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Cluster dynamical mean-field calculations based on 2-, 4-, 8-, and 16-site clusters are used to analyze the
doping-driven metal-insulator transition in the two-dimensional Hubbard model. Comparison of results ob-
tained on different clusters enables a determination of those aspects of the physics that are common to all
clusters and permits identification of artifacts associated with particular cluster geometries. A modest particle-
hole asymmetry in the underlying band structure is shown to lead to qualitatively different behavior on the
hole-doped side than on the electron-doped side. For particle-hole asymmetry of the sign and magnitude
appropriate to high-Tc cuprates, the approach to the insulator from the hole-doping side is found to proceed in
two stages from a high-doping region where the properties are those of a Fermi liquid with moderately
renormalized parameters and very weak momentum dependence. As doping is reduced the system first enters
an intermediate doping regime where the Fermi-liquid renormalizations are larger and the electron self-energy
varies significantly around the Fermi surface and then passes to a small doping regime characterized by a gap
on some parts of the Fermi surface but gapless behavior in other parts. On the electron-doped side the partially
gapped regime does not occur, and the momentum dependence of the electron self-energy is less pronounced.
Implications for the high-Tc cuprates and for the use of cluster dynamical mean-field methods in wider classes
of problems are discussed.
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I. INTRODUCTION

The evolution of a Mott �correlation-driven� insulating
state as charge carriers are induced by doping is one of the
basic questions in condensed-matter physics. It is relevant to
the behavior of wide classes of materials1 and is of particular
importance in the context of high-temperature copper-oxide
superconductivity, where following an early insight of
Anderson2 the materials are generally accepted to be doped
Mott insulators with the combination of “Mott” correlations
and �quasi-� two dimensionality giving rise to the novel
properties.

A crucial insight into the physics of doped Mott insulators
was provided by Brinkman and Rice3 who argued that the
low-temperature properties of the doped Mott insulator were
in effect those of a Fermi liquid with a quasiparticle mass
which diverged as the Mott insulating state was approached.
The Brinkman-Rice picture provides a reasonable descrip-
tion of data in many materials1 and has been refined theoreti-
cally over many years. In particular the development of the
single-site dynamical mean-field theory4 �DMFT� provided a
precise theoretical framework within which these results can
be derived. The key physical assumptions required for
Brinkman-Rice behavior are now understood to be the pres-
ence of strong correlations and the locality of correlation
effects. The mathematical expression of the latter assumption
is the momentum independence of the electron self-energy.
The locality assumption becomes strictly valid for classes of
lattice models in a limit of infinite lattice coordination
number5 and appears to provide a reasonable approximation
to the behavior of many three-dimensional materials.1 How-

ever, the momentum-independent self-energy approximation
is likely to be less accurate for materials, such as high-Tc
superconductors, where the electronic properties are two di-
mensional.

Indeed, it was recognized soon after the discovery of
high-Tc superconductivity in the CuO2 perovskites that the
materials required a description which went beyond the
Brinkman-Rice/single-site dynamical mean-field theory ap-
proach. The evidence has become stronger over the years and
it is beyond the scope of this paper to review the large ex-
perimental literature demonstrating this point. We do recall
here the results of angle-resolved photoemission and related
transport experiments which clearly illustrate this point.
Studies of hole-doped cuprate materials with very high dop-
ings �above the doping which maximizes the superconduct-
ing transition temperature� indicate a quasiparticle lifetime
and velocity renormalization which are nearly isotropic
around the Fermi surface,6 consistent with inferences from
magnetotransport.7,8 As the doping is reduced toward the in-
sulating phase the behavior changes. Photoemission mea-
surements on materials with “optimal” doping levels �near
the carrier concentration which maximizes the superconduct-
ing transition temperature� reveal an electron lifetime which
varies dramatically around the Fermi surface,9 again consis-
tent with inferences drawn from interpretations of the inter-
plane conductivity10 and from in-plane magnetoresistance
measurements.7 Measurements on “underdoped” cuprates
�those with carrier concentrations even closer to the insulat-
ing phase� reveal a “pseudogap” �reduction in electronic den-
sity of states� for momenta near the �0,�� / �� ,0� points of
the Brillouin zone but no pseudogap for states near the zone
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diagonal �near �� /2,� /2��.11–13 Thus optimally doped and
underdoped cuprate materials exhibit a self-energy with a
strong momentum dependence, inconsistent with the
Brinkman-Rice/single-site dynamical mean-field approach.

On the theoretical side the importance of going beyond
the Brinkman-Rice description was also recognized early on.
For example, the various forms of resonating valence bond
�RVB� theories take intersite correlations explicitly into ac-
count by expansion around a specific mean-field approxima-
tion and were shown to lead to a non-Brinkman-Rice doping
dependence of the electron effective mass and other Fermi-
liquid parameters14,15 and to a pseudogap16 �for a recent re-
view see Ref. 17�. Other authors have addressed the issue in
the context of analytical calculations based on the assumed
importance of antiferromagnetic18–21 or charge-density
wave22 correlations. These, and other semianalytic calcula-
tions, while demonstrating the importance of antiferromag-
netic correlations for the electron-doped cuprates, have not
led to a consensus regarding the physics of the hole-doped
cuprates, in part because they are based on approximations
which are uncontrolled �or are controlled in limits which are
not clearly relevant to the actual materials� and more impor-
tantly because they are based on assumptions about which
correlations are physically relevant and which may be ne-
glected. The appropriateness of the underlying assumptions
about which physics to include have been the subject of de-
bate.

Over the last decade the development of “cluster” dy-
namical mean-field methods23–26 has opened up a very prom-
ising new line of attack on the problem. These methods ob-
tain an approximate solution of the full many-body problem
in terms of the solution of an auxiliary N-site quantum im-
purity model coupled with a self-consistency condition. For a
review, see Refs. 27–29. N=1 corresponds to single-site dy-
namical mean-field theory with a momentum-independent
self-energy; clusters of size N�1 allow for some momentum
dependence of the self-energy and thus enable the study of
deviations from Brinkman-Rice behavior. As N→� one re-
covers the full model; however, the computational expense
rises rapidly as the interaction strength and cluster size in-
crease. An advantage of the methods is that no explicit as-
sumption is made about the important of one kind of elec-
tronic correlation �spin density, charge density, RVB� relative
to another, but the possibility of potential biases associated
with choice of cluster is an important issue which this paper
aims to address.

Important results obtained by cluster dynamical mean-
field methods have included the demonstration that in an
appropriate doping and interaction range the two-
dimensional Hubbard model can exhibit a pseudogap,30,31

“Fermi arcs,”32–36 and a variation in electronic properties
around the Fermi surface �nodal-antinodal
differentiation�.31–33,37–39 The methods have been shown to
yield a multistage approach to the Mott transition with the
insulating phase being separated from the weakly correlated
metallic phase by a “sector-selective” phase where some re-
gions of the Brillouin zone are gapped and others are
not37,39–41 and a number of physical properties were shown
to be in good agreement with experiment.38,39,42

Despite these successes, uncertainties remain. Most clus-
ter dynamical mean-field papers analyze one specific cluster.

