extrapolated
value of the W,T. The new time step is generated when the
external loop achieves self-consistency.

D. Kadanoff-Baym equations

When propagating the Green’s functions it is convenient
to separate the terms which are local in time and single-
particlelike (2 and X ) from the remaining correlation-
induced ones*! and introduce

h=h+ 3y (52)

In this way, b replaces & and the full self-energy is replaced
by its correlation part 3, in the KBE [cf. Egs. (48) and (49)].
The reason for this partitioning is twofold: on the one hand
the contribution from the single-particle evolution is very
important (and could thus lead to large numerical errors in
the correlation contribution) and on the other it can be solved
essentially in an exact way as will be detailed in Sec. VI E.

There are several equivalent contours on which one can
define the KBE. We use the contour (ii) in Fig. 1, which is
numerically more stable and has an analytical limit when the
temperature goes to zero. The reason is that due to the Kubo-
Martin-Schwinger condition the Green’s function will in
contour (i) be large around zero and at —if (which must
therefore be finite) and thus one needs dense mesh points at
two different regions.*> The contour (ii), on the other hand,
needs dense mesh points only around O and the limit S—
can be taken without any numerical difficulty.

Once we specialize to this contour, the KBE become

i6, G=(11,12) = (1)) G=(11,15) + I (11,15), (53)

- i3r2G§(f1Jz) =G (11, 1)h(1y) + 5 (11,12), (54)

PHYSICAL REVIEW B 82, 155108 (2010)
i0,G=(t,—i1) =h()G~(t,—iT) + [~ (t,— i7), (55)

-i0,G7(—int) =G (—in,Hh(t) + " (—ir,t), (56)

where the collision integrals with both time arguments real
are

I1§(l‘1,f2) = f 1 d?[zf(fh?)Gg(Zfz) + Ef(tl,ﬂGA(th)]
0

1 (P2
+ - f dr[35(t,—- NG (= iT,1))
tJo

+37(1,iDG=(i7,1,)], (57)
)
]2§(t1,t2) = f d?[GR(tl,?)Ef(th) + Gg(tl,?)E?(?,tz)]
0

L
+ _f d?[G<(Il,— l7—-)26‘>(_ i7_',t2)
l

0
+ G (t,iD3(i7,1)]. (58)

The collision integrals with one of the time arguments com-
plex specialize to

I~(t,—i7) = f Ak nG=(7,-i7)
0

B2
+ f d7[25(t,—- inGM(7-7)

0

+ 2. (LiDGY (- (F+ )], (59)
I (—int) =f diG” (= in,[)3A(7,0)
0

B2
+ f dr[GM(r- D3] (- iT,1)

0
+GM(1+ DI (i70)]. (60)

It is worth noting that all Egs. (57)—(59) contain terms which
involve integration along the Matsubara (vertical) axis and
which represent the memory of the initial state correlations
during the time evolution.

For the collision integrals, one can derive a similar sym-
metry property,

£(12)=-15(21)". (61)

An important consequence of this relation is that the
densities® are manifestly real. From the KBE one can derive
that the condition for real densities is given by

(I (t.t) - L (0] =17 (t.0) - I (0], (62)

which is manifestly satisfied by Eq. (61). Furthermore, on
the time diagonal, we obtain another relation, which is very
useful in from the computationally point of view,
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From the properties of integral equations, it follows that all
the symmetry and structure properties of the Green’s func-
tion are those of G,

The discussion of the KBE above is valid for extended
and finite systems alike. When the interaction is confined to
a central region which is contacted to possibly macroscopic
leads, the problem can again be expressed in propagators
which refer only to the central region, and an embedding
self-energy which now depends on time,'3!#

Se(tit) =2 |VLac|2§La(f1,f2)~ (64)

Here §La(t1,t2) is the noninteracting Green’s function of the
uncontacted lead L,, possibly subject to a uniform but time-
dependent bias. The full Green’s function in the central re-
gion will now obey the KBE with both the self-energy from
the interaction and the one from the leads via the embedding.
The embedding self-energy is entirely nonlocal in time and
will be treated on the same footing as the correlation part of
the interaction self-energy. It is worth noting that the embed-
ding self-energy involve no self-consistency and can thus be
calculated once the external bias (if present) is known.

E. Time propagation algorithm

As mentioned in Sec. VI D, we treat the time-local part of
the self-energy (25) on the same footing as the noninteract-
ing terms (h) in the time propagation, by defining h=nh
+2. 57 The evolution from these single-particle terms can be
expressed in terms of a single-particle evolution operator S
which is a time-dependent matrix in single-particle labels.*!
This leads to the following unitary gauge transformation:

G=(1,,1,) = S(11,0)g= (t1,1,)57(2,,0), (65)

where S satisfies i&,lS(tl ,0)=h(z,)S(z;,0). The expression for
G~ at time T,+A becomes

G™(T,+ A1) =S(T, + A, T,)G™(T,.t»)
—iS(T,+A,T,)

A
X J diS'(t+ T, T, (t+T,.1,).
0

(66)

Similar expressions exist for the other Green’s functions. For
full a derivation, see Appendix B.

