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We analyze the static and dynamic properties of two Ising-coupled quantum spins embedded in a common
bosonic bath as an archetype of dissipative quantum mechanics. First, we elucidate the ground-state phase
diagram for an Ohmic and a sub-Ohmic bath using a combination of bosonic numerical renormalization group
�NRG�, analytical techniques, and intuitive arguments. Second, by employing the time-dependent NRG we
investigate the system’s rich dynamical behavior arising from the complex interplay between spin-spin and
spin-bath interactions. Interestingly, spin oscillations can synchronize due to the proximity of the common
non-Markovian bath and the system displays highly entangled steady states for certain nonequilibrium initial
preparations. We complement our nonperturbative numerical results by exact analytical solutions when avail-
able and provide quantitative limits on the applicability of the perturbative Bloch-Redfield approach at weak
coupling.
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I. INTRODUCTION

A quantum system is never completely isolated from its
environment which results in noticeable effects such as de-
coherence, dissipation, and entanglement.1 One prominent
example embodies a two-level �spin-1/2� system interacting
with a collection of harmonic oscillators, the so-called spin-
boson model.2–4 The latter displays a rich behavior ranging
from damped Rabi oscillations to localization in one of the
two states and has been widely studied as a paradigm of
quantum dissipation and quantum-to-classical transitions.5

As it constitutes the elementary unit of a quantum computer
�qubit�, much work was recently directed toward understand-
ing and controlling the dissipative spin-boson dynamics in
nonequilibrium situations such as time-dependent �TD� ex-
ternal fields.6–10 The model is of particular importance be-
cause it may be implemented in a variety of different experi-
mental contexts, for example, the tunneling of defects in
solid-state systems,11 electron transfer in chemical
reactions,12,13 or qubit designs based on the Josephson
effect.14–16 Other systems that are described by the spin-
boson Hamiltonian are trapped ions,17 quantum emitters
coupled to surface plasmons,18 and the cold-atom quantum
dot setup.19–22 Further variants of spin-boson models involve
two-level atoms interacting with a single quantized mode of
an electromagnetic cavity.23–26

The environmental influence on the phase coherence be-
tween the two-spin states is of crucial importance in the field
of quantum computing, as it sets a limit to the time scale
where coherent quantum logical operations can be per-
formed. In this context, it is essential to extend the system to
multiple two-level systems �or qubits� as operations involv-
ing two qubits, e.g., the CNOT gate, are required to obtain a
complete set of quantum logical operations. In addition, the
presence of a second spin allows us to address the competi-
tion between spin-spin and spin-bath interactions and the re-
sulting interplay between quantum control and dissipation.

In the present paper, we investigate such a generalization
of the single-spin-boson model and consider two quantum

spins �1, �2 that are coupled to each other via an Ising-type
coupling and interact with a common bath of harmonic-
oscillator modes, as described by the Hamiltonian �see also
Fig. 1�
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We set the reduced Planck constant �=1. Here, �1,2
x,y,z are the

usual Pauli matrices describing the two spins and bk is the
bosonic annihilation operator of the bath mode with fre-
quency �k. The free spin part of the Hamiltonian contains the
tunneling amplitudes �1,2, the bias fields �1,2, and the bare
Ising interaction constant K. The effects of the bosonic envi-
ronment on the spins are fully captured by the bath spectral
density,2–4

FIG. 1. �Color online� Two quantum spins-1
2 , �1 and �2,

coupled through an Ising interaction K. The spins are also en-
tangled, via their �z components, to a common reservoir of bosonic
oscillator modes with frequencies �k. The bath is characterized by
the spectral density J���=2�	�s�c

1−s
��c−��
���, where s=1 �s
�1� refers to an Ohmic �sub-Ohmic� bosonic environment.
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which we assume to behave as a power law �s�s�0� up to
the cutoff frequency �c. Hereafter, we will be studying ex-
ponents in the range 1

2 
s
1, where the case s=1 �s�1�
refers to an Ohmic �sub-Ohmic� bosonic bath. The strength
of the coupling to the bath is characterized by the dimension-
less dissipation constant 	�0.

For the spin-bath interaction, for simplicity, we use iden-
tical coupling constants �k for both spins. This corresponds
to the case where the spins are spatially close to each other.
Specifically, we assume their separation d12 to be smaller
than the shortest wavelength of the bath excitations d12
��c=vs /�c, where vs is the sound velocity in the bath.20,27

There are several reasons for considering an Ising-type
coupling K

4 �1
z�2

z between the two spins. First, there are ex-
perimental situations where such an SU�2�-broken coupling
is realized, for instance, in capacitively coupled quantum
dots where the operators � j

z describe charge states on the
dot.28–30 Other examples are the cold-atom quantum dot set-
ting, trapped ions, and superconducting qubits. Second, since
the bath couples to the �z component of the spins, it auto-
matically induces an indirect �ferromagnetic� Ising interac-
tion between the spins which is mediated by a coherent ex-
change of phonons. This results in a renormalization of K to
Kr=K−4	�c /s. Therefore, even for zero K, the spins are
Ising coupled. We note that, in general, the bath induced
interaction decays with the spatial distance between the spins
d12 on a length scale given by �c��c

−1.20,27

The two-spin-boson model allows us to address the com-
petition between spin-spin entanglement, characterized, for
instance, by the concurrence, and spin-bath entanglement,
characterized, for instance, by the entanglement
entropy.27,31–35 The entanglement entropy also contains infor-
mation about the coherence between different spin states.1

We will show below that for a particular initial preparation,
the system exhibits a nontrivial steady state, where the spins
are strongly entangled with the bath while maintaining co-
herence between different spin configurations.

Whereas for some experimental realizations the descrip-
tion of independent bosonic reservoirs is appropriate, e.g., in
the case of quantum dots coupled to independent leads,28

there are others, where the spins couple to a common bath,
e.g., the cold-atom19–22 and trapped ion setup.17 Here, we
assume a common bath because we are mostly interested in
studying the competition between the coherent and dissipa-
tive parts of the interaction induced by the bath, leading to
dynamical spin synchronization and highly entangled steady
states. The other situation has been addressed, for instance,
in Refs. 36–38.

In the following, we aim to investigate not only the static
properties of the ground state but also the nonequilibrium
dynamics of the system both for an Ohmic and a sub-Ohmic
boson bath. In the sub-Ohmic case, we mainly consider the
experimentally relevant situation of s=1 /2.39,40 We apply the
powerful nonperturbative numerical renormalization group
�NRG�.41–44 To solve for the dynamics of the system, we

employ the recently developed time-dependent NRG
�TD-NRG�,45,46 which we compare to exact solutions avail-
able at special points in the parameter space and to the
Bloch-Redfield master equation approach47 at weak dissipa-
tion.

The paper is outlined as follows. In Sec. II, we calculate
the zero-temperature phase diagram as a function of dissipa-
tion strength 	 and Ising coupling K, both for s=1 /2 and s
=1. As a reminiscence of the single-spin-boson model, it
contains a delocalized phase ���1,2

z �=0� for small dissipation
and a localized phase ���1,2

z ��0 for �1,2=0+� for large dissi-
pation. We give a physically intuitive explanation for the
asymmetry between the ferromagnetic �K�0� and antiferro-
magnetic �K�0� regions of the phase diagram.

In Sec. III, we investigate the critical properties at the
phase transitions such as the behavior of the entanglement
entropy across the transition or the scaling of spin expecta-
tion values, which occurs for a sub-Ohmic bath.

In Sec. IV, we explore the nonequilibrium dynamics of the
two spins after a quantum quench of parameters. We typi-
cally polarize the spins initially by applying large bias fields
along the z or x direction that we switch off at time t=0. We
begin our analysis in Sec. IV A with the exactly solvable
case of zero transverse fields �1,2=0, where we show that
our TD-NRG results perfectly agree with the exact analytical
solution. In Sec. IV B we investigate the regime of weak-
spin-bath coupling and compare TD-NRG to the commonly
employed perturbative Bloch-Redfield approach. We give
quantitative limits on the applicability of the Redfield
method. In Sec. IV C, we find that, interestingly, the bath is
able to synchronize spin oscillations via a coherent exchange
of phonons even at weak spin-bath coupling. This phenom-
enon is not captured in the Bloch-Redfield master equation
approach, where the back action of the bath on the spins is
neglected. This method thus fails to correctly describe the
spin dynamics even in the perturbative regime. In Sec. IV D,
we investigate the spin dynamics for vanishing �renormal-
ized� Ising interaction Kr=0 and highlight similarities and
differences to the single-spin-boson model. We elaborate on
the case of weak dissipation in Sec. IV D 1, where we com-
pute the quality factor of the damped oscillations. In Sec.
IV D 2, we discuss the dynamics at the generalized Toulouse
point 	=1 /2. In Sec. IV E, we examine the crossover to the
regime of strong spin-bath coupling for general Ising cou-
pling and point out differences between the case of an Ohmic
and a sub-Ohmic bath. In Sec. IV F, we describe that a
highly entangled steady state can emerge from the dynamics
if the system is prepared far from equilibrium. We finally
conclude in Sec. V and leave the details of some of our
calculations to the Appendix.

II. GROUND STATE PHASES

In this section, we employ the bosonic NRG42,44 to calcu-
late the ground-state phase diagram corresponding to the
Hamiltonian in Eq. �1� as a function of dissipation strength 	
and Ising coupling K. We present the results for the Ohmic,
s=1, as well as the sub-Ohmic case of s=1 /2. We point out
similarities and differences to the situation of the single-spin-
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boson model and to that of a two-spin model with two sepa-
rate baths.