Comparison of results obtained on clusters of different sizes
has been undertaken only in a few special cases,43–47 mostly
not directly relevant to the question of the doping-driven
Mott transition. It has therefore not been clear which results
are due to specific properties of clusters and which results are
representative of the physics of the full model. More gener-
ally, cluster dynamical mean-field calculations test the limits
of present day computational abilities so that compromises
are required between cluster size and the ranges of tempera-
ture, interaction strength and carrier concentration to be stud-
ied. Little information is available in the literature to guide
the choices which must be made.

This paper has two main goals: to clarify the physics of
the doping-driven Mott transition in two dimensions by iden-
tifying the robust physical features which can now be con-
sidered as established from cluster dynamical mean-field
theory and to identify the differences between different clus-
ter sizes and geometries. We present a global examination of
the one-electron properties of the doped Mott insulator, using
clusters of all feasible sizes from 2 up to 16 sites, respecting
the lattice symmetry. The investigation is made possible by
progress in algorithms, which have made the computations
much more efficient, enabling surveys of wide ranges of pa-
rameter space for many clusters.48,49 We describe the elec-
tronic properties in detail and show that the phase diagram
and physical properties are to a surprising extent robust
against choice of cluster size and geometry. Where differ-
ences occur, the features of the cluster which cause them are
determined. Our results define the current frontier of the
field, given present computational capabilities, and call for a
new generation of theoretical developments aiming at im-
proving momentum-space resolution.

While the various aspects of the doping-dependent phase
diagram of the two-dimensional Hubbard model have been
noted in various ways in the cluster dynamical mean-field
literature, the generality of the results and their robustness to
choice of cluster have not been previously appreciated. The
comparison of results for different sized clusters clearly dem-
onstrates that the essentials of the carrier concentration de-
pendence of physical properties of a doped Mott insulator are
as sketched in Fig. 1. Far from the insulating state, the prop-
erties are those of a moderately correlated Fermi liquid.
Moreover, the momentum dependence of the renormaliza-
tions is very weak: the properties are described well by
single-site dynamical mean-field theory, as previously noted,
e.g., in Refs. 32 and 33. We refer to this regime as the iso-

FIG. 1. �Color online� Qualitative sketch of doping regimes for
parameters considered in this paper.
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tropic Fermi liquid. �Note that “isotropic” here means isotro-
pic scattering properties �self-energy� along the Fermi sur-
face, but the Fermi surface is not circular.� As the doping is
decreased toward the n=1 insulating state the system enters
an intermediate doping regime where the low-temperature
behavior is still described by Fermi-liquid theory, but the
Fermi liquid is characterized by a strong momentum depen-
dence of the self-energy with the self-energy being largest
near the zone corner �0,�� / �� ,0� points and smallest near
the zone diagonal ��� /2, �� /2� regions of momentum
space. We refer to this as the regime of momentum-space
differentiation. The change between the isotropic and
momentum-space differentiated Fermi-liquid regimes is not
characterized by any order parameter and we believe it to be
a crossover, not a transition, but the doping at which the
change occurs is surprisingly sharply defined and is indicated
by dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-liquid
regime appears on the hole-doping side but not on the
electron-doping side �for the moderate particle-hole asym-
metry considered here�. In the non-Fermi-liquid regime, re-
gions of momentum space near �0,�� / �� ,0� acquire an
interaction-induced gap, while the zone diagonal regions of
momentum space remain gapless. We refer to this regime as
the sector-selective regime. The boundary between the re-
gime of momentum-space differentiation and the sector-
selective regime is indicated by a light solid line in Fig. 1.
Finally at doping n=1 the system is in the Mott insulating
phase.

The remainder of the paper is organized as follows. In
Sec. II we summarize the general features of the doping-
driven Mott transition, define the model to be studied and the
questions to be considered and outline the theoretical ap-
proach. In Sec. III we demonstrate the existence of different
doping regimes and how they appear in the different cluster
calculations. Section IV explores in more detail the interme-
diate “momentum-space differentiated” doping regime, stud-
ies the momentum-selective regime and aspects associated
with the pseudogap. Section V then considers the sector-
selective regime. In Sec. VI we summarize our insights into
the behavior of smaller size clusters. Finally, Sec. VII is a
summary and conclusion, also pointing out directions for fu-
ture work.

II. MODEL AND METHOD

In conventional electronic-structure theory, band insula-
tors are periodic crystals in which all electronic bands are
either filled or empty. A necessary condition for band-
insulating behavior is that the number of electrons per unit
cell is even. For the purpose of this paper we define a
correlation-induced or Mott insulator as a periodic crystal
which has no broken symmetry but is insulating, even
though the number of electrons per unit cell is not an even
number. The insulating behavior must arise from electronic
correlations which are beyond the scope of conventional
band theory. The basic theoretical model used to study the
correlation-induced transition is the one-orbital Hubbard
model, consisting of electrons hopping among sites i of a

lattice and subject to an interaction U which disfavors con-
figurations with two electrons on a given lattice site. The
model is most conveniently written in a mixed position-
space/momentum-space representation as

H = �
k�

�kck�
† ck� + U�

i

n̂i↑n̂i↓. �1�

Here ck�
† is the Fourier transform of the operator ci�

† which
creates an electron of spin � on site i and n̂i�=ci�

† ci� is the
number operator for electrons of spin � on site i. We special-
ize to a two-dimensional square lattice with hopping param-
eters such that the electron dispersion is

�k = − 2t�cos kx + cos ky� − 4t� cos kxcos ky . �2�

We choose energy units such that t=1 and specialize to t�=
−0.15t. A nonzero t� introduces a particle-hole asymmetry
into the problem. The relative magnitude and sign of t� are
chosen to be representative of the band structure of high-
temperature superconductors;50 we note that for very much
larger amplitudes of t���t��	0.3� the behavior, especially on
the electron-doped side, differs slightly from what is dis-
cussed here.41 We take U=7t; this value is slightly smaller
than the U�9t believed to be relevant to high-temperature
superconductors51 but is large enough that for all of the clus-
ters we study a Mott insulating phase exists while being
small enough to enable us to perform computations on large
clusters with the resources available to us.