F. Dyson equation for 7 and W

Propagating in time the KBE within a specific MBA-
based partial summation, requires solving a Dyson equation
for auxiliary quantities which enter the expression for the
self-energy.** For the TMA and GWA such quantities are the
T and W, respectively. The components of the corresponding
Dyson equations (again specialized to the case of T) Egs.
(50) and (51) are, for both times on the real axis,

PHYSICAL REVIEW B 82, 155108 (2010)

T=(t1,1) = ¢~ (11,1,)

- J 1 dil (1, DUT=(1,1y) + ¢~ (1, DUT(1,1,)]

0

1 B2
- _j d?[¢<(tl9_ ZF)UT>(_ l?9t2)
tJo

+ ¢ (1, iDUT(iT,1,)], (67)
T=(t1,1) = ¢~ (11,1,

- f zd?[TR(hj)U(ﬁg(f,fz) + T (1, DU (T.1,)]

0

1 B2
- - f d7[T=(t,,— iDUP” (- iT.1,)

tJo
+ T7(t,iDUP~(iT.1,)], (68)

when one of the time arguments is imaginary we have

T<(t,— ir) = ¢~(t,— i) f AT (6, DUT= (T, i7)
0

B2
- J d7[ ¢~ (t,— iDUTY(7- 7)

0

+ ¢ (1, iDUTY (- (T+ 1)], (69)
T7(-int)= ¢~ (—itt) - f ld?T>(— i, DOUPT,1)
0

B2
- f dT[T (7= DU (- iT,1)
0

+ T (74 DUS~(iT,1)]. (70)

VIL. TDDFT EXCHANGE-CORRELATION POTENTIAL
FROM MBPT

Our time-dependent densities from the different MBAs
also provide insight for the TDDFT exchange-correlation po-
tentials for strongly correlated systems. Given a specific ap-
proximation, from the resulting time-dependent density we
obtain the corresponding effective potential v, f=EH+w
+0,., Where 2 is the Hartree potential and v, the exchange
correlation potential. In practice, this is done via a numerical
reverse engineering procedure.? This algorithm imposes that
[n(R,t)-n®S(R,1)|=0 at each time step, where n*S(R,?)
=3°|y%S(R,1)|? is the Kohn-Sham density and #*° are the
Kohn-Sham orbitals. The nXS is found by solving iy*S=(7
+U,p7) z/f’,fs where the kinetic energy is given by 7=
_V2<RR’)0'aRa-aR’0"

VIII. RESULTS: GROUND STATE

To start the time propagation of the KBE, one needs the
initial, equilibrium, one-particle propagators. These are
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FIG. 4. (Color online) Ground-state spectral functions for M
=6 for weak interaction strength, U=1, for different fillings. The
curves correspond to exact (black), TMA (red), BA (green), GWA
(blue), and HFA (orange). The curves are shifted for clearer com-
parison and we have broadened the discrete spectra with a Lorent-
zian with a FWHM=0.4. The frequency is given in units of the
hopping parameter of the central region, V.

found by solving the Dyson equation self-consistently. Here,
we show only results for isolated clusters, and defer the case
of clusters contacted to leads to Sec. X.

To characterize the ground-state properties, we present in
Figs. 4—6 the spectral functions at the first, R=1, site in the
cluster. This is the site at which the external perturbation is
applied (see Sec. IX). In the following, if not stated other-
wise, the on-site energies in Eq. (1) are put to zero. The
results we will show are for the different MBAs, at two
particle concentrations and interaction strengths. A first, gen-
eral comment is that the performance of the MBAs generally
worsens with increasing U. Some basic, generic features of
the different MBAs we employ to evolve in time our clusters
are already revealed by the ground-state results. Such fea-

T T 7 T
a) n=1/2 b) n=1/6

8 o —

FIG. 5. (Color online) Ground-state spectral functions for M
=6 for strong interaction strength, U=4, at different fillings. The
curves correspond to exact (black), TMA (red), BA (green), GWA
(blue), and HFA (orange). The curves are shifted for clearer com-
parison and we have broadened the discrete spectra with a Lorent-
zian with a FWHM=0.4. The frequency is given in units of the
hopping parameter of the central region, V.
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FIG. 6. (Color online) Ground-state spectral functions for M
=6 ordered as a ring at n=1/6 for U=2. The on-site energies vary
periodically between 0 and —1, starting with O on site 1. The curves
correspond to exact (black), TMA (red), BA (green), GWA (blue),
and HFA (orange). The curves are shifted for clearer comparison
and we have broadened the discrete spectra with a Lorentzian with
a FWHM=0.4. The frequency is given in units of the hopping pa-
rameter of the central region, V.

tures, specifically discussed for the cases in Figs. 4 and 5, are
common to other clusters with different fillings, sizes, and
interactions strengths (such additional results are not shown).
Figure 4 refers to the situation of weak interaction, where the
performance of the MBAS is satisfactory (in particular, all
the MBASs reproduce the symmetry breaking at low filling of
the exact solution).

At half filling, a correlation gap opens on increasing U,
which becomes clearly visible in the strong correlation re-
gime, Fig. 5. This behavior in clusters is consistent with the
exact solution of the one-dimensional (1D) Hubbard model
in the thermodynamical limit.*> This feature is reproduced by
the different approximate schemes. However, the size of the
approximate gap depends on the MBA: the best estimate is
given by the BA value; yet, the latter largely underestimates
the exact value. Missing the contribution of correlation ef-
fects, the nonmagnetic HFA solutions reproduce the nonin-
teracting spectral density. As a second general feature, the
MBAs introduce spurious satellites away from the band re-
gion. This problem is most pronounced in the BA and GWA
curves. In the low-density regime, for large U, a satellite
structure appears in the exact solution [about 6.5 in the bot-
tom of panel 4(b)]. In an extended system, this high-energy
spectral feature represents a two-electron antibound state
(i.e., outside the band continuum). The satellite is well repro-
duced by the TMA (although its distance from the band re-
gion is overestimated) while is smeared out in the BA and
GWA and obviously absent in the HFA (as it includes no
correlation effects). For the strong interaction case, the
agreement of the different approximations with the exact
curve in the band region is only moderate.