Throughout this study we use the following parameters
for our NRG calculations �we use the common notation�: a
discretization parameter of �=1.4, a total of Nb,0=599
bosonic modes in the first iteration, and Nb,N=6 in the fol-
lowing ones while keeping NLev=200 low-energy levels in
each NRG iteration.

We obtain a qualitative understanding of the phase dia-
gram by using the fact that the fast bath modes follow the
spin dynamics adiabatically in the sense known from the
famous Born-Oppenheimer approximation.2,3 The spins are
dressed by the bath phonons, and as a result the energy sepa-
ration of the two lowest-energy spin states becomes renor-
malized. This situation is reminiscent of the single-spin-
boson model. There, the tunneling splitting � also becomes
renormalized by the bath, and in the Ohmic case, one finds a
renormalized value of �r=��� /�c�	/�1−	� for 	�1 and a
complete quench of the tunneling for 	�1, where the sys-
tem is thus localized.2,3

First, in Sec. II A, we present the numerically obtained
phase diagrams. Then, in Sec. II B we perform a strong-
coupling analysis that will provide us with a qualitative un-
derstanding of the underlying physics.

A. NRG phase diagrams

Using the NRG, we have determined the phase diagram of
the two-spin-boson model in Eq. �1�. We present results for
an Ohmic bath48,49 in Fig. 2 and for a sub-Ohmic bath with
s=1 /2 in Fig. 3. Different curves correspond to different
values of � /�c. Here, we assume equal tunneling amplitudes
of the two spins �1=�2	�. Introducing slightly asymmetric
tunneling elements �1��2, however, does not affect the lo-
cation of the phase boundary much. Hereafter, we use units
of the bath cutoff frequency, i.e., we set �c=1 and we shall

be mainly interested in the case where both �1,2��c and
�1,2��c.

As shown in Figs. 2 and 3, the two-spin-boson model
exhibits two ground-state phases: a delocalized phase, where
the spin expectation values ��1,2

z � vanish in the ground state
for �1,2→0, and a localized phase, where the spins develop a
finite magnetization ��1

z�= ��2
z�= �m �m�0� for infinitesi-

mal bias fields �1,2=0�. Like in the single-spin-boson model,
the system is delocalized for weak dissipation and enters a
localized phase upon increasing 	. The phase boundary,
however, now explicitly depends on the Ising interaction
constant K.

Let us first focus on the Ohmic model in Fig. 2. For fer-
romagnetic K�0, the phase boundary only weakly depends
on K and is located at 	c
0.15+O�� /�c�, which is a much
smaller value than in the single-spin case, where the transi-
tion occurs at 	c

single=1+O�� /�c�.2,3 For antiferromagnetic
K�0, we find that the delocalized region extends up to
larger values of 	 and we observe that the phase boundary
occurs at the line K=4	�c /s for larger values of K. At this
value of K the renormalized Ising interaction Kr, which takes
into account the bath induced ferromagnetic spin-spin inter-
action �−4	�c /s�, vanishes. We defer the derivation of this
formula until Sec. II B.

Let us now turn to the sub-Ohmic case in Fig. 3. It shows
the same qualitative features as the Ohmic one; however, the
system enters the localized phase for even smaller values of
	. On the ferromagnetic side K�0, our results suggest that
	c
0+O�� /�c�, in agreement with the single-spin case.50

For antiferromagnetic K�0, the system again remains delo-
calized up to larger values of 	 and the phase transition
occurs close to the line Kr=0. Note that Kr depends on the
bath exponent s.

We distinguish the two phases by applying small bias
fields �1,2=10−8�c and measure ��1,2

z �. The latter vanishes in
the delocalized region but remains nonzero, ��1

z�= ��2
z�=−m

�m�0�, in the localized part of the phase diagram. We have
also applied an antiferromagnetic bias field configuration,
�1=−�2=10−8�c, to test whether the system can also localize
in an antiferromagnetic spin configuration ��↑↓� , �↓↑�
. Inter-
estingly, however, we observe in Fig. 4 that the spins always
localize in one of the ferromagnetic spin states ��↑↑� , �↓↓�
.
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FIG. 2. �Color online� Phase diagram of the Ohmic two-spin-
boson model as a function of dissipation strength 	 and Ising cou-
pling K. Different curves correspond to different values of tunneling
amplitudes �1=�2	�. For infinitesimal bias fields �1,2=−10−8�c

the ground state of the system in the localized region is given by
�↑↑� � ���, where ��� is a shifted bath vacuum �see Eq. �6��. The
dashed line indicates where the renormalized Ising interaction van-
ishes: Kr=0.
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FIG. 3. �Color online� Phase diagram of the sub-Ohmic two-
spin-boson model with s=1 /2 versus 	 and K and for different
values of �. The dashed line indicates where Kr=0.
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The system does not localize in any of the antiferromagnetic
spin configurations. We provide a physical explanation for
this phenomenon in Sec. II B. Results for ��1,2

z � as a function
of 	 for both bias field configurations and different values of
K are shown in Fig. 4. We observe that ��1,2

z � remains zero
up to a larger value of 	 �for fixed K�, simply because the
antiferromagnetic bias fields �1=−�2 do not lift the degen-
eracy of the two ground states ��↑↑� , �↓↓�
. The location of
the phase boundary does of course not depend on the infini-
tesimal fields.

B. Qualitative understanding of the phase diagram

From the previous considerations, immediately the ques-
tions arise why the phase diagram is not symmetric under the
combined transformation of �K→−K ,�2→−�2
 and why
the system cannot localize in one of the antiferromagnetic
spin states ��↑↓� , �↓↑�
.

In order to answer these questions, we perform a strong-
coupling analysis which relies on the fact that the fast modes
of the bath ��k��� adiabatically renormalize the energy
separation of different spin states.2 In physical terms, assum-
ing that the bath oscillators follow the time evolution of the
spins immediately �the Born-Oppenheimer approximation�,
the spins are dressed by phonons with frequencies larger than
�. Thus, transitions between different spin states are sup-
pressed if they involve a readjustment of the bath excitations.
We will consider the ferromagnetic and antiferromagnetic
cases separately.

Let us first note, however, that the bath induces a ferro-
magnetic interaction between the spins, which renormalizes
the value of the Ising constant from its bare value of K to

Kr = K −
4	�c

s
. �3�

This is most easily derived by applying the polaron unitary
transformation U=exp�− 1

2 ��1
z +�2

z��k
�k

�k
�bk

†−bk�� to the

Hamiltonian in Eq. �1�, which yields for H̃=U−1HU,

H̃ = �
j=1

2 �� j

2
�� j

+ei� + H.c.� +
� j

2
� j

z� +
Kr

4
�1

z�2
z + �

k�0
�kbk

†bk,

�4�

where the Hermitian bath displacement operator reads

� = − i�
k

�k

�k
�bk

† − bk� . �5�

This form of the Hamiltonian makes explicit the bath in-
duced ferromagnetic Ising interaction. In particular, if the
bare Ising coupling is antiferromagnetic K�0, the effective
interaction changes sign at a dissipation strength of 	
=sK /4�c. For larger values of K��c, the phase transition
occurs close to this critical value of 	, as shown in Figs. 2

and 3. From H̃, we can also learn immediately that a spin flip
is associated with a complex excitation of the bosonic bath
into a coherent state ���=ei��0�, where �0� is the ground
state of the free bath part of the Hamiltonian HB
=�k �kbk

†bk.
With this in mind, let us begin our strong-coupling analy-

sis of the phase diagram with the ferromagnetic situation K
�0 and assume that �K���1,2 and zero bias �1,2=0. For
�1,2=0, the two lowest-energy spin states are given by the
two ferromagnetic states ��↑↑� , �↓↓�
. If we now turn on the
tunneling �1=�2=�, we find that the energy splitting be-
tween the two lowest states is of the order

�E �
2�2

�K�
���− �� , �6�

where the coherent state ���=ei��0� is also referred to as the
displaced oscillator bath state. It occurs when all oscillators
equilibrate in contact with spins that are held fixed in posi-
tion �↓↓�. In terms of the spectral density, the bath renormal-
ized energy splitting becomes

�E �
2�2

�K�
exp�−

1

�
�

p�E

�

d�
J���
�2 � , �7�

where p�1. To be consistent with the adiabatic renormaliza-
tion scheme, the energy splitting �E shows up as an infrared
cutoff for the oscillator frequencies that are summed over.
Since the bath renormalizes the energy splitting to smaller
values �E�

2�2

�K� , one can solve Eq. �7� iteratively.2,3 In the
case that �E is renormalized to zero, the ground state is
doubly degenerate and the system localized. This situation,
where the displaced bath states ��� and �−�� are orthogonal
to each other, is known as orthogonality catastrophe.3 If �E
is renormalized to a nonzero value, the ground state is unique
and the system delocalized.

For a sub-Ohmic spectral density, the iteration process
yields �E=0 for any positive value of 	, and the system is
localized as soon as 	�0. In the Ohmic case, on the other
hand, we find that as long as 	�1 /2, the energy splitting
renormalizes to the finite value �E=�E0��E0 /�c�2	/�1−2	�,
where �E0=2�2 / �K�. For 	�1 /2, however, one finds �E
=0 and the system is localized. The phase transition occurs at

FIG. 4. �Color online� ��1,2
z � as a function of 	 for various

values of K and �=0.025�c. Different bias field configurations are
shown in the upper part �ferromagnetic, �1=�2=10−8�c� and lower
part �antiferromagnetic, �1=−�2=10−8�c� of the figure. This plot
shows that spins are always aligned in the localized phase. The
expectation values ��1,2

z � remain zero up to larger values of 	 sim-
ply because the antiferromagnetic bias field configuration does not
lift the degeneracy of the ground states ��↑↑� , �↓↓�
 in the localized
phase.