To solve the model we use the “dynamical cluster” �DCA�
version of cluster dynamical mean-field theory.23,27 In this
approach the Brillouin zone is partitioned into N equal-area
tiles which we may label by N central momenta Ki. The
electron self-energy 
�k ,�� is approximated by a piecewise
constant function: 
�k ,��=
Ki

��� if k is contained within
the tile labeled by Ki. The functions 
Ki

��� are obtained
from the solution of an auxiliary N-site quantum impurity
model with on-site interaction U and hopping and bath-
coupling parameters determined by a self-consistency condi-
tion which may be written

GK�i�n� = �K

d2k
1

i�n + � − �k − 
K�i�n�
. �3�

Here GK and 
K are Green’s functions and self-energies of
the impurity model and 	K denotes the normalized integral
over the momenta in the sector labeled by momentum K. For
details of the self-consistency procedure see Ref. 27.

DCA schemes are distinguished by the number and ar-
rangement of the tiles. Note that while �as far as is known�
the method requires all of the tiles to be nonoverlapping and
to have a volume equal to 1 /N of the Brillouin zone both the
shape of the tiles and their arrangement may be freely cho-
sen. The freedom to adjust the tile shape was introduced in
recent 2-site dynamical mean-field studies.37,39 We restrict
attention to tilings which respect the point symmetry of the
lattice but consider different tiling shapes. We use the 2-site
patching introduced in Ref. 37 and introduce an alternative
patching, which we refer to as 4�, for the 4-site cluster. The
specific clusters we consider are shown in the five panels of
Fig. 2.
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Also shown as light lines in Fig. 2 are the Fermi surfaces
of the noninteracting model for carrier concentrations corre-
sponding to half filling and 10%, 20%, and 30% hole doping.
The Fermi surface lines show a deficiency of the standard
4-site cluster: for hole dopings near to half filling the Fermi
surface is almost entirely contained in the �0,�� / �� ,0�
sectors; thus this cluster has a difficult time capturing
momentum-space differentiation along the Fermi surface.
The alternative 4� patching shown in the middle panel of Fig.
2 offers the possibility of capturing some of the zone-
diagonal region of the Fermi surface within a different sector.

The essential computational task is the solution of the
quantum impurity model. To accomplish this we use
continuous-time quantum Monte Carlo methods in the aux-
iliary field formulation �CT-AUX� �Ref. 48�. This method is
an imaginary time method which yields the particle densities
in each sector, along with the sector Green’s function GK and
the sector self-energy 
K. From GK we obtain the sector
occupancy nK via

nK = GK�
 → 0−� =
1

�
�

n

GK�i�n�ei�n0+
. �4�

Note that the sector Green’s functions are normalized in such
a way that for nK=2 all k states in a sector are occupied by
two electrons. The total density is n=2��KnK� /N �the two is
for spin�.

In our analysis we work for the most part with sector
quantities GK, 
K, and nK. We prefer to avoid the “periodiza-
tion” or interpolation schemes which attempt to reconstruct
continuous functions of momentum from the coarse-grained
quantities which are the direct output of the calculation.

Important quantities for the following discussion are the
parameters �k

�, Zk, and 
��k ,0�

��k ,�=0�. These are de-
fined generally for a Fermi liquid in terms of the low-
frequency limit of the real �
�� and imaginary �
�� parts of
the retarded electron self-energy 
�k ,�� as


�k,�� � �k
� − � + i
��k,0� + ��1 − Zk

−1� + ¯ , �5a�

�k
� 
 � + 
��k,0� , �5b�

Zk
−1 
 1 − ��
��k,����=0. �5c�

It will also be useful to consider

�k 
 Zk�
��k,0�� . �6�

In the DCA approximation we use here these become piece-
wise constant functions of momentum; we denote the value
appropriate to sector K by suppressing the momentum argu-
ment and adding a subscript K.

In the Fermi-liquid regime, these parameters express im-
portant aspects of electronic physics. For completeness we
briefly recall their meaning here. At low frequencies �→0,
the spectral function A�k ,��=− 1

� Im G�k ,�� becomes

A�k,�� �
1

�

Zk�k

�� + Zk��k
� − �k��2 + �k

2 . �7�

�k
� determines the location of the renormalized Fermi surface

�which is the locus of points kF for which �kF
=�kF

� �. Thus a
momentum dependence of �k

� signals a change in shape of
the Fermi surface and more generally a shift in the mean
energy of one momentum sector relative to the others. �k is
the width of the quasiparticle peak. For a fixed k on the
Fermi surface, A�kF ,�� is peaked at �=0 and the width in
frequency is set by �k. A necessary condition for Fermi-
liquid behavior is that �k be small, in which case A�k ,�� is
characterized by a reasonably well-defined quasiparticle peak
with frequency width given by �k and area given by the
quasiparticle weight Zk. The criterion �k��T is the math-
ematical expression of the condition that the width of a ther-
mally excited quasiparticle is less than its energy. In a Fermi
liquid 
��k ,0��T2 as T→0 so � is parametrically less than
T. In this paper, however, since we cannot reach very low
temperatures, it will be useful to relax this definition and
consider as a quasi-Fermi liquid any system where �i� the
Luttinger theorem is reasonably well obeyed, �ii� �k de-
creases as T decreases at all points along the renormalized
Fermi surface, and �iii� at all points along the Fermi surface
�k��T.

Defining the bare velocity v�k=��k /�k�, the dispersion
away from the Fermi surface is determined by the renormal-
ized velocity

FIG. 2. �Color online� Momentum-space tiling used to define cluster approximations studied here: 2 site �leftmost panel�, 4 site with
standard patching �second from left�, 4 site with alternative patching �4��, �central panel�, 8 site �second from right�, and 16 site �rightmost
panel�. Momentum-space patches indicated by shaded regions; electron self-energy is independent of momentum within a patch but may
vary from patch to patch. Dots �red� represent the K points in reciprocal space associated to the patches in the DCA construction �see text�.
Thin lines: Fermi surfaces for the noninteracting system with t�=−0.15t for half filling and hole dopings of 10%, 20%, and 30%. All clusters
have an inner patch around �0,0� �yellow� and an outer patch around �� ,�� �green�. Clusters with four or more sites also have an antinodal
patch at �� ,0� and symmetry-related points �blue�, clusters with eight or more sites have a nodal patch ��� /2,� /2�, red�. The 16-site cluster
has two additional independent momentum sectors, around �� /2,0� �orange� and around �3� /2,� /2� �cyan�. All clusters have the full
point-group symmetry of the lattice.
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v�k
� = Zk� ��k

�k�
+

�
��k,� = 0�

�k�

 = ZKv�k, �8�

where in the second equality we used the fact that in the
DCA approximation used here the self-energy is a piecewise
constant function of momentum so that the quasiparticle
weight ZK coincides with the velocity renormalization.

Note that dc transport properties are controlled by the
mean free path

lk = 
��k,��/��k��k + �k�
��k,� = 0�� =

K� �� = 0�

vk
, �9�

i.e., by 
��K ,0�, not by �K. We have used the piecewise
continuity of the DCA self-energy in the second equality.