Similar conclusions can be drawn for different geom-
etries. For example, in Fig. 6 we plot the spectral function of
a six-site ring cluster, i.e., with periodic boundary conditions,
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FIG. 7. (Color online) First-iteration TMA, and self-consistent
TMA spectral function versus the exact one. M=6 and in (a) n
=1/6 and in (b) n=1/2. The curves correspond to exact (black),
first iteration TMA (green), and self-consistent TMA (thick blue).
The curves are shifted for clearer comparison and we have broad-
ened the discrete spectra with a Lorentzian with a FWHM=0.4. The
frequency is given in units of the hopping parameter of the central
region, V.

where the on-site energies vary periodically between 0 and
—1 starting with O at the first site. In this case we see that the
TMA is substantially better than the BA and the GWA, es-
pecially at higher frequencies. The HFA reproduces the main
central peaks quite accurately but misses the structure at high
frequencies.

In all our results, when comparing the SGWA to the GWA
we see a slight improvement, which is expected, as the
SGWA includes fewer faulty diagrams. This improved ver-
sion of the GWA is, however, still worse than the BA or the
TMA. In this section, we show no results for the SGWA
since it introduces only a marginal improvement in the
ground-state spectral density: however, we will present be-
low SGWA time-dependent densities. It is worth noticing
that, using a MBA expansion in terms of nonmagnetic propa-
gators, the SGWA will have a magnetic instability on in-
creasing U. This can be seen most easily in a Hubbard dimer
with two electrons with opposite spins. In the dimer, where
the poles of W[G,] are e=*\4V>+2VU, this unphysical
symmetry breaking occurs for U=2V. Conversely, the exact
ground state for a dimer is always a spin S=0 (singlet) state,
since, for any positive U, the dimer ground-state energy

. TeV2i 2
" =Ejy =5 <0=Ejp,,,

It is worth noting that all the spectral functions shown in
Figs. 4 and 5 are not as good as those obtained without
self-consistency, i.e., when stopping after the first iteration of
the Dyson equation, see Fig. 7. This is an example of the
known fact that self-consistent conserving approximations
often have worse spectral properties than nonself-consistent
ones.>”#47 To guarantee the fulfillment of the conservation
laws and to get unambiguous total-energy results, it is capital
to achieve self-consistency. If the quantity of interest is the
spectral functions one should instead make use of different
partial summation criteria,*® and in some cases include ver-
tex corrections to remove artifacts introduced by
self-consistency.’’

As a final remark to this section, we note that all MBAs
which have a frequency-dependent self-energy involve infi-
nitely many possible excitations. These excitations, repre-
sented by diagrams in the self-energy, result in infinitely
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FIG. 8. (Color online) Broadened (black) and unbroadened (red)
spectral function in the TMA for M=4, n=1/2, and U=2. The
broadening of the discrete spectra is done with a Lorentzian with a
FWHM=0.4. The unbroadened spectral function has been scaled
with a factor of 1.65 to adjust the height of the central peaks to
those of the broadened one. The frequency is given in units of the
hopping parameter of the central region, V.

many, but discrete, number of poles in the ground-state spec-
tral functions.*® The exact solution, in contrast, lives in a
finite phase space which implies a finite number of poles.
The poles of these MBAs are typically distributed with some
few large and well-isolated poles with the largest part of the
oscillator strength and many small ones which get closer and
closer out in the tails. This can be seen in Fig. 8, where we
plot the (artificially) broadened and the unbroadened spectral
functions, for a specific case. The general remarks made
about Fig. 8 apply to all the cases we have studied.

IX. RESULTS: TIME DEPENDENCE

In this section, we examine the performance in time of the
different MBAs. To accomplish this, we use as benchmark
exact many-body solutions. In general, the latter are avail-
able only for finite systems, and numerical in nature. As a
consequence, in this section we deal exclusively with iso-
lated clusters, and focus on general aspects of the time-
dependent densities and MBAs. However, we defer to the
next section two important outcomes of the KBE time evo-
lution: the correlation-induced damping and the existence of
multiple steady states in isolated and contacted clusters.
Since these features appear in the long-time behavior, here
we focus on short time response.

Isolated clusters: MBAs vs exact results. We start the time
evolution at =0 with the ground-state Green’s function. For
positive times >0 we apply a spin-independent external
field to the system. We have studied different types of exter-
nal fields but in this paper we present results only for the
form wg(1)=wydg 10(1), i.e., we consider a step perturbation
and let it to act only on the leftmost, R=1, site. The time is
given in units of the inverse hopping parameter (1/V) and all
curves represent the dynamics on site R=1. The cases dis-
played are the same as those considered for the ground-state
results.
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FIG. 9. (Color online) Time-dependent densities on site 1 for
M=6. The curves correspond to exact (thick solid black), TMA
(dashed red), BA (dotted green), GWA (thin solid blue), and HFA
(brown dashed dot). The time is given in units of the inverse hop-
ping parameter of the central region, V'

We show the resulting time-dependent densities in Fig. 9.
The curves correspond to some initial states shown in Figs. 4
and 5. In the panels (a) and (b), n=1/2 while in panels (c)
and (d), n=1/6. In the simplest case (U=1, wy=1), pre-
sented in panel (a), all MBAs give a good description of the
density. On increasing the strength of the interaction and the
external field, panel (b), we clearly see that the HFA descrip-
tion is rather crude while the curves from the other MBAs
are very similar to each other and closer to the exact density.
In the case of strong interaction but weak field, panel (c), we
see that none of the MBAs give an adequate description. We
interpret these results as a consequence to the fact that the
ground-state spectral function is not well described in the
band region: the latter is responsible for the response to weak
fields. On the contrary, for low filling and when the field is
strong, panel (d), the TMA performs much better than the
other MBAs. This is due to the fact that the nonlinear re-
sponse involves states at higher excitation energy and the
TMA is the only approximation which, to some extent, re-
produces the satellite structure.