ORTH et al. PHYSICAL REVIEW B 82, 144423 �2010�

144423-4



the critical value 	c=1 /2. The same value was recently
found using a variational treatment.49 Let us remark that in
the case of the single-spin-boson model, one has to calculate
the overlap integral � �

2 �− �
2 �=exp�− 1

2��0
�d��J��� /�2�
,

which leads to 	c
single=1.2,3 This also implies that the delo-

calized phase in the two-spin case is characterized by a dis-
tinct Kondo scale compared to the single-spin-boson model.2

Our NRG calculation, which goes beyond this simple ap-
proximation and the variational approach in Ref. 49, indeed
shows that the critical value of 	 in the ferromagnetic regime
only weakly depends on K. In the Ohmic case, we observe,
however, that 	c rather converges to 	c�s=1�
0.15 for large
�K� and � /�c→0 instead of the approximated value 	c
=1 /2. In the sub-Ohmic case, on the other hand, NRG agrees
with the predicted value of 	c=0 as we find 	c�s=1 /2�
0
for � /�c→0.

We now turn to the antiferromagnetic situation K�0.
Since we want to investigate the antiferromagnetic regime,
we thus have to assume that Kr�0 �or K→� for any value
of 	�. Then, the two lowest-energy states for zero tunneling
��=0� are degenerate in energy and given by ��↑↓� , �↓↑�
. If
we turn on tunneling, the two states hybridize and the energy
difference between the two lowest-energy states reads

�E �
2�2

K
�0�0� =

�2

K
, �8�

where �0� is the unshifted bath vacuum. Hence, any nonzero
value of � leads to a unique ground state because the
quenching of the tunneling amplitude due to the bath does
not occur for a total spin zero state �compare with Eq. �6��.
�This can also be interpreted as the disappearance of the
Kondo-type entanglement for a spin zero state.4� As a result,
the system is always delocalized for an antiferromagnetic
Ising coupling Kr�0, and the phase transition to the local-
ized state is shifted to much larger values of 	 necessary to
compensate the antiferromagnetic spin-spin coupling con-
stant K.

III. PHASE TRANSITIONS AND SCALING

In this section, we investigate the behavior of the system
close to the localization phase transition in more detail. It is
known that the transition is in the Kosterlitz-Thouless uni-
versality class for the Ohmic system,4,36 but it is of continu-
ous type in the sub-Ohmic case.1,51 Since recent studies show
that NRG is not well suited to describe the system correctly
close to the transition for s�1 /2,52,53 we restrict ourselves to
s�1 /2.

In Sec. III A, we first study the behavior of the entangle-
ment entropy in the Ohmic and sub-Ohmic systems. We then
examine in Sec. III B the scaling of the spin expectation
values ��1,2

z � close to the phase transition in the sub-Ohmic
system. We derive mean-field scaling relations for the critical
exponents from an effective spin action functional and com-
pare the resulting exponents to the critical exponents that we
extract from NRG.

A. Static entanglement entropy

The entanglement entropy E quantifies the degree of en-
tanglement between the spins and the bath. It is defined as54

E = − Tr��S log2 �S� , �9�

where �S=TrB � is the reduced density matrix of the two
spins. Here, TrB denotes taking the trace over the bath de-
grees of freedom and � is the full density matrix of the spin-
boson system. One finds that 0
E
 log2 4=2, where E=0
in the absence of entanglement between spin and bath. In
Fig. 5 we show results for the entanglement entropy in the
Ohmic system as a function of dissipation 	 for different
values of the Ising coupling K. Like in the case of the single-
spin-boson model, the entanglement entropy is nonzero only
in the delocalized phase and rapidly falls to zero at the phase
transition. It reaches a plateau for 	
	c /2, indicating that
coherence is lost already before the system becomes local-
ized. The plateau characterizes a region of maximal decoher-
ence, where the spin dynamics is incoherent. This coherent-
to-incoherent crossover is known from the single-spin
system,1,55,56 where it occurs exactly at the Toulouse point
	=1 /2. In Sec. IV D 2, we discuss the equivalent of the
Toulouse point in the two-spin model where it is located at
	=1 /2 and K=2�c.

Surprisingly, as we show in the inset of Fig. 5, the plateau
shrinks considerably if we go to larger positive values of K
��c. The plateau more and more resembles a peaklike struc-
ture. This indicates that the localization phase transition oc-
curs much closer to the regime, where spin oscillations are
coherent. Coherence is lost only right at the transition �simi-
lar to the sub-Ohmic case discussed below�. This is different
from the single-spin case, where the incoherent regime ex-
tends between 1 /2
	
1 and is thus much larger.

Finally, we show in Fig. 6 that for a sub-Ohmic bath, the
entanglement entropy rather reaches a maximum �peak� right
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FIG. 5. �Color online� Entanglement entropy E as a function of
dissipation 	 in the Ohmic two-spin-boson model shown for differ-
ent values of the Ising coupling K and �1,2=0.1�c. The rapid drop
to zero around 	c
0.25 signifies the transition to the localized
phase. The plateau for smaller dissipation indicates the loss of phase
coherence at 	
	c /2 similar to the single-spin-boson case. The
inset shows larger values of K where the �incoherent� plateau
shrinks to a peaklike structure, indicating that coherence is lost only
right at the phase transition.
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at the localization quantum phase transition. This behavior is
known from the single-spin-boson system.1 It signifies that
the coherence of the spin oscillations �continuously� de-
creases toward the phase transition. There is no region where
the spin transitions are completely incoherent. In fact, coher-
ent spin oscillations of �z�t� even persist into the localized
phase, where they occur around a nonzero expectation value
��z��0 �see Ref. 50 for the single and Sec. IV E for the
two-spin-boson model�.

B. Scaling of magnetization for sub-Ohmic bath

In this section, we investigate the scaling of the spin ex-
pectation values ��1,2

z � �magnetization� at the phase transition
in the sub-Ohmic system. For the single-spin-boson system,
it is known that the phase transition is continuous for s�1,
and scaling exponents have been extracted using NRG1,57,58

and quantum Monte Carlo calculations.52 Recently, it was
realized that NRG is not well suited to describe scaling cor-
rectly for s�1 /2 in the single-spin-boson model.59 There-
fore, we only consider exponents in the range 1 /2
s�1.

We proceed in the following manner. First, in Sec. III B 1,
we derive an effective spin action functional by integrating
over the bosonic degrees of freedom. From this action we
determine, in Sec. III B 2, the scaling dimension of the spin
operators in a mean-field approximation from which follow
scaling laws. We compare the resulting mean-field values for
the critical exponents to those that we have extracted from
the NRG calculations and find good agreement between most
of them. On the one hand this justifies our mean-field ap-
proximation, but on the other hand it also shows that the
NRG analysis goes beyond this approximation.

1. Effective spin action functional

An effective action functional Seff for the spins can be
obtained by integrating over the bosonic degrees of freedom
using a functional-integral description.60 This can be done
exactly because the Hamiltonian in Eq. �1� is quadratic in
bosonic operators.

We start with the action of the full system S=SS+SB
+SSB, where SS=�0

�d�� j=1
2 ��� j /2�� j

x���+ �� j /2�� j
z����

+ K
4 �1

z����2
z��� depends on spin variables only and SB

=�0
�d��k bk

����� �
�� +�k�bk��� denotes the action of the free

bath. The spin-bath interaction is described by SSB

= 1
2�0

�d��k � j=1
2 �k� j

z����bk
����+bk����. Here, �=1 /T �kB=1�

is an inverse temperature, � is an imaginary time variable,
and b���’s are the usual complex boson coherent-state vari-
ables. Note that in the end we will take the zero-temperature
limit which is well defined in this formalism.60

Integrating over the �complex� bosonic variables20

�D�bk
���� ,bk����exp�−SB−SSB�=exp�−S�� leads to an effec-

tive spin action Seff=SS+S�. In the zero-temperature limit, it
takes the form

Seff = �
0

�

d���
j=1

2 ��

2
� j

x��� +
� j

2
� j

z���� +
Kr

4
�1

z����2
z����

+ �
0

� d�d��

16�
� d�J���e−���−�����

j=1

2

�� j
z��� − � j

z������2

.

�10�

The effect of the bosons on the spins is twofold: first, the
Ising interaction constant gets renormalized to Kr=K
−4	�c /s by the term that is local in imaginary time. Second,
the bath introduces dissipation as described by the last term
in Eq. �10�, which is purely nonlocal in imaginary time. In-
tegrating over frequency �, we observe that this last term
describes a long-range interaction in imaginary time,

�
0

�

d�J���e−���−�� =
2�	�c

2��1 + s�
�1 + �c�� − ����1+s , �11�

where ��x� is the Gamma function and we have used an
exponential cutoff for the spectral density J���
=2�	�c

1−s�s exp�−� /�c� for convenience.
Note that although the dissipative part still contains a term

that couples the two different spins �at different times�, this
corresponds to a retarded Ising interaction and can thus be
neglected compared to the equal-time contribution if one is
interested in ground-state properties. More specifically, the
retarded term is of the form �d�d����1

z����2
z���� / ��−���1+s�,

which under a Fourier transformation becomes
��n

��n�s�1
z��n��2

z�−�n�. Thus, if we pass to real frequencies
�n→�+ i� and take the low-frequency limit �→0 these
terms can be neglected compared to the static Ising interac-
tion part �Kr /4��1

z����2
z���. This reasoning can also be justi-

fied by noting that one arrives at the same formula for the
renormalized Ising constant by applying the polaron unitary
transformation to the Hamiltonian in Eq. �1� as we have pre-
sented in Sec. II B �see Eq. �4��.