An estimate for the sector spectral function AK��� in a
range of order T around the Fermi level may be obtained
from52

�GK��

2

 = −� d�

2T

AK���

cosh
�

2T

�10�

because the cosh−1 term implies that this integral is sharply
peaked around �=0.

The quantities �K
� , ZK, and 
K� ��=0� are defined in terms

of the real-axis self-energy while the impurity models are
solved on the imaginary frequency axis. Because the studies
in this paper require the survey of a wide range of clusters
and dopings we have not been able to obtain data of suffi-
cient quality to permit reliable analytical continuation of all
of our cluster data. Different size clusters impose different
computational burdens and �with the computational re-
sources we have� lead to data with differing statistical errors,
introducing further uncertainty in the comparison of continu-
ations based on data from differently sized clusters. We
therefore estimate �K

� , ZK, and the spectral function at zero
energy AK��=0� directly from the Matsubara-axis self-
energies. �K

� is obtained by extrapolating the real part of the
Matsubara-axis self-energy to zero. 
K� ��=0� may be ob-
tained as the extrapolation of the imaginary part of the Mat-
subara self-energy to zero frequency. The Kramers-Kronig
relation connecting 
� and 
� implies that if 
� is small at
low frequencies �as is the case in a Fermi liquid� ZK can be
obtained from the extrapolation to zero frequency of the de-
rivative of the Matsubara-axis 
�i�n�. We therefore estimate
�K

� , ZK, and 
��K ,0� by fitting the three lowest calculated
Matsubara frequencies to a quadratic form, which we use to
extrapolate the value and first derivative to zero Matsubara
frequency.

This “poor man’s analytical continuation” becomes less
reliable at higher temperatures because the spacing between
Matsubara points is 2�T and therefore discretization errors
become larger for higher T. At all temperatures we study we
find that of the three quantities �K

� has the least uncertainties
�in the Fermi-liquid regime� because the real part is continu-
ous across the real-frequency axis and has a relatively weak
temperature dependence. 
��K ,0� is less accurately deter-

mined than �K
� because it has a marked temperature depen-

dence and becomes small at low T, and ZK is least accurately
determined because it is a derivative.

For momenta removed from the Fermi surface the inter-
esting physics �in a Fermi liquid� requires knowledge of the
self-energy at nonzero frequency, in particular at the fre-
quency �qp which solves the “quasiparticle equation” �qp
+
��k ,�qp�−�k=0. Our poor man’s analytical continuation
procedure does not provide much information about the real-
frequency self-energy at nonzero frequencies, and the quan-
tities �K

� , ZK, and 
��K ,0� do not have a clear meaning for
states with �k���. We therefore focus in the following on
momentum sectors which contain pieces of the Fermi surface
and on regimes where reasonably long-lived quasiparticles
exist.

Further comparison of our methods to analytic continua-
tion is given in the Appendix.

III. DIFFERENT DOPING REGIMES

In this section we characterize the different doping re-
gimes discussed in the introduction in terms of the depen-
dence of the total electronic density n on the chemical po-
tential � and in terms of the partial occupancy nK of the
patch associated with momentum K, defined by Eq. �4�.

The total electron density n is plotted in Fig. 3 as a func-
tion of the chemical potential � for all clusters studied in this
paper. For comparison, the single-site DMFT result �i.e., the
cluster with N=1� is also displayed. Data are shown at the
inverse temperature �=20 / t for all clusters except 16 sites,
where we used �=7.5 / t. We first observe that at half filling
�n=1� all N�1 cluster calculations yield an insulating state,
revealed by the plateau in the n��� curve. By contrast,
single-site DMFT yields a metallic state �no plateau in n����
because the U / t=7 studied here is smaller than the single-
site DMFT value of the critical interaction strength U�12t.
The difference occurs because cluster calculations take spa-
tial correlations into account, and these stabilize the insulat-
ing state at smaller U values than are needed in the single-
site calculation.33,34,47,53,54
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FIG. 3. �Color online� Main panel: total electron density n as a
function of chemical potential � for clusters considered in this pa-
per at inverse temperature �t=20 for all clusters except 16, where
�t=7.5 is shown. Inset: expanded view of small chemical-potential
region, highlighting region of Mott gap where n=1 independent
of �.
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The range in chemical potential over which the n���
curve is flat can be used to define an estimate �g for the
insulating gap as �g=��n=1+�−��n=1−�. Of course thermal
effects mean that the n��� curve is not precisely flat. We
adopt the criterion that the chemical potential is within the
gap if 0.99�n�1.01. Table I presents results obtained for
the different clusters, using this criterion, at inverse tempera-
ture �t=20 ��t=7.5 for 16 site�. Except for the convention-
ally patched 4-site cluster, all of the clusters studied give
remarkably consistent estimates for �g. We will explain be-
low why the conventionally patched 4-site cluster is differ-
ent.

We next turn to the doping dependence. It has previously
been shown from small cluster studies that at large enough
doping, cluster corrections to the single-site DMFT results

are small.32,33 Figure 3 shows that both on the hole-doped
and electron-doped sides the differences between the results
for different clusters become small so that the n��� curve is
well described by the single-site DMFT result, consistent
with previous findings. Below a critical chemical potential or
critical density the curves separate, indicating dependence on
cluster geometry and therefore momentum differentiation.
We define critical carrier concentrations ndiff

h �on the hole-
doping side� and ndiff

e �on the electron-doping side� at which
a significant momentum dependence appears in the electron
self-energy. The ndiff may be estimated from the densities at
which the n��� curves begin to separate, but as we shall see
a better estimate may be obtained from analysis of the sector
dependence of the renormalized chemical potential �K

� as
discussed in Sec. IV. It is this latter analysis which is used to
obtain the densities shown in Table I.

Figures 4 and 5 display the occupancies nK of the differ-
ent sectors, respectively, as a function of the chemical poten-
tial � and the total density n. For the clusters with N�16
these figures display data for two temperatures: �t=20 �sym-
bols and heavy lines� and �t=7.5 �light lines�, showing that
the temperature dependence is weak.

Figure 4 shows that for all clusters except the 2 site, there
is a range of chemical potentials where the density in the
�0,�� sector remains locked at n�0,��=1 /2 corresponding to a
half-filled patch. The chemical-potential range over which
the density in the �0,�� sector is flat defines a gap, �SST,
which is also shown in Table I and is of the same order for
all clusters. The presence of a gap is confirmed by the den-
sity of states estimates discussed in Sec. V.

The regime of chemical potentials where the �0,�� sector
is incompressible while other sectors can be doped is a sig-

TABLE I. Characteristic densities for onset of momentum dif-
ferentiation on the hole-doped �ndiff

h � and electron-doped sides
�ndiff

e �, estimated gap of the Mott insulator ��g�, location of the
sector-selective transition on the hole-doped �nSST

h � side �there is no
sector selective transition on the electron-doped side for the param-
eters chosen in this paper�, and gap of the sector-selective regime
��SST�.