The TMA stands out as the best approximation at low
filling also for other geometries. In Fig. 10, we see the time-
dependent densities for the ring geometry where the BA and
GWA perform much worse than both the HFA and the TMA.

It is useful at this point to mention that when analyzing
the nonequilibrium performance of the different MBAs in
terms of ground-state properties we refer to the intrinsic
properties of the MBAs and not on the initial state. In fact we
will in Sec. X see that the propagation is insensitive to the
initial state.

Isolated clusters: MBAs, exact results and TDDFT. 1t is
interesting to examine some of the results just presented
from a TDDFT perspective. A clear advantage of TDDFT is
that, for the time evolution, it deals with quantities with a
single time argument (one is propagating the Kohn-Sham
orbitals). Nevertheless, a key requirement in TDDFT is that
U (an thus v,s) should depend in a nonlocal (in space and
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time

FIG. 10. (Color online) Time-dependent densities on site 1 for a
ring-shaped cluster with M =6 sites and filling n=1/6, for U=2 and
wo=5. The on-site energies vary periodically between O and -1,
starting with 0 on site 1. The curves correspond to exact (thick solid
black), TMA (dashed red), BA (dotted green), GWA (thin solid
blue), and HFA (brown dashed dot). The time is given in units of
the inverse hopping parameter of the central region, V=!.

time) fashion on the particle density. In this way, all the
complexities of the many-body dynamics are subsumed into
a highly nontrivial dependence of v,. on the density. Not
surprisingly, making progress in the construction of im-
proved XC functional is a rather challenging task, especially
for strongly correlated systems. It is also true that, in some
cases, simple adiabatic local approximations can provide sat-
isfactory results; this is also the case for a TDDFT descrip-
tion of the Hubbard model in nonequilibrium.”*49 However,
memory and nonlocal effects should in general be taken into
account. The so-called variational approach to TDDFT,%>!
has the advantage of a systematic inclusion of many-body
contributions in the XC potential. Also, in this way nonlocal-
ity in space and memory effects are properly included, once
v, 1s retrieved from the many-body self-energy via the time-
dependent Sham-Schliiter equation.’?> Deferring a “bottom-
up” construction of v,. via MBAs to future work, we here
still wish to explore the connection between TDDFT and
MBAs on the Keldysh contour, looking at exchange-
correlation potentials obtained via time-dependent reverse
engineering using the time-dependent densities from the
KBE. The results of this procedure are presented in Fig. 11,
M=6, N=2, U=4, wy=5. This corresponds to the time-
dependent densities presented in panel (d) of Fig. 9. Consis-
tently with the density results, we see the v, in the TMA is
superior to those from the other MBAs, and quite close to the
exact one. We also note the large discrepancy of the HFA and
that, for both the BA and the GWA, v, exhibits a damped
behavior [the same is observed in the densities in panel (d)]
of Fig. 9, see Sec. X below). In spite of not being perfect, the
agreement of v,z from the TMA with the exact one is quite
encouraging, suggesting that there is ample scope for pursu-
ing the construction of improved v,, from (suitably chosen)
MBA:s.

Spin-dependent GWA. Before concluding this section, we
wish to discuss briefly the effect on making a spin-dependent

155108-11



PUIG VON FRIESEN, VERDOZZI, AND ALMBLADH

time

FIG. 11. (Color online) Time-dependent v, on site 1 for M
=6, U=4, and wy=35. The curves correspond to exact (thick solid
black), TMA (dashed red), BA (dotted green), GWA (thin solid
blue), and HFA (brown dashed dot). The time is given in units of
the inverse hopping parameter of the central region, V~!.

treatment in the GWA. In Fig. 12, we make a comparison
between GWA, SGWA, and, for reference, TMA. Due to the
symmetry breaking of the SGWA (see Sec. VIII), and that we
only consider the spin unpolarized case (otherwise, one
should start with polarized propagators) we confine ourselves
to the weak interaction regime. As evident from Fig. 12, for
the chosen parameters the SGWA is slightly better than its
spin-independent counterpart but inferior to the TMA.

As a final remark to this section, we note that in the gen-
eral case, GWA was designed to give a good screening of the
Coulomb interaction,?! which in our system has already been
taken into account indirectly by the model itself. The TMA,
on the other hand, is known to give a good performance if
the interaction is short ranged, especially in the low-density
regime.?? The general good description of the TMA (both in
and out of equilibrium) for the short-ranged Hubbard Hamil-
tonian is in accordance to previous studies of ground-state
properties of clusters.’’>3 Both ground-state and time-

0.2

— EX
--- TMA
L — GWA

time

FIG. 12. (Color online) Time-dependent densities for M
=4, U=1.5, wy=5 and n=1/4. The curves correspond to exact
(black), GWA (dotted red), SGWA (thick blue), and TMA (dashed
green). The time is given in units of the inverse hopping parameter
of the central region, V~!.
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FIG. 13. (Color online) Densities for M=2, n=1/2, U

=1, wy=5, exact (black), GWA (dashed red), and GWA initialized
with G (blue). In (a): damping of GWA density versus exact solu-
tion. In (b): time-dependent densities for the GWA, initialized with
the self-consistent GWA ground state and the noninteracting G,.
The time is given in units of the inverse hopping parameter of the
central region, V~!.

dependent results reflect intrinsic properties of an MBA.
Moreover, we find here that the performance of the different
MBAs in the ground state correlates strongly with their be-
havior out of equilibrium. In particular, MBAs which give a
good description of satellites and band gaps in the ground
state are those which perform best in the presence of time-
dependent fields.

X. RESULTS: DAMPING AND MULTIPLE STEADY
STATES

In this section, we will investigate the correlation-induced
damping and the long-time behavior of the KBE. We find
that these features are general for all MBAs which include
correlation effects. We exemplify this by presenting results
for different MBAs in the various parts of this section.