2. Scaling analysis: Comparison between mean-field
and NRG exponents

Below, we derive mean-field critical exponents from the
effective spin action in Eq. �10�, which we compare with
exponents that we have extracted from our NRG calcula-
tions.
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FIG. 6. �Color online� Entanglement entropy E as a function of
dissipation 	 for the sub-Ohmic two-spin-boson model with s
=1 /2. Different curves are for different values of the Ising coupling
K and �1,2=0.1�c. The entropy E reaches a maximum at the phase
transition �see also Fig. 3� and falls off continuously to both sides of
the transition.
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To proceed, we resort to a mean-field-like decoupling of
the Ising term: �Kr /4��1

z����2
z���
�Kr /4���1

z��2
z�+ ��1

z��2
z�.

This term then acts as a single-spin detuning, depending on
the expectation value of the other spin magnetization.

Scaling of both spins will thus be identical and we can
follow the analysis for the single-spin-boson model.1,51,52,61

There, one employs the quantum-to-classical mapping of the
spin-boson model to the one-dimensional classical Ising
model2,62,63

Hclassical = − �
i,j

JijSi
zSj

z + Hshort-range, �12�

with long-range interaction Jij =J / �i− j�1+s. Here, Si
z= �1 are

classical Ising spins. There is an additional generic short-
range interaction Hshort-range arising from the transverse field,
but it is believed to be irrelevant for the critical
behavior.57,64,65 The scaling dimensions of �1,2

z are thus
solely determined by the dissipative term, and we find from
the condition that the total action is dimensionless �S�=1 that

��1,2
z � = T�1−s�/2. �13�

Here, we have used units of energy �or temperature�: ���
=T−1. From this follows the scaling dimension of the detun-
ing and Ising constant as

��� = T�1+s�/2, �K� = Ts. �14�

In order to derive scaling relations, we need to make an
ansatz for the impurity part of the free energy. Since the fixed
point is “interacting” for s�1 /2,51,66 we use

Fimp = Tf��� − �c�T−1/�,�T−b, �K − Kc�T−�� . �15�

This ansatz can be applied for s�1 since the transition is
continuous. Further, for a Gaussian fixed point, which occurs
at s�1 /2, the reduced free energy would also depend on
dangerously irrelevant variables.

In this ansatz we have used that in a quantum phase tran-
sition, which occurs at T=0, the distance to criticality is
measured by the parameter deviation from the critical value
of the most relevant perturbation, in this case ��−�c�. Analo-
gous to a classical system, where the correlation length di-
verges as a function of this distance, here the correlation
length in imaginary time obeys ����−�c�−� with the corre-
lation length exponent �. The dynamic critical exponent is
formally set equal to z=1 in this 0+1-dimensional system.
This defines a characteristic energy scale

T� 	 �−1 � �� − �c�� �16�

above which critical behavior is observed.63

Using the ansatz for the free energy given in Eq. �15�, we
can immediately infer from ��T−b�= ��K−Kc�T−��=1 that b
= 1+s

2 and �=s. If we define the critical exponents describing
the scaling of the magnetization as

��1,2
z � � �� − �c��, �17�

��1,2
z � � ��1,2�1/�, �18�

��1,2
z � � �K − Kc��, �19�

we can derive mean-field scaling relations. For instance,
from Eqs. �13� and �14� it immediately follows that

�MF =
1 + s

1 − s
, �MF =

1 − s

2s
. �20�

We have to invoke Eq. �16� to arrive at

�MF = ��1 − s

2
� . �21�

If we use the result that �=1 /s for small s, derived in Ref.
57, we find that �MF=�MF. Close to s=1 it is more appropri-
ate to use 1 /�=�2�1−s� as obtained in Ref. 67. The resulting
values for the critical exponents are shown in Table I.

Let us now compare these mean-field predictions of the
critical exponents to our NRG results. Numerically, we in-
vestigate the cases s= � 1

2 , 3
4 , 9

10
. After carefully determining
the position of the phase transition, we keep all but one pa-
rameter fixed at their critical values and study the scaling of
the magnetization as a function of this remaining parameter.
Typically, we find power-law scaling over more than two
orders of magnitude, and we find the exponents from simply
fitting the slope in a log-log plot. We have checked that the
extracted value of the exponent is independent of the posi-
tion in the phase diagram where we cross the phase bound-
ary. As an example, in Fig. 7, we show the scaling of ��1

z� as
a function of �K−Kc�. Different curves are for different val-
ues of the transverse field �, and we extract the value of
��s= 1

2 �=0.5, which is in perfect agreement with the mean-
field prediction of �MF�s= 1

2 �=1 /2. In Table I we show a full
comparison of the critical exponents derived in the mean-
field approximation and extracted from NRG. Agreement is
good for the exponents � and � for all values of s �using the
different expansions of � as a function of s�. For the expo-
nent �, however, the agreement is not so good in the cases
s= � 3

4 , 9
10
. Note that the trend is captured correctly and that �

diverges as s→1 which makes it increasingly hard to extract
its value numerically.

IV. NONEQUILIBRIUM SPIN DYNAMICS

Let us now turn to the dissipative nonequilibrium dynam-
ics of the two-spin-boson model of Eq. �1�. We will concen-

TABLE I. Comparison of critical exponents as predicted by our
mean-field analysis ��MF ,�MF ,�MF
 and as extracted from NRG
�� ,� ,�
.

Exponent s= 1
2 s= 3

4 s= 9
10

� 4 10 40

�MF 3 7 19

� 0.5 0.2 0.1

�MF 1/2 1 /6�0.17 1 /18�0.06

� 0.5 0.2 0.09

�MF��=1 /s� 1/2 1/6 1/18

�MF��=1 /�2�1−s�� 1/4 1 /4�2�0.18 1 /4�5�0.11
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trate on the Ohmic �s=1� as well as the sub-Ohmic case of
s= 1

2 . To access the system’s rich dynamical behavior arising
from the interplay of spin-spin and spin-bath interactions, we
employ the time-dependent numerical renormalization-group
�TD-NRG� technique, recently introduced by Anders and
Schiller.45 Using this extension of the standard bosonic nu-
merical renormalization group,42–44 we are able to calculate
the real-time evolution of an impurity observable as a reac-
tion to a single sudden change of parameters. Since this
method is nonperturbative as well as non-Markovian, it is
capable to accurately describe the spin dynamics over the
whole range of parameter values, including strong coupling.
We note that a first dynamical study of the Ohmic system in
a very limited region of parameter space using analytical
methods was given in Ref. 68.

As common to all applications of the NRG to bosonic
quantum impurity models, we have to restrict the maximal
number of bosonic degrees of freedom that are added in each
step of the iterative diagonalization procedure performed
within the NRG method. We have checked that this cutoff
does not alter our results. We use the same NRG parameters
as for the equilibrium calculations: a discretization parameter
of �=1.4, a total of Nb,0=599 bosonic modes in the first
iteration, and Nb,N=6 in the following ones while keeping
NLev=200 low-energy levels in each NRG iteration. For the
TD-NRG calculations we have additionally averaged the
real-time data using Nz=8 independent NRG runs �z-trick
averaging�. For more details about the method, we refer the
reader to Refs. 46 and 69.

In the following, we discuss a number of different non-
equilibrium situations.

In Sec. IV A, we show that TD-NRG results perfectly
agree with the exact solution that is available for zero trans-
verse field �1,2=0, where the Hamiltonian only contains the
z component of the spin operators.

In Sec. IV B, we focus on the case of weak spin-bath
coupling and compare TD-NRG to the commonly used per-
turbative Bloch-Redfield method. We provide quantitative
limits at which dissipation strength this method begins to
fail.

We discuss, in Sec. IV C, the fascinating phenomenon of
dynamical synchronization of the spin oscillations induced
by the bath. Most importantly, this feature occurs even at
weak spin-bath coupling and synchronization can thus be
observed over many oscillation periods. It relies on the co-
herent exchange of bath excitations between the two spins,
which gives rise to the bath induced part of the Ising inter-
action. The phenomenon cannot be observed within the
Bloch-Redfield master equation approach, where the back
action of the bath on the spins is neglected.

In Sec. IV D, we investigate the spin dynamics for van-
ishing �renormalized� Ising coupling Kr=0. Qualitatively, the
system behaves like a single-spin-boson model for 0�	
�1 /2, where it exhibits damped coherent oscillations. The
quality factor of the oscillations, however, is smaller in the
two-spin case as the damping is stronger. Yet most impor-
tantly, for larger values of 	 we find that the two spins re-
main delocalized for Kr=0 up to a dissipation strength as
large as 	=1.5 in the Ohmic case. The single-spin-boson
model, in contrast, becomes localized at 	=1, where the spin
remains frozen in its initial state. In Sec. IV D 1, we first
elaborate on the region 0�	�1 /2 and use an approxima-
tion that is known to be equivalent to the noninteracting blip
approximation �NIBA�2,70 in the single-spin case. It allows
us to understand the dynamics qualitatively. In Sec. IV D 2,
we then focus on the generalized Toulouse point 	=1 /2 and
Kr=0, where �1,2

z �t� decays purely exponentially. We show
that one obtains slightly different decay rates for the single-
and two-spin-boson models. We qualitatively explain this
difference by employing a bosonization mapping to a fermi-
onic resonant-level model. In the single-spin case, the fermi-
onic model can be solved exactly. For two spins, however,
the fermionic model contains an additional interaction term
that stems from the Jordan-Wigner transformation of the
spins and impedes an exact solution.