Cluster size ndiff
h ndiff

e �g nSST
h �SST

2 0.66 1.27 1.4

4 0.65 1.38 2.6 2.6

4� 0.69 1.39 1.8 0.96 2.4

8 0.72 1.23 1.1 0.93 1.9

16 0.65 1.35 1.4 0.91 2.1
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nature of the sector-selective regime discussed in previous
work.40,41 We see that the phenomenon is robust, occurring
in 4�-, 8-, and 16-site clusters. It is also interesting to note
that while �for the parameters we studied� the conventionally
patched 4-site cluster does not have a sector-selective re-
gime, the change in momentum-space patching involved in
going from 4 to 4� gives the cluster the possibility of distin-
guishing nodal and antinodal excitations, and the transition
reappears. This, along with the similar behavior of the 8- and
16-site clusters, is strong evidence that the sector-selective
transition �SST� is a generic phenomenon that appears wher-
ever the momentum patching allows it. It reveals strong mo-
mentum differentiation and the formation of an antinodal
pseudogap at low hole doping.

A different perspective on the �0,�� sector gap is pro-
vided by the plots as a function of the total density shown in
Fig. 5. We see that in the 4�-, 8-, and 16-site clusters the
partial density in the �0,�� sector remains locked at n�0,��
=1 /2 for a range of densities while the density in other sec-
tors changes. This behavior, that for some range of doping
the antinodal patch remains incompressible while the other
patches accommodate the dopants, is observed only on the
hole-doped side �for the parameters U / t , t� / t studied here�
and defines the sector-selective regime. The boundary, n
=nSST

h , of the density range over which the �0,�� sector is
incompressible is a true T=0 phase transition of the self-
consistent DCA equations associated with a specific cluster.
For concreteness we define nSST

h as the value of the total
density n, where �n�0,��−0.5�=0.005 and we report these val-
ues in Table I.

Unlike the 4�-, 8-, and 16-site clusters, the conventionally
patched 4-site cluster does not display a sector-selective re-
gime. However, we see from Table I that the insulating gap
for the conventionally patched 4-site cluster has a magnitude
very similar to the �0,�� sector gap found in the 4�-, 8-, and

16-site clusters. This makes the origin of the difficulties of
the 4-site cluster clear: in this cluster the �0,�� patch must
fill two roles. First, this patch contains the �0,�� point so
that its behavior must represent the physics of the
pseudogap. Second, the patch contains essentially all of the
Fermi surface, and therefore must represent the behavior of
the gapless nodal quasiparticles. The modified 4� patching
avoids this problem because the �0,0� sector contains the
nodal portion of the Fermi surface so that in this cluster the
�0,�� sector does not have two roles. We also note that the
critical density for the onset of the sector-selective regime is
about 0.92 for the 8- and 16-site clusters, but closer to n=1
for the 4� cluster. We believe the difference arises because,
while the 4� cluster does allow some nodal/antinodal differ-
entiation, the portion of noninteracting Fermi surface which
is outside of the �0,�� sector remains comparatively small.

The 2-site cluster is also different: neither of the two mo-
mentum sectors exhibits a plateau outside of the insulating
regime although previous studies of the two-patch cluster
using a larger t� �Refs. 37 and 39� have revealed a sector-
selective regime for a range of hole dopings. We shall see in
Sec. V that the difference arises from a difference in the
nature of the sector-selective transition in this cluster.

IV. MOMENTUM-SPACE DIFFERENTIATION

In this section we analyze in more detail the momentum-
space differentiated regime introduced in the previous sec-
tion. We begin our discussion with �K

� , Eq. �5b�, shown as a
function of total density n in Fig. 6. For sufficiently high
levels of electron or hole doping, �K

� becomes almost inde-
pendent of momentum sector within a cluster and indeed
takes the same value independent of cluster. As the doping is
decreased toward half filling the traces separate, indicating
that the self-energy begins to depend on momentum. The
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onset of momentum-space differentiation does not �to our
knowledge� correspond to a phase transition. Indeed at any
carrier concentration the self-energy has some momentum
dependence: perhaps weak but, in general, nonzero so that
any definition of the doping at which the variation with mo-
mentum becomes significant involves some arbitrariness. In
Table I, we estimate this density ndiff

h �on the hole-doping
side� and ndiff

e �on the electron-doping side� as the density
where maxK,K���K

� −�K�
� ��0.2.

A momentum dependence of �� implies a change in shape
of the Fermi surface. The two panels of Fig. 7 show the
Fermi surface computed for the 8-site cluster in one Brillouin
zone quadrant at two dopings, one �left panel� in the high-
doping isotropic Fermi-liquid regime and one �right panel� in
the intermediate doping momentum-space differentiated re-
gime. In the isotropic Fermi-liquid regime the very weak k
dependence of 
 means that the Fermi surface of the inter-
acting model coincides with the noninteracting Fermi surface
�at the same density�. However, in the momentum-space dif-
ferentiated regime the shape changes. The piecewise constant
nature of the DCA self-energy means that the DCA Fermi
surface is also a piecewise constant approximation to the
true, renormalized Fermi surface. We see that the interaction
has the effect of enhancing the Fermi-surface curvature so

that the renormalized Fermi surface corresponds, in effect, to
a quasiparticle band structure with a bigger t� than the bare
theory, consistent with the suggestions of Refs. 55 and 56.

An important result of Fermi-liquid theory is the “Lut-
tinger theorem,”57 which states that the volume of k space
contained within the Fermi surface, defined by �k
+Re�
�k ,�=0��=�, is equal to the density of particles per
unit cell �mod 2�. We have verified that both Fermi surfaces
are consistent with the Luttinger theorem to within 1%. Cor-
responding plots made for dopings outside the Fermi-liquid
regime are not consistent with the Luttinger theorem because
the “Fermi surface,” although mathematically defined, is not
physically meaningful. We also note that the proof of the
Luttinger theorem relies in an essential way on an integration
over the whole zone; it is not obeyed sector by sector, mean-
ing that the nK defined from the sector Green’s function need
not correspond to the sector area contained within the Fermi
surface.

It is worth emphasizing that the isotropic Fermi-liquid
regime, in which single-site DMFT is barely corrected by
cluster expansions, is not a trivial weak-coupling regime.
This may be seen from Fig. 8, which shows the full fre-
quency dependence of the imaginary parts of all components
of the self-energy of the 8-site cluster for dopings n=0.72 �in
the isotropic Fermi-liquid regime� and n=0.9 �momentum-
differentiated regime�. In the isotropic regime the relative
differences in self-energy between different sectors are small
whereas they are large in the differentiated regime.