A. Isolated clusters: correlation-induced damping and multiple
steady states

Numerical evidence of correlation-induced damping.
When we let our isolated system(s) evolve under the action
of a strong (w,>V) external field we reach an artificial
steady state,!”>* see Fig. 13(a). The damping mechanism be-
hind such behavior is not a mere consequence of the infinite
number of poles in the initial state but is rather intrinsically
linked to the time propagation scheme. To show this fact we
present in Fig. 13(b) the time-evolved density initiated with
the noninteracting propagator G,,”> which has a finite num-
ber of poles. From the curves in Fig. 13(b) it is evident that
the noninteracting initial state leads to a very similar damped
density profile. Note that the similarity of the curves in Fig.
13(b), indicate a robustness of the KBE time evolution
against the initial conditions.

The damping is not a numerical artifact: in Fig. 14 we see
that particle and energy conservation are strictly obeyed
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FIG. 14. (Color online) Conservation laws and time reversal in
the GWA for M=2, n=1/2, U=1, wy=5. In (a): relative change
in particle number. In (b): total energy for different time steps. In
(c): density propagated forward in time from -2 to 3 and then
backward from 3 to —2. The time is given in units of the inverse
hopping parameter of the central region, V!

within our numerical accuracy, see top and middle panel.
Moreover, the evolution satisfies time-reversal symmetry.
That is, when we reverse the direction of time in the propa-
gation, the system goes back to the initial state and remains
there, see bottom panel. The damping rate increases with the
strength of the external field and is absent in the regime of
linear response.

To study the nonlinear response regime, we find conve-
nient to introduce the instantaneous spectral function,

2T, -

A(T,,0) =—Tr Imf ei‘”T[G>—G<]<TP+§,T[, 2>d7',

-ar,
(71)

where T,=(#,+1,)/2 and 7=(¢;~1,), and its counterpart in
time space. When reaching the steady state, the spectral
function gets broadened in energy space, Fig. 15(a), and
damped in time space, Fig. 15(b). Note that, for our dimer,
the exact instantaneous spectral function would continue to
oscillate in time space. The different MBAs have different
damping rates; among them, the TMA is in general the slow-
est. The damping acts strongest on the perturbed site, it gen-
erally decreases with system size and is most important at
half filling.

Perturbation strength and damping. We have seen, from
our numerical results that the correlation damping is absent
in the linear regime. The dynamics in this limit is described
by the Bethe-Salpeter equation, with a kernel &2/68G. The
latter would have a discrete spectrum in our MBAs, and so
would the resulting density response. A discrete response
function will in turn lead to a nondamped dynamics. We wish
to stress that in a formulation based on conserving MBAs,
the key quantity is the generating functional; the correspond-
ing G is then defined via the self-consistent KBE, and not via
an underlying wave-function scheme. Without the connec-
tion to the underlying wave function, there is no guarantee
that, for example, systems with a finite phase space will only
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FIG. 15. (Color online) Time-dependent spectral functions in the
GWA for M=2, n=1/2, U=1, wy=2, (a): in energy space and
(b): in time space. The different curves correspond to 7,=10
(black), T,=35 (red), and T,,=100 (blue). The time is given in units
of the inverse hopping parameter of the central region, V.

have a finite number of excited states or that they will not
have a damped dynamics.

System size and damping. In our study, we have not made
an exhaustive characterization of how the large-size limit is
gradually obtained; this is indeed an issue we plan to address
in future work. Still, we wish to present in the rest of this
section some general considerations on the effect of system
size on the damping behavior.

In an exact treatment, a finite system has a corresponding
finite phase space and will thus not be able to fully relax to a
stationary steady state. In a large but finite phase space it
will, due to decoherence, give rise to a pseudosteady state
but with some long-time revivals. The larger the system gets,
the more and more complete the damping becomes. Thus,
after a long time, in an exact time dynamics the system
would exhibit noiselike fluctuations which never die but
which decrease in amplitude with system size. We have seen
that in our approximate KBE evolution the system, while
being finite, attains a stationary state. Thus, for a system in
which no narrow local resonances exist, the artificial damp-
ing of the KBE dynamics is expected to increasingly re-
semble the physical damping as the system grows. However,
the situation is different when such sharp resonances do ex-
ist. If a sharp resonance is narrower than the width associated
with the artificial damping, then it will be the latter that will
dominate the system’s temporal behavior in spite of the sys-
tem’s large size.

Self-consistency and damping. In MBPT, the self-energy
accounts for possible excitations of the system which involve
a certain number of particles/holes. Any self-consistent MBA
with a frequency-dependent self-energy includes diagrams of
all orders. These terms act as an effective bath which gives
rise to infinitely many discrete poles in the ground state (in
isolated systems) and correlation-induced damping in the
time dynamics. In a finite system, there will be contributions
to the self-energy which annihilate more holes/particles than
those which can be accommodated in the system. In an exact
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FIG. 16. (Color online) Time-dependent densities for Born ap-
proximations with different levels of self-consistency for M
=2, n=1/2, U=1, wy=5; BA, (black), BAyps (red), and BA
(blue). The time is given in units of the inverse hopping parameter
of the central region, V~'.

theory, these unphysical terms would be exactly canceled,
order by order, by other unphysical pieces. In approxima-
tions such as the GWA or the TMA, there is in general no
such perfect compensation. The infinite number of poles of
the ground state and the correlation-induced damping will
thus be artificial for a finite system. Similar arguments are
also valid for an infinite system. For any given volume in
space, there will be a maximum number of particles which
can be accommodated at a given time. For an extended sys-
tem and/or if the interaction is long ranged the artificial con-
tributions will, however, be much less pronounced.