We discuss the spin dynamics at large spin-bath coupling
in Sec. IV E. Comparing the Ohmic and sub-Ohmic cases,
we find that while coherence is lost prior to localization in
the Ohmic system, the spins exhibit oscillations even inside
the localized regime for a sub-Ohmic bath, a feature only
recently discovered50 in the single-spin-boson system.

Finally, as presented in Sec. IV F, an interesting situation
arises if we prepare the spins in an antiferromagnetic initial
state at a location in the phase diagram which corresponds to
a localized �ferromagnetic� ground state. Following the
spin’s dynamics over time, we observe a nontrivial steady
state, where the spins are highly entangled with the bath
while developing and maintaining coherence between the
two antiferromagnetic spin states. We give a simple physical
explanation for this behavior.

A. Decoherence without transverse field

In this section we discuss a specific case where one can
exactly solve for the �nontrivial� dissipative spin dynamics of
the two-spin-boson model. We compare the exact solution to
the TD-NRG results and find perfect agreement, which pro-
vides another validation of this powerful method in the
strong-coupling regime.
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ζ1 = 0.48310± 0.00370
ζ2 = 0.48786± 0.00373
ζ3 = 0.49035± 0.00417
ζ4 = 0.49292± 0.00489
ζ5 = 0.49556± 0.00586

Kc = 0.1ωc
∆1,2 = 0.051462

f1(K)
∆1,2 = 0.051464

f2(K)
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FIG. 7. �Color online� Scaling of magnetization at the phase
transition in the sub-Ohmic system with s= 1

2 . We fit ��1
z� as a

function of the Ising interaction against a power law ��1
z�

��K−Kc�� and find �=0.5. Different lines represent fits using f i

 �K−Kc��i. Results of the fit and error bars for �i, as well as the
different values of �1,2 �in units of �c� used, are shown in the plot.
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For vanishing transverse fields, �1,2=0, the Hamiltonian
in Eq. �1� takes the form

H��1,2 = 0� = �
j=1

2 �� j
z

2
�� j + �

k�0
�k�bk

† + bk��� +
K

4
�1

z�2
z

+ �
k�0

�kbk
†bk, �22�

which only contains the z component of the spin operators.
Thus, the spin dynamics is nontrivial only if the initial state
of the spins contains a transverse component �in the x or y
direction�. For instance, spins that are initially polarized
along the x direction, �� j

x�t=0��=−1 for j=1,2, will undergo
damped oscillations in �� j

x� as exactly described by71

�� j
x�t�� = − cos��� j +

Kr

2
�t�cos�Q1�t�

�
�exp�− Q2�t�

�
� ,

�23�

with functions Q1�t�=�0
�d�J���sin �t and Q2�t�

=�0
�d�J����1−cos �t�. For an Ohmic spectral density with

exponential cutoff, they read2

Q1�t� = 2�	 tan−1 �ct , �24�

Q2�t� = �	 ln�1 + �c
2t2� . �25�

Note that Eq. �23� can also be derived using the polaron
transformation of Sec. II B. In Fig. 8 we compare our TD-
NRG results with this exact analytical prediction for bath
exponents s= 1

2 and s=1, and we find perfect agreement be-
tween them.

B. Breakdown of the Bloch-Redfield description

In this section, we compare the results from TD-NRG
with those from the commonly employed
Bloch-Redfield3,32,47 formalism at weak spin-bath coupling.
We give quantitative limits on the applicability of this per-
turbative and Markovian technique.

Let us briefly outline the Bloch-Redfield approach to dis-
sipative spin dynamics. The time evolution of the spin re-
duced density matrix �S=TrB���, where TrB denotes tracing
out the bath degrees of freedom and � is the full density
matrix of the spin-boson system, is given by the Bloch-
Redfield equations

�̇S,ab�t� = − i�ab�S,ab�t� − �
k,l

Rabkl�S,kl�t� . �26�

Here, a ,b ,k , l� �1, . . . ,4
 label the four eigenstates �with
eigenenergy Ea� of the free spin part of the Hamiltonian
HS=� j=1

2 ��� j /2�� j
x+ �� j /2�� j

z�+ K
4 �1

z�2
z , and �ab=Ea−Eb are

transition frequencies. For zero bias �1,2=0, the eigenener-
gies are given by E1,2= ��− /2 and E3,4= ��+ /2 with ��

=���1��2�2+K2 /4. The relevant transition frequencies for
which �a��1,2

z �b��0 read �41=�23=� and �42=�13=� with
�= 1

2 ��++�−� and �= 1
2 ��+−�−�. For nonzero bias �1,2�0,

one can easily diagonalize HS numerically for a specific
choice of parameters.

The Redfield tensor Rabkl describes the effect of the bath
onto the spin dynamics in the Born-Markov approximation.72

The real part of Rabkl describes the damping induced by the
bath and the imaginary part the renormalization of the tran-
sition frequencies up to second order in the spin-bath cou-
pling constants ��k
.

The Redfield tensor is explicitly given by golden rule
transition rates and reads

Rabkl = �bl�
r

�arrk
�+� + �ak�

r

�lrrb
�−� − �lbak

�+� − �lbak
�−� . �27�

The golden rule rates at temperature T=1 /� are calculated to

�lbak
��� =

�lbakJ̃��ij�
4

�coth����ij/2� � 1�

+
i�lbak

2�
P�

0

�

d�
J̃���

�2 − �ij
2 �coth����/2��ij � �� ,

�28�

where �ij =�lb for the plus rates �lbak
�+� and �ij =�ak for the

minus rates �lbak
�−� . Here, we have defined the transition matrix

element

�lbak = �1,lb
z �1,ak

z + �1,lb
z �2,ak

z + �2,lb
z �1,ak

z + �2,lb
z �2,ak

z

�29�

and a spectral density that is antisymmetrically continued to

negative frequencies J̃���=sgn����	���s�c
1−s
��c− ����. At

zero temperature, the real part of the rates becomes

Re �lbak
��� =

�lbak

4
J��ij� , �30�

where again �ij =�ak for the plus rate and �ij =�lb for the
minus rate. Note that Eq. �30� vanishes unless �ij �0. The
principal part integral in the imaginary part of the rates can
be performed analytically, and, for instance, in the Ohmic
case and for a Drude bath cutoff J���=2�	� / �1+�2 /�c

2�,
we obtain
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FIG. 8. �Color online� Comparison of ��1,2
x �t�� between exact

solution in Eq. �23� �dashed� and TD-NRG result �solid� for differ-
ent values of 	 and bath exponents s=1 �upper part� and s= 1

2
�lower part�. Parameters used are �1,2=�1,2=0, K=0, �c=1, and 	
as specified in the plot.

DYNAMICS, SYNCHRONIZATION, AND QUANTUM PHASE… PHYSICAL REVIEW B 82, 144423 �2010�

144423-9



Im �lbak
��� =

�lbak

4�

�	�ij�c
2

�ij
2 + �c

2 �2 ln� �c

�ij
� �

��c

�ij
� . �31�

In all our calculations, we use the corresponding expression
for a hard bath cutoff �see Eq. �2�� which turns out to look
more complicated than Eq. �31� but leads to the same results
as long as �c is the largest energy scale in the system.

In the Redfield approach, the total density matrix is as-
sumed to always factorize into a spin and a bath part. Fur-
ther, by taking the long-time limit in Eq. �28�, any reversible
energy exchange between spins and bath and thus any back
action of the bath on the spins is neglected. Therefore, the
Redfield approach does not capture the bath induced nondis-
sipative spin-spin interaction −4	�c /s=Kr−K correctly. As
we will discuss in Sec. IV C this has the important conse-
quence that the phenomenon of a bath induced dynamical
synchronization of the spin oscillations cannot be observed
within the Redfield approach.

In this section, we want to focus on a symmetric setup of
the two-spin system ��1=�2	�� and zero bias �1,2=0. To
determine the breakdown of the Bloch-Redfield description,
we compare in Fig. 9 our TD-NRG results for ��1,2

z �t�� with
the Bloch-Redfield solutions of Eq. �26� for an Ohmic and a
sub-Ohmic bath. Both results agree for very weak spin-bath
coupling 	 ln��c /���0.01. However, already at
	 ln��c /��=0.01 we find significant differences. They are
more pronounced in the sub-Ohmic case and grow with the
coupling strength. Even in the absence of a direct Ising cou-
pling term K=0, we observe beatings in the oscillations due
to the bath induced Ising interactions Kr. In Fig. 10 we show
results for a system with a direct Ising coupling, where the
beatings are stronger. Here, we find significant differences
between the TD-NRG and Bloch-Redfield results to occur
already for 	=0.005 or 	 ln��c /�1,2�
0.01.

In summary, since the Redfield approach does not cor-
rectly account for the bath induced Ising interaction, its
breakdown occurs not just when 	 ln��c /�ij�
1 but already

for 	�c
�ij. Here, �ij is a �nonzero� transition frequency of
the system which is of the order �� ,�
. Since �c��ij the
breakdown of the master equation description occurs for
much smaller values of 	 compared to the single-spin case,
where it takes place when 	 ln��c /�ij�
1.

C. Synchronization of spin dynamics

In this section, we address how the coupling of spins to a
common bath can be employed to obtain a dynamical syn-
chronization of spin oscillations. Notably, this feature occurs
already at weak spin-bath coupling, where the bath induced
decoherence is small. It provides an alternative technique to
synchronize the dynamics of a two-spin system when a
strong direct coupling of the spins is unavailable.