We next turn to the scattering rate for low-energy excita-
tions, which we estimate from 
��K ,0�, the extrapolation to
i�n=0 of the imaginary part of the Matsubara self-energy
�Eq. �5a��. Figure 9 presents results obtained at the relatively
high temperature �t=7.5 where we have data for all clusters
and dopings. We see that at high dopings the scattering rates
are small and �within our numerical accuracy� independent
of cluster size and sector, reflecting the reasonably isotropic
nature of the high-doping regimes. As doping is decreased
the curves clearly exhibit an onset of momentum-space dif-
ferentiation at a doping �0.25 consistent within errors with
the doping estimated from �� and again only weakly depen-
dent on cluster size.

Momentum-space differentiation is marked by a strong
relative increase with decreasing doping of 
���0,�� ,0� and
a less strong increase in 
���� /2,� /2� ,0� �for the clusters
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FIG. 7. �Color online� Plot of the upper quadrant of the Bril-
louin zone showing the Fermi surface as a black line. The dashed
line shows the noninteracting Fermi surface with the same total
density. The sectors of the 8-site cluster are also displayed �see Fig.
2�. Left panel: n�0.69 �in isotropic Fermi-liquid regime�; right
panel n�0.82 �in momentum-space-differentiated regime�. All
Fermi surfaces are consistent with the Luttinger theorem.
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which provide access to this sector�. These are the two sec-
tors which contain the Fermi surface and for which 
��K ,0�
has meaning as a scattering rate. Comparison of electron and
hole dopings shows that while momentum-space differentia-
tion sets in at about the same absolute value of doping in the
two cases, the degree of differentiation between sectors
�0,�� and �� /2,� /2� is greater on the hole-doped side than
on the electron-doped side.

We turn now to a more detailed examination of results
from the 8-site cluster, which is large enough allow a direct
comparison of the nodal and antinodal regions of the Fermi
surface, but is small enough to allow detailed computations
down to relatively low temperatures. The two panels of Fig.
10 show 
��K ,0� and the quasiparticle weight/velocity
renormalization ZK for the nodal K= �� /2,� /2� and antin-
odal K= �� ,0� sectors as a function of doping at a relatively
low and a relatively high temperature.

Comparison of the two panels of Fig. 10 shows that the
momentum-space differentiation is marked primarily by a
variation in scattering rate. As doping is reduced, the Fermi-
surface scattering rates increase rapidly and a marked differ-
ence between the two Fermi surface sectors develops with
the antinodal sector K= �� ,0� characterized by a much more
rapidly growing scattering rate. Further, the scattering rates
exhibit a pronounced particle-hole asymmetry. However,
while the inverse mass enhancement/velocity renormaliza-
tion ZK decreases as doping is decreased, the variation with
doping is much less dramatic and, interestingly, there is very
little particle-hole asymmetry or difference between the two
momentum sectors. We also note that the nodal quasiparticle
residue Z��/2,�/2� appears to extrapolate to a nonzero value at
n=1. �A different result was found using self-energy interpo-
lations in superconducting state CDMFT calculations on
4-site clusters.58,59� This is inconsistent with the Brinkman-
Rice theory but qualitatively consistent with data on high-Tc
materials, where photoemission measurements indicate a
zone-diagonal quasiparticle velocity which is only weakly
doping dependent.13 �Very recent measurements indicate that
if the velocity is measured on very low scales, below the
resolution of the numerics in this paper or of previous pho-
toemission data a stronger doping dependence of the velocity
is found.60�

Figure 11 presents the temperature dependence of the
nodal and antinodal scattering rates obtained for the 8-site
cluster for selected densities. To highlight the temperature
dependence we plot 
� /T. While the temperature range ac-
cessible to us is too limited to establish any specific form of
temperature dependence it is clear that at the higher doping
isotropic Fermi-liquid regime �n=0.70�, the scattering rates
drop faster than linearly at low T while at the lower doping
�n=0.80; momentum-differentiation regime� the two sectors
have different temperature dependence at low temperature
with the nodal sector scattering rate vanishing more rapidly
than T at low T and the antinodal rate vanishing less rapidly.
At the intermediate doping n=0.75 on the boundary between
the two regimes the behavior is intermediate. These features
are in qualitative agreement with the momentum-space varia-
tion in the electronic mean free path inferred from angular-
dependent magnetoresistance experiments.7,8 For highly
overdoped cuprates these experiments reveal a scattering rate
which is reasonably isotropic around the Fermi surface and
exhibits a relatively conventional temperature dependence.
Below a critical doping a momentum-space differentiation
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appears with the antinodal scattering rate being larger and
exhibiting a weaker temperature dependence.

V. SECTOR SELECTIVE REGIME

In this section we discuss in more detail the sector-
selective regime, which has been characterized in Sec. III by
the existence of a plateau in the nK��� curve for the sectors
containing �0,�� �and symmetry-related points� and the ab-
sence of such a plateau in the sectors containing
��� /2, �� /2�. We first observe that, as seen, for example,
in Fig. 9, the approach to the sector-selective phase in clus-
ters 4�, 8, and 16 is marked by a rapid increase in the abso-
lute value of 
���0,�� ,0� and 
���� /2,� /2� ,0� with

���0,�� ,0� being much larger. In the �0,�� sector the in-
crease is associated with the formation of a pole in the sector
self-energy. This pole is responsible for the sector-selective
insulating behavior, as discussed in detail in Refs. 40–42.
However, we also see that as doping is decreased the
�� /2,� /2� sector self-energy increases, and in fact becomes
large enough that �at least at the temperatures accessible to
us in this study� this sector is clearly in a non-Fermi-liquid
regime �although as seen it is compressible�. It is an interest-
ing, but so far unresolved, question whether the nodal sector
is intrinsically non-Fermi liquid in this doping regime or
whether the Fermi temperature is simply lower than the low-
est temperatures we can access.

We next show that, as expected on physical grounds, the
plateau in sector density nK coexists with a gap in the sector
density of states. Figure 12 shows ��GK�� /2�� �Eq. �10��
which, as T→0, converges to the sector density of states at
the Fermi level, AK��=0�. We first focus on the lower left
panel, showing results for the 8-site cluster at several tem-
peratures. We see, as previously shown,40,41 that the �0,0� and
�� ,�� sectors have essentially no low-energy density of
states. This is expected because the Fermi surface does not
pass through these points at any of the densities displayed.
The �� /2,� /2� sector shows a density of states which at
higher doping, in fact, takes the Fermi-liquid value, but in
the sector-selective regime is suppressed from the Fermi-
liquid value �consistent with the large value in this regime of
the scattering rate in the �� /2,� /2� sector� but at lower
temperatures is weakly temperature dependent. The weak
temperature dependence suggests, but with our limited tem-
perature range does not prove, that the sector is in a non-
Fermi-liquid regime. By contrast the sector �0,�� results dis-
play a strong temperature dependence: for carrier
concentrations above �0.9 the sector density of states is a
strongly decreasing function as temperature is decreased, in-
dicating that a gap is forming in this sector.