In Fig. 16, we present results from three versions of the
BA to illustrate the effect of an increasing level of
self-consistency.”® These approximations, which are all par-
ticle conserving,”’ involve different polarization propagators.
In the first case we evaluate the polarization propagator with
ground-state propagators (BA,) (top panel). In this case, the
density does not damp. In the second case, we evaluate the
polarization with propagators in the time-dependent HFA ap-
proximation (BAygs) (middle panel). In this case, we ob-
serve partial damping. If we finally use the self-consistent G
(BA) (bottom panel), we get complete damping. We see in
other words that if all G’s that build up the self-energy are
the self-consistent ones we reach a steady state.’®

Multiple steady states

Another striking feature related to the correlation-induced
damping is that the steady state is not unique for a given final
external field: it depends on how the perturbation is switched
on, see Fig. 17. In our simulations, in the case of an adiabatic
turn on [w(t) =wgt/1,,..), We reach the ground state of a sys-
tem with an on-site energy corresponding to the final exter-
nal perturbation. This is consistent with the adiabatic theo-
rem. If, however, the perturbation is switched on suddenly,
we reach a nonphysical steady state with the same energy as
at t=0*. This nonuniqueness is indicative of an important
aspect: given a final external potential, there are multiple, in
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FIG. 17. (Color online) Time-dependent densities for a cluster
isolated in the TMA with sudden and slow switch on for M
=2, U=1, wy=8. Sudden switch on (thin black), slow switch on
(t,nax=40) (thick red), and ground-state density of the final Hamil-
tonian (dashed red). The time is given in units of the inverse hop-
ping parameter of the central region, V~!.

principle infinitely many, solutions of the stationary KBE in
finite clusters.

The rise of different steady states during the time propa-
gation can, somewhat heuristically, be understood as a his-
tory dependence of the occupation of the excited states. In
other words, if we have an adiabatic switch on then only the
lowest states will be populated but if the switch on is fast
then also the higher energy states get populated.>

B. Contacted clusters: correlation-induced damping and
quasisteady states

The phenomenology (and the reasons behind it) of the
correlation-induced damping manifest in a similar way when
the central region is coupled to macroscopic leads, where we
have both a self-energy, 2,,,, from the leads and a self-
energy, 2 ,p4, from the interactions.

Both contributions are nonlocal in time and may lead to
damping. Thus, in general we have two damping mecha-
nisms: One due to the coupling to the continuous lead band
and one induced by correlations.

In Fig. 18, we present the time-dependent densities within
the TMA for a dimer, both isolated and coupled to unbiased
leads,%¢! subject to an external field with sudden and slow
[w(t)=wpt/t,,] switch on; panel (a) and panel (b),
respectively.5?

Similarly to the isolated case, we find that for a slow
switch on we tend to reach the ground state corresponding to
the final Hamiltonian (given by the dashed curves) while for
a sudden switch on, we reach another (quasi)steady state.
With the term “quasisteady states” we mean long-lived exci-
tations which can take an arbitrary long time to decay to the
true steady state. When the strength of the perturbation is
such that the ground state corresponding to the final external
potential contains states outside the band continuum, the
KBE give rise to multiple quasisteady states.®3 In practice it
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FIG. 18. (Color online) Time-dependent densities for a cluster
isolated and coupled to two leads in the TMA with sudden and slow
switch on. M=2, U=1, wy=8. In the contacted case, the on-site
energies=—U/2. Lead parameters: V, =1, V| ¢=0.5, filling=0.5,
and bias=0. (a) Sudden switch on: isolated cluster (thin black),
coupled to leads (thick red). (b) Slow switch on (1,,,,=40): isolated
cluster (thin black), coupled to leads (thick red); ground-state den-
sities of the final Hamiltonian: isolated cluster (dashed black),
coupled to leads (dashed thick red). Inset: expanded view of the
long-time limit behavior. The time is given in units of the inverse
hopping parameter of the central region, V'

means that it can be impossible, due to numerical limitations,
to reach the true steady state by time evolution.®* In all ap-
proximations which include correlation effects we have that
the continuous nature of the band spreads out to all frequen-
cies and thus the X3, will have a nonvanishing imaginary
part in the whole spectrum. This imaginary part will, how-
ever decrease very fast outside the band and therefore the
lifetime of the states outside the band can be arbitrarily long
depending on how far from the band they are.

The quasisteady states vary continuously with the way the
final potential is reached. In other words there infinitely
many quasisteady states where similar switch ons give simi-
lar quasisteady states. In the case of the HFA we see that the
density continues to oscillate if we have more than one pole
in the ground state of the final Hamiltonian. This results is
consistent with recent work on the role of bound states in
quantum transport.®>-% However, we wish to remark that, in
the HFA, the frequency, amplitude and average value of the
oscillating density will, however, depend on the way the ex-
ternal field is switched on. In the case of U=0, however, the
frequency is independent of the switch on.%

The damping induced by correlations and the one due to
the coupling to the macroscopic contacts have in general
different characteristic time scales. This is clearly seen in
Fig. 19 where we have gradually increased the coupling to
the leads: here, the external field and the lead bandwidth are
such that the corresponding ground state of the final Hamil-
tonian contains no states outside the band continuum. In the
case of an isolated cluster (VLaC=0), the damping is only due
to correlations. Once the coupling to the leads is nonzero,
there will be, in addition to the correlation-induced one, a
damping due to the contacts; the latter will eventually bring
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FIG. 19. (Color online) Time-dependent densities for a cluster
with different couplings to two unbiased leads in the BA. M=2,
U=1, on-site energies=—-U/2, wy=5, V; =5, and filling=0.5 in the
leads. The time is given in units of the inverse hopping parameter of
the central region, V.

the system to the corresponding ground state. In Fig. 19, the
ground-state values of the densities are represented by ar-
rows (on the scale of the figure, the red and green arrows are
not distinguishable). Note that each curve in Fig. 19 corre-
sponds to a different system, i.e., with a different device-lead
coupling strength. Each of these systems has a different final
Hamiltonian, i.e., a different corresponding ground state.
When the coupling strength is weak (V,, ¢=0.125,0.5), the
time scale of the damping due to the leads is much longer
than correlation-induced one. For intermediate coupling
strengths (VLaC: 1.5), the characteristic times will be of the
same order of magnitude and the interplay of the two mecha-
nisms becomes intrinsically difficult to discern. When the
coupling strength is strong (VLaC:3)» the damping is com-
pletely dominated by the leads.