Let us start with two free and uncoupled spins �K=	
=0� that are driven by different tunneling amplitudes, say
�1=2�2. As shown in the upper part of Fig. 11, the spins will
then undergo undamped Rabi oscillations with frequencies
�1 and �2. We now consider a weak coupling to the bath in
the perturbative regime where 	 ln��c /�1,2��1. The fre-
quency corrections in �1,2 are small in this case. However,
the bath induced Ising interaction Kr=−4	�c /s can still be
comparable to �1,2 because it scales with the �large� bath
cutoff frequency �c. In this case, where Kr and �1,2 are of
the same order of magnitude, the bath is capable of synchro-
nizing the spin oscillations as depicted in the two lower parts
of Fig. 11 for an Ohmic �middle� and a sub-Ohmic bath with
s=1 /2 �bottom�. The synchronization is more complete for
the sub-Ohmic system since there is an increased number of
slow oscillator modes present and the induced Ising interac-
tion, which scales as s−1, is twice as large �for the same value
of 	�.

The two oscillation frequencies �� ,�
 that occur in Fig.
11 can be calculated from the free spin dynamics of Eq. �1� if
we set the Ising interaction K equal to its renormalized value
K=Kr=−4	�c /s.

For zero bias �1,2=0, the free spin part in Eq. �1� reads
HS=� j=1

2 �� j /2�� j
x+ K

4 �1
z�2

z with eigenvalues E1,2= ��− /2
and E3,4= ��+ /2, where ��=���1��2�2+K2 /4. We can
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FIG. 9. �Color online� Comparison of the results for ��1,2
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from the TD-NRG �solid� and the Bloch-Redfield approach
�dashed� for K=�1,2=0, �1,2=0.1�c in the perturbative regime
	 ln��c /���1. Upper �lower� part shows the case s=1 �s= 1

2 �. De-
viations between the two solutions are visible already for
	 ln��c /��=0.01. Note the beatings in oscillations due to the bath
induced Ising coupling.
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find the spin dynamics from ��1,2
z �t��=TrS��S�t��1,2

z �, where,
in the absence of the bath, the spin-density matrix �S�t�
evolves in time according to the von-Neumann equation of
motion �̇S=−i�HS ,�S�. With initial condition �S�0�
= �↓↓��↓↓�, we find for j=1,2

�� j
z� = �

a,b
�S,ab�0�e−i�abt�b�� j

z�a� = 2A�
�j� cos �t + 2A�

�j� cos �t ,

�32�

where a ,b label the eigenstates of HS and �ab=Ea−Eb are
the transition frequencies. They obey �41=�23=� and �42
=�13=�. The two oscillation frequencies that appear in Fig.
11 are thus given by �= 1

2 ��++�−� and �= 1
2 ��+−�−�. For

the other transitions, we find that the matrix elements
�b�� j

z�a� are equal to zero. The two oscillation amplitudes are
given by �j=1,2�

A�
�j� = �S,41�0��1�� j

z�4� + �S,23�0��3�� j
z�2� , �33�

A�
�j� = �S,42�0��2�� j

z�4� + �S,13�0��3�� j
z�1� . �34�

They are shown in Fig. 12 as a function of the Ising coupling

K and are responsible for the synchronization phenomenon.
At K=0, the first spin oscillates with frequency ��K=0�
=�1 and A�

�1�=1. The second spin oscillates with frequency
��K=0�=�2 and A�

�2�=1. As we increase K, the amplitude
A�

�1� increases, while A�
�1� decreases, and A�,�

�2� remain almost
the same. For large K��1,2, both spins oscillate with fre-
quency ��2�1�2 /K.

In fact, we can derive analytical expressions for A�,�
�1,2� if

we solve the Heisenberg equation of motion for �1,2
z �t�

= i�HS ,�1,2
z �t�� in Laplace space.38 One finds that

��1
z���� =

��K2

4
+ �2

2 + �2�
��2 + �2���2 + �2�

, �35�

��2
z���� =

��K2

4
+ �1

2 + �2�
��2 + �2���2 + �2�

, �36�

which yields Eq. �32� in real space. We identify the ampli-
tudes A�,�

�1,2� as the respective residues of Eqs. �35� and �36� at
� and �. Explicitly, they read

A�,�
�1� =

��− K2 + 4��1
2 − �2

2�� + w

4w
, �37�

A�,�
�2� =

��− K2 + 4��2
2 − �1�2� + w

w
, �38�

where w=��K2+4��1
2+�2

2��2−64�1
2�2

2 and the upper sign re-
lates to A�

�1,2�. Synchronization sets in when A�
�1��A�

�1�, which
occurs for an Ising interaction strength of

K = 2���1
2 − �2

2� . �39�

The damping rates of the oscillation amplitudes are pro-
portional to J��� and J��� �see Eq. �30��. Since J����	�s

they are small for the parameters in Fig. 11, and the synchro-
nized oscillations can be seen over many periods.

We like to emphasize that the synchronization effect can-
not be seen in the Bloch-Redfield master equation treatment,
which does not correctly account for the bath induced Ising
interaction Kr �see Sec. IV B�. The damping rates in Fig. 11,
however, agree with the ones calculated with the perturbative
Redfield approach.

In summary, the bath induced Ising interaction scales with
the bath cutoff frequency like Kr�	�c, whereas the bath
induced damping is proportional to 	�s and 	�s, where
�� ,�
 are spin transition frequencies. A common bath can
thus synchronize spin oscillations at weak coupling if the
bath cutoff frequency is large: �c�� ,�.

D. Vanishing Ising interaction Kr=0: Similarities and
differences with the single-spin-boson model

In this section, we investigate the spin dynamics along the
line Kr=0 in the phase diagram, i.e., for a vanishing renor-
malized Ising interaction �see Figs. 2 and 3�. At first sight,
one might expect that the dynamics would be identical to
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FIG. 11. �Color online� Synchronization of two spins with dif-
ferent spin-flip terms �2= 1

2�1=10−3�c by weak coupling to a com-
mon bath. There is no direct coupling between the spins K=0. The
upper part of the figure shows the uncoupled case 	=0. The middle
part shows the Ohmic case and the lower part the sub-Ohmic one
with s= 1

2 . We use the same strength 	=8!10−4 for the different
bath dispersions, which lies in the perturbative regime:
	 ln��c /�2�=6!10−3�1.
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that of two uncoupled spin-boson systems. However, as can
be seen from the perturbative treatment in Sec. IV B already,
the two spins do not decouple from each other even to linear
order in 	, and the golden rule rates in Eq. �28� contain the
terms �1,lb

z �2,ak
z and �2,lb

z �1,ak
z . Qualitatively though, as dis-

played in Figs. 13 and 14, the spin dynamics of the single-
and two-spin-boson models agree for Kr=0 and small 	.

In the Ohmic case of Fig. 13, we observe a crossover
from damped coherent oscillations at 0
	�1 /2 to incoher-
ent behavior at 	�1 /2 in both models. In the two-spin case,
however, we find stronger damping due to the terms propor-
tional to �1

z�2
z mentioned above. This results in a smaller

quality factor of the oscillations. We compare the quality
factor of oscillations for the single- and two-spin-boson sys-
tems computed with the TD-NRG and Bloch-Redfield in Fig.
15. A detailed discussion of the dynamics at the special Tou-
louse point 	=1 /2 is given separately in Sec. IV D 2.

If we further increase 	, we surprisingly observe that the
two-spin-boson model does not enter the localized phase �for
Kr=0�. Unlike the single-spin case, the two spins remain
delocalized up to values of 	�1. Our time-dependent nu-
merical results in Fig. 13 show that ��1,2

z � relax to zero even
for values as large as 	=1.5. We note that this is in agree-
ment with the NRG phase diagram in Fig. 2, which shows
that the position of the localization phase transition con-
verges toward the line Kr=0 from the side where Kr�0.

In Fig. 14, we show the same comparison between single-
and two-spin-boson models for a sub-Ohmic bath with s
=1 /2. As before, for increasing dissipation the coherence of
the spin oscillations is lost more rapidly in time, and a com-
parison of the quality factors of the single- and two-spin-

boson systems is presented in Fig. 15. Again, the system
does not localize along Kr=0, which is in agreement with the
NRG phase diagram of Fig. 3.

In the following, we first derive in Sec. IV D 1 a decou-
pling approximation that is equivalent to the well-known
NIBA for the single-spin-boson dynamics. In this approxi-
mation the spins decouple completely for Kr=0. It allows us
to understand the spin dynamics along the line Kr=0 quali-
tatively. In contrast to the case of the single-spin-boson
model, however, the approximation does not give quantita-
tively correct results for two spins, not even to linear order in
	. The reason is that dissipative second-order processes that
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FIG. 13. �Color online� Comparison of spin dynamics between
the Ohmic single-spin-boson �thin lines� and Ohmic two-spin-boson
models with Kr=0 �symbols�. Different curves correspond to differ-
ent values of dissipation strength 	. The Ising interaction is chosen
accordingly to be K=4	�c. Other parameters are �1,2=�=0.1�c,
�1,2=�=0. The upper panel shows the spin dynamics in the coherent
regime 0�	�1 /2. Here, the two-spin oscillations have a slightly
larger frequency and are stronger damped than the single-spin os-
cillations �see also Fig. 15�. The lower panel displays the dynamics
for stronger dissipation 	�1 /2. For 1 /2
	
1 both systems dis-
play incoherent decay. For even larger values of 	, we observe that,
in contrast to the single-spin-boson model which localizes at 	=1,
the two-spin dynamics remains incoherent at least up to 	=1.5.
This is in agreement with the phase diagram of Fig. 2.
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involve both spins �see Eqs. �29� and �30�� are neglected.
Then, in Sec. IV D 2 we focus on the so-called Toulouse

point 	=1 /2 of the Ohmic model. For a single spin, one can
solve for the dynamics exactly and ��z�t�� exhibits pure ex-
ponential decay. The exact solution can most easily be de-
rived by employing a bosonization mapping to a noninteract-
ing fermionic resonant-level model. In the two-spin case, we
explicitly show that this mapping does not lead to a nonin-
teracting fermionic model, which hence cannot be solved
exactly. Further, our numerical results prove that the two-
spin dynamics at 	=1 /2 differs slightly from the single-spin
case. We associate this with the influence of the retarded part
of the bath induced Ising interaction which is still present
even at Kr=0 �see also Eq. �10��.