Now consider the other panels in the plot, beginning with
the 16-site cluster. The temperature range accessible to us is
more limited, because at high doping our ability to calculate
at low temperature is hampered by a sign problem. However,
within the available resolution we see that the 16-site cluster
behaves in the same manner as the 8-site cluster. This is in
contrast to the conventionally patched 4-site cluster, where
we see that the density of states in the �0,�� sector, while
suppressed and weakly temperature dependent, only vanishes

at n=1, similar to the behavior of the �� /2,� /2� sector in
the 8- and 16-site clusters. The �0,0� sector is simply gapped,
similar to the �0,0� sectors in the larger clusters. The alterna-
tive patching of the 4� cluster remedies this behavior by in-
cluding some of the noninteracting Fermi surface in the �0,0�
sector, and we see that this cluster behaves more similarly to
the 8- and 16-site clusters. In the 4� cluster the sector-
selective transition exists but is seen at a lower doping than
in the larger clusters �corresponding to the smaller part of the
Fermi surface that �0,0� intersects�, and the behavior of the
�0,0� sector is intermediate between that of a nodal sector in
a larger cluster and the conventionally patched 4-site cluster.

VI. SMALL VERSUS LARGE CLUSTERS

In this section we compare the results obtained on small
�2- and 4-site� clusters to those obtained on the larger 8- and
16-site clusters. Roughly speaking, the sector quantities GK
and 
K correspond to averages of the intrinsic quantities
G�k ,�� and 
�k ,�� over appropriate regions of the Brillouin
zone. As the cluster size is reduced, the averages extend over
wider regions of momentum space. While it is clear that very
small clusters will only be able to capture a very coarse-
grained version of momentum-dependent physics, it is nev-
ertheless interesting to understand the strengths and weak-
nesses of small cluster studies, both because it is probably
not feasible to use larger clusters to study multiorbital mod-
els and because even for the one orbital Hubbard model
much more accurate data can be obtained, down to much
lower temperatures, on small clusters than on large clusters.

We begin by reconsidering the cluster size dependence of
the scattering rates shown in Fig. 9, starting from the 16-site
cluster down to the smallest clusters. The self-energies ob-
tained on the 16- and 8-site clusters for the K= �0,0�, �� ,��,
�0,��, and �� /2,� /2� patches are very similar. In both of
these clusters the different patches correspond to regions of
the zone with different physical properties. When the mo-
mentum resolution starts to be reduced, the patches become
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bigger and the cluster quantities involve averages over re-
gimes with different physical properties and therefore yield
results which are in some sense intermediate. For example,
the �� ,0� sector of the 4-site cluster is seen to have an inter-
mediate behavior between the �� ,0� and �� /2,� /2� sectors
of the 8- or 16-site clusters while the �� ,�� sector of the 4�

cluster has behavior somewhat closer to that of the �� ,0�
sector of the larger cluster. In general, it appears that if this
basic fact is borne in mind as results are interpreted, the
smaller clusters do remarkably well in capturing the impor-
tant qualitative behavior, although the clear quantitative dif-
ferences call into question the validity of the various inter-
polation schemes. The example of the 4 and 4� clusters also
shows how a physically motivated choice of patching �or
even a comparison between different patching choices� can
reveal important physics, in this case better separating the
nodal and antinodal sectors.

Let us comment in more detail on the specific case of the
2-site cluster, which was analyzed in great detail in Refs. 37
and 39. In these papers the second neighbor hopping t�=
−0.3t was used and a doping-driven sector-selective transi-
tion was found, but of a different character than the sector-
selective transitions discussed here and in Refs. 40 and 41.
The transition found in Refs. 37 and 39 is caused by a renor-
malization of the effective low-energy chemical potential by
the interactions and can be understood as follows. For a
given DCA patching of the Brillouin zone, a necessary con-
dition for the Fermi surface of the interacting system to pen-
etrate within the momentum-K patch of the Brillouin zone is
that the renormalized chemical potential �K

� satisfies the con-
dition �K

� � ��min
K ,�max

K �, where �min,max
K are the minimum/

maximum energy spanned by the noninteracting band �k as k
is varied within patch K. This relation directly follows from
Eq. �3� relating the coarse-grained Green’s function GK to
the self-energy 
K.

For very high hole doping �low carrier concentration� the
Fermi surface is contained entirely within the �0,0� patch of
the 2-site cluster. As the doping is decreased, the Fermi sur-
face expands and in the noninteracting model will penetrate
the outer patch at some critical doping, which depends on t�.
However, in the momentum-differentiated regime the sector
dependence of the renormalized chemical potential in the
2-site cluster is such as to push the renormalized Fermi level
away from the outer patch �in contrast to the larger clusters,
where the �K

� is such as to push the Fermi surface in the
�0,�� patch closer to half filling�. This effect gets larger as
half filling is approached. For the t� and U studied in Refs.
37 and 39, for some range of dopings the Fermi level was
able to penetrate into the outer patch, but as doping was
further reduced the increase in �K

� for the outer patch was
rapid enough to push the Fermi level out again, resulting in a
sector-selective transition of the band-insulator type. For the
smaller t� studied here the increase in �K

� for the outer patch
is such as to prevent the Fermi level from ever reaching the
outer patch. We may therefore regard the 2-site cluster as
being in a sector-selective regime for all hole dopings, where
the antinodal states are gapped and suppressed compared to
the noninteracting system. This physics is particular to the
2-site cluster, but as noted in Refs. 37 and 39 does capture
�as best this cluster can� the momentum-space differentiation
physics which is important for cuprates.