As a final remark, we know that the correlation-induced
damping is artificial in isolated clusters, and we saw in Fig.
19 that when the coupling to the leads is weak, the initial
damping is also dominated by correlations. These two facts
together seem to cast some doubt on the capability of the
KBE+MBAs scheme to describe (within the simple MBAs
discusses here) transients in the weak coupling case (a re-
gime which is of high experimental interest, and in fact
among the most investigated in the literature).

To summarize this section, we see that the correlation-
induced damping is present both in isolated and contacted
clusters whenever approximations involving correlation ef-
fects are used. If there are sharp resonances (infinitely sharp
in the case of isolated clusters), there will be multiple steady
states, in isolated clusters, or quasisteady states in clusters
coupled to leads. For isolated clusters, this damping is arti-
ficial as the exact solution does not reach a steady state. The
question whether or not the correlation-induced damping and
the existence of multiple quasisteady states in a cluster
coupled to leads are an artifact of MBPT or are instead
physical properties of this model is left to future work.
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XI. CONCLUSIONS AND OUTLOOK

A main objective of this paper has been to describe in
detail a method, within the framework of the time-dependent
KBEs, to study finite systems in equilibrium as well as out of
equilibrium. The main emphasis of the paper has been on
finite clusters, for which a meromorphic representation of the
equilibrium many-body quantities is possible, but, in few
instances, we have also considered some results for con-
tacted clusters.

As a concrete application, we examined the time evolu-
tion of clusters with strong, short-ranged electron interac-
tions within several MBAs, and compared the results to ex-
act ones. A first main outcome of these comparisons is that,
for short-ranged, Hubbard-type interactions, the T-matrix ap-
proximation performs very well at low densities, and is in
general superior to the GW and second Born approximations,
both in describing the time-dependent density and the corre-
sponding exchange-correlation potential.

A second important outcome of our work is the existence
of two remarkable features of the time-dependent KBE. The
first is that the KBE present a correlation-induced damping
in the nonlinear regime. The second is that the steady state
reached for isolated clusters is not unique, i.e., the stationary
KBE support multiple stationary states. In the case of clus-
ters coupled to macroscopic leads the KBE will yield mul-
tiple quasisteady states with arbitrarily long lifetimes if there
are sharp resonances outside the band continuum. Since a
finite cluster subject to a nonadiabatic perturbation will os-
cillate indefinitely, it is clear that, for finite systems, such
damping and multiple steady-state behavior are artificial. We
argue that these shortcomings will always be present when
applying infinite order perturbation theory, with self-energies
which are nonlocal in time, to finite systems. In this paper,
we were not able to provide a conclusive answer to which
extent these two aspects of the KBE bear a physical mean-
ing, or if they are a spurious effect of MBPT.

Future research activity may be envisaged in various di-
rections. On the methodological side, it would be of interest
to further investigate, for contacted systems, if the
correlation-induced damping and the multiple quasisteady
states are physical for model Hamiltonians of the kind inves-
tigated here.®® A second methodological issue we are cur-
rently addressing is the performance of the different MBAs
in quantum transport geometries. We will do by comparing
the approximate results with those of time-dependent
density-matrix renormalization-group calculations.”® Another
possible line of study would be searching for algorithms to
reduce/optimize the computational costs of time-dependent
KBE numerical calculations. This is necessary to deal with
more realistic systems. As a fourth direction, it would be of
great interest to study the effect of including bosonic degrees
of freedom as vibration phenomena often play an crucial role
in quantum transport. Finally, we also intend to use our
KBE-based computational treatments in some specific appli-
cations: Possible examples are real-time qubit manipulation,
bistability induced by electron-phonon interaction, and cold-
atom dynamics. More specific details are deferred to future
publications.
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APPENDIX A: ENERGY FUNCTIONALS

The energy functionals considered here are the Galitskii-
Migdal (GM) and the Luttinger-Ward (LW). An important
difference between them is that the GM needs only the
knowledge of the single-particle Hamiltonian and of the
spectral function of G while the LW incorporates the ® func-
tional as well as 2[G], which depends on which approxima-
tion one is using. Here we give the expression for the LW
functional for the GW approximation. In practice, we evalu-
ated the LW only in the ground state, i.e., in frequency space,
while the GM was also used during time evolution.

1. Galitskii-Migdal

In frequency space, the GM functional reads”!

E:—éTr{(e+ h)G}, (A1)

where Tr stands for trace’? and # is the single-particle Hamil-
tonian not including . Thus

ngp np
E=2 2 ajArg— 2 2 Arehiggrs (A2)
R i=1 RR’ i=1

where np is the number of poles below the Fermi energy, and
after having made use of the meromorphic representation of
G=. In time space, the form of E becomes

E=- éTr[(i&, +)G=(1,1)]. (A3)

Making use of the equation of for G, we obtain

E=- éTr[hG<(t,t+)] - éTr[(h + 30 G (6,1 + 17 (1,19)].