1. Weak dissipation: Quality factors and the noninteracting blip
approximation (NIBA)

In this section, we derive a decoupling approximation that
allows us to qualitatively understand the spin dynamics for
Kr=0 but not necessarily small 	. In this approximation, the
two spins decouple completely for Kr=0, and their Heisen-
berg equations of motion are identical to the ones of the
single-spin-boson model in the well-known NIBA.70

Our starting point to investigate the dynamics is the po-
laron transformed Hamiltonian in Eq. �4�. For zero detuning
and at Kr=0, it reduces to

H̃ = �
j=1

2
� j

2
�� j

+ei� + H.c.� + �
k�0

�kbk
†bk, �40�

where �=−i�k��k /�k��bk
†−bk�. The Heisenberg equation of

motion for � j
z�t� with j=1,2 reads

�̇ j
z�t� = − i� j� j

+�t�ei��t� + H.c. �41�

It contains the elements � j
��t� which are given by

� j
+�t� = −

i� j

2
�

−�

t

ds� j
z�s�e−i��s� �42�

and � j
−= �� j

+��. Inserting Eq. �42� in Eq. �41� yields

�̇ j
z�t� = −

� j
2

2
�

−�

t

ds�� j
z�s�ei��t�e−i��s� + H.c.� . �43�

Note that the two spins are still coupled to each other via the
time-dependent bath operator ��t�. This coupling describes
the retarded part of the bath induced Ising interaction that we
have seen already in the spin effective action of Eq. �10�. If
we neglect this interaction, the two spins decouple from each
other.

More formally, we employ two approximations which are
known to be equivalent to the NIBA in the single-spin case.70

First, we assume that the bath evolves freely bk�t�
=bk�0�e−i�kt, neglecting any back action of the bath on the
spins. The reduced density matrix of the bath remains unaf-
fected by the spins. Second, we trace out the bath degrees of
freedom in a weak-coupling sense,

TrB�ei��t�e−i��s�� = exp� 1

�
�iQ1�t − s� − Q2�t − s��� ,

�44�

which contains the bath correlation functions Q1�t�
=�0

�d�J���sin �t and Q2�t�=�0
�d�J����1−cos �t�. As a re-

sult, the two spins are now completely decoupled from each
other and their dynamics is described by

�̇ j
z�t� = − � j

2�
−�

t

ds�� j
z�s�cos�Q1�t − s�

�
�e−Q2�t−s�/�� .

�45�

Equation �45� is known to describe the dynamics of the
single-spin-boson model in the famous NIBA.2,70 It can
readily be solved by Laplace transformation. We refer to
Refs. 2 and 3 for details.

In the Ohmic case, we find from Eq. �45� that the spin
undergoes damped oscillations for 0�	�1 /2. The fre-
quency of the oscillations is given by �NIBA=�eff cos �	

2�1−	�
and the damping rate reads �NIBA=�eff sin �	

2�1−	� , where
�eff= ���1−2	�cos �	�1/2�1−	���� /�c�	/�1−	� is a renormal-
ized tunneling element. The quality factor of the damped
oscillations thus reads �NIBA /�NIBA=cot �	

2�1−	� . The NIBA
also predicts an incoherent contribution to the spin dynamics,
which is absent in the TD-NRG results. At 	=1 /2, Eq. �45�
predicts purely exponential relaxation ��z�t��=exp�−�t� with
a decay rate given by �=�eff�	=1 /2�=��2 /2�c. We refer
to Ref. 9 for a detailed analysis of the single-spin-boson
dynamics within the TD-NRG.

In Fig. 15, we present a comparison of the quality factor
of the oscillations � /� for the single- and two-spin-boson
systems as computed by the TD-NRG and the Bloch-
Redfield method. It is obtained by fitting the numerical re-
sults to the function �1,2

z �t�=e−�t cos��t�. In the Ohmic case,
we also include the prediction from the NIBA, which agrees
with the TD-NRG results of the single-spin-boson model. In
general, we observe that the quality factor is smaller for the
two-spin system. The Bloch-Redfield approach yields accu-
rate results only in the Ohmic case for small 	. It fails com-
pletely in the sub-Ohmic case due to the increased spectral
weight of slow oscillator modes even for weak dissipation.

If we increase the dissipation strength further to values
	�1 /2, we observe an important difference between the
single- and the two-spin-boson models. The two-spin-boson
model does not enter a localized phase for increasing values
of 	 along the line Kr=0.

For an Ohmic bath, spin transitions occur even for a dis-
sipation constant as large as 	�1.5 �see Fig. 13�. This is in
stark contrast to the single Ohmic spin-boson model, which
displays a localization phase transition at a critical dissipa-
tion strength of 	c=1+O�� /�c�. This explicitly shows that
the approximations that lead to Eq. �45� even fail to give the
correct qualitative dynamical behavior for stronger coupling
	.

In the sub-Ohmic case, the NIBA cannot be justified and
erroneously yields localization for all 	�0,2 while TD-NRG
results for the single-spin-boson model show that the system
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remains delocalized up to a finite critical value of 	.50 Again,
we find in Fig. 14 that unlike the single-spin-boson system,
which localizes at a value of 	c=0.107 �for � /�c=0.1 and
s=1 /2�, the two-spin-boson model always remains delocal-
ized for Kr=0.

We finally want to emphasize that the NIBA in the single-
spin-boson model breaks down for finite bias �.3 Thus, it
cannot be applied to the two-spin problem away from the
line Kr=0 since the Ising interaction acts as a mutual bias
between the spins. One common approach is to account for
the interblip correlations up to first order in the spin-bath
coupling 	.3,37 This procedure, however, is equivalent to the
perturbative Redfield approach that we have discussed in
Sec. IV B.

2. Toulouse point: Relation to the single-spin case

In this section, we investigate the dynamics of the Ohmic
two-spin-boson model at the special parameter point Kr=0
and 	=1 /2.

It is well known that one can map the Ohmic single-spin-
boson Hamiltonian in the scaling limit � /�c�1 onto a fer-
mionic resonant-level model using bosonization and refermi-
onization techniques.2 The fermionic model describes a
localized level �dot� that is coupled via tunneling to a lead of
free spinless fermions. In general the resulting model con-
tains a Coulomb interaction term between the fermions on
the dot and the ones in the lead. At the special �Toulouse�
point of 	=1 /2, however, this interaction vanishes, and the
fermionic model can be solved exactly also in nonequilib-
rium situations.7,9,73,74

For a spin that is initially polarized along the z direction,
one finds purely exponential relaxation for t�0 �and �=0�,9

��z�t�� = exp�− �t� , �46�

with decay rate �=��2 /2�c. It is worth noting that the
NIBA predicts the same behavior since it becomes exact at
the Toulouse point of the single-spin-boson model.2

To prove the validity of the TD-NRG method in this
strong-coupling regime, we compare in Fig. 16 our numeri-

cal results for a single-spin-boson model with the exact so-
lution of Eq. �46�. We observe that the decay is indeed purely
exponential, and the decay rate is given by �=��2 /2�c in
the scaling limit � /�c→0 �see Table II�.

From Eq. �45�, we expect a similar behavior for the two-
spin-boson model at the �generalized� Toulouse point Kr=0
and 	=1 /2. Indeed, as shown in Fig. 17, we observe that
��1,2

z �t�� decay purely exponentially in the two-spin case as
well. The decay rates of single- and two-spin models, how-
ever, are slightly different. We find in Table II that the decay
rate of the two-spin-boson model is about twice as large as
the decay rate for the single-spin-boson system. The differ-
ence of the decay rates is, again, due to the retarded part of
the bath induced Ising interaction neglected in the derivation
to Eq. �45�. We will qualitatively explain the factor two dif-
ference below using a mapping to a fermionic resonant-level
model.

One might ask whether the two-spin-boson model can
also be solved exactly via the bosonization mapping to a
fermionic resonant-level model. For two spins, however, it
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FIG. 16. �Color online� Exponential decay of ��z�t�� at the Tou-
louse point 	=1 /2 in the single-spin-boson model. Symbols are
TD-NRG results for different tunneling amplitudes � /�c which re-
sult in different decay rates �=��2 /2�c. Solid lines are fit with
f i�t�=exp�−ai�t� using fit parameters ai given in Table II.

TABLE II. Fit parameters for single-spin-boson model �ai
 and
two-spin-boson model �bi
 with standard errors ��ai� and ��bi� for
different values of � /�c or �=��2 /2�c. We fit the TD-NRG re-
sults to an exponential decay function which reads f i�t�=exp�
−ai�t� for the single-spin-boson model and f i�t�=exp�−bi�t� for the
two-spin-boson model.