VII. CONCLUSION

This paper has presented DCA cluster dynamical mean-
field calculations based on 2-, 4-, 8-, and 16-site clusters of
the two-dimensional Hubbard model, with hopping param-
eters appropriate to high-Tc materials and an interaction
which is slightly weaker than in the actual compounds, but
strong enough to display the essential physics. The compari-
son of results obtained on different sized clusters shows un-
ambiguously that in the two-dimensional Hubbard model
with underlying particle-hole asymmetry appropriate to
high-Tc materials, the doping-driven metal-insulator transi-
tion proceeds through several intermediate regimes, but is
different for electron-doped than for hole-doped materials.
For both hole-doped and electron-doped materials a high-
doping isotropic Fermi-liquid regime gives way as doping is
reduced to a momentum-space-differentiated Fermi-liquid
regime, in which the quasiparticle residue �equivalent to the
velocity renormalization in the approximation used here� de-
pends only weakly on momentum but the electron-scattering
rate acquires a strong dependence, being small for states near
the zone diagonal and large for states near the zone face. The
momentum dependence is less pronounced on the electron-
doped side than on the hole-doped side. As doping is further
reduced on the hole doped but not on the electron-doped
side, the momentum-space-differentiated Fermi-liquid re-
gime gives way to a sector-selective pseudogapped regime,
in which the states near �0,�� are gapped but the states near
the zone diagonal are not. This sequence of doping depen-
dencies, and in particular the nodal/antinodal differentiation
and the momentum-selective pseudogap, have for many
years been understood to be key features exhibited by the
high-Tc copper-oxide-based superconductors. Cluster dy-
namical mean-field studies over the years have uncovered
various aspects of this behavior. The systematic survey of
different dopings and cluster sizes presented here has firmly
established the robustness of this physical picture. Nodal/
antinodal momentum-space differentiation and momentum
selectivity are robust features that persist independent of
cluster geometry, and there is a remarkably reliable quantita-
tive agreement across clusters for many of the observables
presented here. We conclude that this physics is a conse-
quence of short-ranged correlations in the two-dimensional
Hubbard model at intermediate to strong coupling.

Our comparison also allows one to understand the
strengths and weaknesses of small cluster calculations. In
particular, we have shown that a simple deformation of the
standard 4-site cluster designed to better separate the nodal
and the antinodal region is sufficient to recover the sector-
selective transition found in 8- and 16-site clusters. We ex-
pect that the comparative information will be important for
future use of cluster methods in more complex �multiorbital�
systems, where small clusters are the only accessible ones.

This paper has used the “DCA” formulation of cluster
dynamical mean field theory. A different formulation, the
“Cellular Dynamical Mean Field Theory” �CDMFT� has also
been introduced.26 CDMFT methods have not yet been ap-
plied to the range of cluster sizes and carrier concentrations
needed to carry out comparisons such as those we have pre-
sented here, but recent CDMFT papers61–63 have presented

MOMENTUM-SPACE ANISOTROPY AND PSEUDOGAPS: A… PHYSICAL REVIEW B 82, 155101 �2010�

155101-11



results on momentum space differentiation and sector selec-
tive transitions similar in some aspects to those we have
shown. An extension of the CDMFT results to a wider range
of cluster sizes and dopings and a systematic comparison of
CDMFT results on different size clusters to DCA results
would be very desirable.

Currently, the two main limitations of cluster methods are
the limited momentum-space resolution and the fermionic
sign problem. These limit the accessible cluster sizes and
temperatures and currently prevent us from reaching a defi-
nite conclusion, for example, on the precise nature of the
low-temperature metallic state in the nodal region in the
sector-selective phase at low temperatures or on the quanti-
tative evolution of the Fermi arcs as a function of doping and
temperature. Also while the methods give direct access to
one-electron properties, wide classes of experiments involve
“two-particle” probes whose analysis requires vertex correc-
tions. New theoretical developments are required to over-
come these limitations.
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APPENDIX: ANALYTIC CONTINUATIONS

In this appendix we compare the results of the “poor
man’s” analytical continuation procedure used in the main

text to maximum-entropy analytical continuation results ob-
tained using the methods of Ref. 65. We focus on the 16-site
cluster, where the restriction to high temperatures forced on
us by the limits of our computational resources makes the
continuations most challenging. The solid points in Fig. 13
show 
��K ,0� for the 16-site cluster as a function of density,
obtained by extrapolation from a fit to the three lowest Mat-
subara points as described in the text. The open points show
values obtained by extrapolation from the two lowest Mat-
subara points. The strong divergence associated with the
�0,�� sector is evident, as is the weaker divergence of the
�� /2,� /2� sector. We would like to interpret these data as
indicating the presence of a growing scattering rate. How-
ever, we also see that over a wide doping range the �� ,� /2�
sector 
��K ,0� is, in fact, larger than the 
��K ,0� of the
�� /2,� /2� sector, even though the Fermi surface does not
pass through this sector so that one might expect that low-
energy processes involving this sector are suppressed. Of
course, for this sector it is not correct to interpret 
��K ,0� as
a scattering rate, but the question remains of what is the
meaning of the result and whether it casts doubt on the in-
terpretation of the 
��K ,0� in the sectors that contain the
Fermi surface.

To gain further insight we display in Fig. 14 the full fre-
quency dependence of the real and imaginary parts of the
Matsubara-axis self-energy at hole doping x=0.058 for the
sectors �� /2,� /2�, �0,��, and �� ,� /2�. We can see imme-
diately that for all sectors the criterion for Fermi-liquid be-
havior is violated. However, for the �� /2,� /2� and �0,��
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FIG. 13. �Color online� Im 
��n=0� as a function of density, for
all sectors of 16-site cluster, at inverse temperature �=7.5 / t. Filled
symbols; extrapolation based on three lowest Matsubara frequen-
cies; open symbols; extrapolation based on two lowest Matsubara
frequencies.
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FIG. 15. �Color online� Im 
��� for 16-site cluster at �t=7.5
and doping x=0.058 obtained from maximum-entropy analytical
continuation of self-energy data shown above.
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sectors, both the real and imaginary parts of the self-energy
behave sufficiently smoothly that a reasonable extrapolation
to �=0 is possible with, in particular, answers which are
reasonably consistent whether the extrapolation is performed
with the two lowest Matsubara points or the three lowest. On
the other hand, in the case of the �� /2,�� sector both the
real and imaginary parts of the self-energy vary rapidly near
�=0.

The differences in Matsubara-axis self-energy are re-
flected in differences in the maximum entropy analytically
continued self-energies shown in Fig. 15. �Other analytically
continued results are shown In Fig. 10.� We see that values of
Im 
K��=0� for the K= �� /2,� /2� and �0,�� sectors are
approximately −1 and −2, very consistent with the values
obtained from our poor-man’s analytical continuation
whereas the Im 
 in the other sectors in fact displays a gap,
which is not consistent with an interpretation of the extrapo-

lated imaginary axis quantity as a scattering rate.
The differences in continued behavior can be related to

the structure of the Matsubara-axis data at low frequencies.
In particular, we find that if extrapolations using two or three
Matsubara-axis data points or three data yield answers which
are consistent with about 5% and if the three lowest Matsub-
ara points are all below the maximum in �Im 
� then in the
quasi-Fermi-liquid regime �as defined by ���T� our poor
man’s analytical continuation procedure yields 
��k ,0� val-
ues which agree with analytical continuation to within about
20–40 % and Zk’s which are about 40% larger than the ana-
lytical continuation values, but with the same doping depen-
dence. The scattering rate data we discuss in the text fulfill
these conditions. Larger differences between extrapolated
and analytically continued results occur outside of the Fermi-
liquid regime and for data which violate the conditions out-
lined above.
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