(A4)
2. Luttinger-Ward
The LW energy functional is”
iE=®-Tr{SG+In(2 - GyH}, (A5)

where the self-energy depends functionally on the input G
ie., 2=3[G] and ® is the generating (of the MBAs) func-
tional. Specializing to the case of the GW approximation, the
@ functional becomes
1

Doy=Pyp+ ZTr{ln[l -UP]+UP}, (A6)
where ®@pp=(i/2)Tr{2 [ G]G}. When computing the loga-
rithmic term ln(E—Ggl) in Eq. (A5), it is useful to make the
following separation:
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[ -Gy ]=In[- Gl +In[1 - Gy2], (A7)

where Gj-=€—b and b incorporates the Hartree and Fock
terms and where 3 is the correlation part of the GW self-
energy. The first term in Eq. (A7) is the sum of the eigenval-
ues of the occupied Hartree-Fock single-particle states (cal-
culated from the correlated Green’s function) which
obviously does not correspond to the Hartree-Fock energy.
The second contribution in Eq. (A7) can be evaluated with a
well-known identity,’*

G b
n[1-G 2J=—f —Cdx=—f GS .d\.
o o 1=NGypZ, 0

(A8)
In Eq. (A8), G satisfies the Dyson equation,

G=Guyr+\Gyp2 G. (A9)

The other logarithmic term in @y, i.e., In[1-UP], is treated
in a similar way. In the actual calculation, expressions of the
form Tr[AB] are evaluated analytically, while integrals of the
kind |, (I,ABd)\ are performed numerically.

APPENDIX B: TIME PROPAGATION ALGORITHM

To increase the numerical stability of the time propaga-
tion, we incorporate the time-local part of the self-energy
into the noninteracting Hamiltonian (h=h+2. ). The evolu-
tion from this modified single-particle Hamiltonian can be
expressed in terms of a single-particle evolution operator S
which is a time-dependent matrix in single-particle labels.
The Green’s function can thus be reexpressed via a unitary-
gauge-transformed image,

G=(11,12) = S(11,0)g= (11,1,)S"(12,0), (B1)
where S satisfies the following differential equation:
iatls(tl’o)zh(tl)s(tl,o) (B2)
with the initial condition
5(0,0)=57(0,0)=1 (B3)
and the group property
S(t1,1)8(1,15) = S(t1,15). (B4)
Specializing to the case of G~, we get
i6, G~ (11,1) = h(11)S(11,0)” (11,1) " (1,0)
+5(11,0)id, &7 (11,12)S"(1,,0)
=h(1)G (1,0) + 17 (11.12), (BS)

where the second equality comes from the Kadanoff-Baym
equation for G”. This results in
iat18>(t1,l2) = 8"(t1.0)17 (11,1,)8(1,.0). (B6)

Therefore, by integrating from present time 7), to 7,,+A,
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l[g>(Tp + A7t2) - g>(Tp7t2):|

T,+A
= f ST O (7,1)S(15,0)d T

Ty

A
=S%(T,.0) f S+ T,. T )17 (T+T,.1,)S(t,,0)d7.
0

(B7)
Thus
G™(T,+ A1) =S(T, + A, T,)G™(T,.1»)
A
—iS(T,+A,T,) J S'(t+T,.T,)
0
XI7 (T+T,,1))dT. (B8)

Up to this point we have not made any approximations but
merely formal rewritings of the KBE. To calculate the S(7,
+A,T,), we divide the interval [T,,,T,+A] into N intervals in
which the single-particle Hamiltonian, b, is taken constant
and evaluated at the midpoint. For a constant fj, we obtain

(G+DA A , (j+1/2)A |A
S T,+ N ,Tp+%]=exp{—lh[Tp+T]Xl},
(B9)

which is evaluated by diagonalization. The resulting expres-
sion becomes

N-1
B ) (j+1/2)A A
S(Tp+A,T)—j:1—[0 exp{—zb{TP+—N }N}

(B10)

Given that N is taken large enough, the only error of the
above expression comes from the extrapolation/interpolation
of b (done with a four-point formula). This error is in general
very small as the density (which enters b via the HF term) is
a continuous and smooth function of time.

To solve Eq. (B8) we also need to approximate the inte-
gral. This can be done in two different ways depending on
which of the two quantities I7(7+7,,1,) or I7(t+ T,.15)
=ST(r+ Tp,Tp)IT(?+ T,.t,) is the most slowly varying func-
tion. We have tried both and seen that the 71> (t+T,,1,) is the
smoothest. The integral is done numerically, typically with a
two- or four-point formula. We have implemented both
methods but for the systems we have studied we have not
seen dramatic improvement. Similar expressions are used for
the other KBE. Special attention is needed only for the time
diagonal. In this case we combine the two first KBE, Eqs.
(53) and (54) and using the property in Eq. (63),

iLd, +0,1G™(11,10) = [1,G~(11,0) ]+ I (11,12) =[5 (11,1),
(B11)

we then change to the variables r=(t,+1%,)/2 and t' =t,—t,.
This gives
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i0,G(t+1'12,t=1'12) =[h,G=(t+1'12,t - 1'12)]
+ (e +1/2,6—1'12)
—L(t+1'/2,t=1'/2). (B12)

By performing the same gauge transformation as above and
setting ¢'=#,—1,=0, we obtain’”

iag~ () =Ty (1) - I5 (1), (B13)

where I<(1)=S"(z,0)I<(,1)S(,0). Integrating from time T,
to Tp+A, we obtain
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TP+A

(T, +A)=g~(T,) —i J (77D - T, (D]d7,

T

(B14)
which leads to
G~(T,+A)=S(T,+A,T,)G~(T,)S'(T,+A,T,)
—iS(T,+A,T,) J ’ (Iy(@+T,) -1, ([T+T,)dt
0
XSUT,+A,T,). (B15)

The integral is then evaluated in the same way as discussed
above for the case t| # f,.
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