� /�c ai ��ai� bi ��bi�

0.002 1.03 0.03 2.54 0.26

0.004 0.93 0.02 1.81 0.10

0.006 0.84 0.02 1.64 0.06

0.01 0.76 0.01 1.56 0.04

0.02 0.71 0.01 1.45 0.04

0.04 0.66 0.01 1.20 0.04

0.06 0.64 0.01 0.94 0.04

0.1 0.61 0.01 0.72 0.01
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FIG. 17. �Color online� Exponential decay of ��1,2
z �t�� at the

generalized Toulouse point K=2�c, 	=1 /2 in the two-spin-boson
model. Symbols are TD-NRG results for different tunneling ampli-
tudes �1,2 /�c, which result in different decay rates �1,2

=��1,2
2 / �2�c�. Since �1=�2, we observe �1=�2. Solid lines are fit

with f i�t�=exp�−bi�t� using fit parameters bi given in Table II.
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turns out that the fermionic model remains interacting at the
Toulouse point and thus cannot be solved exactly. As we
show in detail in the Appendix, the �additional� interaction
term is proportional to the tunneling elements �1,2, which
describe tunneling between dot and lead in the fermionic
model. Since we are interested in a solution that is nonper-
turbative in �1,2 we cannot treat this additional term as a
weak perturbation.

Specifically, the Ohmic two-spin-boson Hamiltonian in
Eq. �1� can be mapped to a fermionic resonant-level model
with two energy levels on the dot. The mapping becomes
exact in the scaling limit �1,2 /�c→0.2 As we derive in the
Appendix, the resulting fermionic model is described by the
Hamiltonian

HRL = vF�
k�0

kck
†ck + V�

j=1

2

�dj
†"�0� + H.c.�

− V��1 − i�n1d2
†"�0� + �1 + i�n2d1

†"�0� + H.c.�

+ �
j=1

2

� jdj
†dj + 2U�

j=1

2 �dj
†dj −

1

2
�:"†�0�"�0�:

+ KRL�d1
†d1 −

1

2
��d2

†d2 −
1

2
� . �47�

Here, ck annihilates a spinless fermion of momentum k and
energy �k=vFk in the lead �vF is the Fermi velocity�, and one
defines "�0�=L−1/2�k ck, where L is the length of the lead.
The colons denote normal ordering :"†�0�"�0�ª"†�0�"�0�
− �"†�0�"�0��. The spin operators have been expressed in
terms of fermionic operators on the dot using the renowned
Jordan-Wigner transformation in a symmetric form,63,75,76

�1
− = �1 − �1 − i�n2�d1, �48�

�2
− = �1 − �1 + i�n1�d2, �49�

� j
z = 2nj − 1 for j = 1,2, �50�

where nj =dj
†dj are the dot occupation number operators. The

parameters in HRL can be expressed in terms of the spin-
boson parameters as

2��V2 	 � =
��2

2�c
, �U =

1 − �2	

2
,

KRL = K + 2�c�1 − 2�2	� , �51�

where the fermionic density of states is defined as �
=1 / �2�vF�. The bias field � j of the spin-boson model corre-
sponds to the energy of the dot level j with respect to the
Fermi energy of the lead.

The last two interaction terms vanish at the Toulouse
point: U=KRL=0 for 	=1 /2 and K=2�c. The term V��1
− i�n1d2

†"�0�+ �1+ i�n2d1
†"�0�+H.c.�, however, is propor-

tional to the dot-lead tunneling and thus remains. It arises
due to the Jordan-Wigner string that accounts for the distinct
commutation rules of fermions and spins at different sites.

The dynamics of Eq. �47� cannot be solved exactly. Nev-
ertheless, we can use the fermionic description to qualita-

tively understand that the decay rate of the two-spin-boson
model is about twice as large as in the single-spin case. To
this end, we introduce the symmetric and antisymmetric
combination of dot operators, Ds= �d1+d2� /�2 and Da= �d1
−d2� /�2. The occupation numbers can then be expressed as
n1,2= 1

2 �Ds
†Ds+Da

†Da�Ds
†Da�Da

†Ds�, where the upper sign
refers to n1. At the Toulouse point, the Hamiltonian then
takes the form

HRL = H0 + E�ns + na� + �E�Ds
†Da + H.c.�

+ �2V��Ds
† − Ds

†na − iDa
†ns�"�0� + H.c.
 , �52�

which contains the energy sum E= ��1+�2� /2 and difference
�E= ��1−�2� /2. We write ns=Ds

†Ds, na=Da
†Da and denote

the free part of the lead electrons as H0=vF�k�0 kck
†ck. Both

symmetric and antisymmetric states have the same energy E,
and the original energy-level difference translates into an ef-
fective tunneling coupling between them.

For �E=0 and initially empty dots such that ns=na=0,
the antisymmetric state decouples from the system com-
pletely. The tunneling coupling between the symmetric state
Ds and the lead, however, is stronger than for each individual
level d1,2. It is given by �2V instead of V �see Eq. �47��, and
the level will therefore fill twice as fast because ��V2. As
soon as ns�0, the antisymmetric state couples to the lead as
well, and in equilibrium one finds that �ns�= �na�=1 /2 for
E=0. For �E=0, symmetry requires that �n1�= �n2� and the
expectation values �Ds

†Da� and �Da
†Ds� are thus purely imagi-

nary. It then follows that �n1�= �n2�=1 /2 and ��1
z�= ��2

z�=0
in equilibrium. For �E�0 the level correlations acquire a
finite real part which gives rise to a difference in the level
occupations �n1,2� in equilibrium.

E. Strong spin-bath coupling

In this section, we focus on the regime of strong spin-bath
coupling, where perturbative approaches are not applicable.
We thus use the TD-NRG to calculate the spin dynamics and
focus on the differences between the case of an Ohmic and a
sub-Ohmic bath. We find that, qualitatively, the behaviors in
the two-spin-boson systems resemble the one known from
the �respective� single-spin-boson model. For an Ohmic bath,
we observe in the upper part of Fig. 18 that the coherence of
oscillations is lost above a certain bath coupling strength,
roughly given by 	c /2, where 	c�K ,�1,2� denotes the critical
value above which spin transitions are completely sup-
pressed �localized regime of the phase diagram in Fig. 2�.

The situation is completely different for a sub-Ohmic bath
as shown in the lower part of Fig. 18. Here, oscillations
persist even into the localized region. This phenomenon was
only recently discovered in the single-spin-boson model50,77

and we confirm that it also holds in the two-spin case.
This qualitative difference between the Ohmic and sub-

Ohmic models at which point the coherence of the spin os-
cillations is lost �as a function of 	 and K� is also reflected in
the behavior of the static entanglement entropy �see Sec.
III A�.
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F. Generation of highly entangled steady states

In this section, we show that the two-spin-boson model
displays interesting steady states for certain initial prepara-
tions. In this state, the spins are entangled with the bath
while maintaining coherence between different spin configu-
rations.

Let us ask the question what happens if we polarize the
spins initially in an antiferromagnetic configuration such as
�↑↓� in a region of the phase diagram where the ground-state
phase is localized. At t=0, we then turn off the external bias
fields completely and follow the evolution of the spin re-
duced density matrix �S over time. Note that the system can
only localize in one of the ferromagnetic spin states
��↑↑� , �↓↓�
 as discussed in Sec. II B. We calculate �S�t� using
TD-NRG and observe that after a time of the order 1 /�
=2�c / ���2� the system reaches a steady state where the spin
reduced density matrix takes the form

�S,ss =
1

4�
1 0 0 0

0 1 − 1 0

0 − 1 1 0

0 0 0 1
� , �53�

where we use the standard basis ��↑↑� , �↑↓� , �↓↑� , �↓↓�
. With
a probability of 1

4 , the spins are thus localized in one of the
ferromagnetic spin states ��↑↑� , �↓↓�
, and with a probability
of 1

2 the spins are in the spin singlet state. The entanglement
entropy E, which is a measure of the entanglement between
spins and bath, is nonzero in this state. Specifically, E��S,ss�
= 3

2 from Eq. �53�.
We can easily understand this form of the steady state by

writing the initial state in terms of the singlet state �S=0,m
=0�= ��↑↓�− �↓↑�� /�2 and the triplet state �S=1,m=0�
= ��↑↓�+ �↓↑�� /�2 as

�↑↓� =
1
�2

��S = 1,m = 0� + �S = 0,m = 0�� . �54�

Whereas the singlet state does not couple to the bath at all,
the triplet state localizes in one of the two ferromagnetic

configurations. In this steady state, the spins are highly en-
tangled with the bath modes while developing and maintain-
ing coherence between the two antiferromagnetic spin con-
figurations.

V. CONCLUSIONS

We have presented an extensive study of a system of two
Ising-coupled quantum spins in contact with a common
bosonic bath. We have investigated several distinct equilib-
rium and nonequilibrium situations both for the case of an
Ohmic as well as a sub-Ohmic bath. Employing the bosonic
numerical renormalization group �NRG� and its recently de-
veloped time-dependent version �TD-NRG�, we were able to
describe the complete range of parameter space from weak to
strong coupling. We have applied a variety of different ana-
lytical approaches to comprehend, interpret, and validate the
numerical results.

Using NRG we have calculated the ground-state phase
diagram of the model for s=1 /2 and s=1. We find a striking
asymmetry in the behavior for ferromagnetic �K�0� and
antiferromagnetic �K�0� Ising couplings, which we have
understood as being the result of the fact that the system only
localizes in a ferromagnetic spin configuration ��↑↑� , �↓↓�
.

Let us briefly comment on the case of an SU�2�-
symmetric spin-spin interaction K

4 �1 ·�2. First, due to the
fact that the spin couples to the bath via its �z component,
only the Ising component of the spin-spin interaction be-
comes renormalized by the bath Kr

z. This generates an aniso-
tropic XXZ coupling of the form �K� /4���1

x�2
x +�1

y�2
y�

+ �Kr
z /4��1

z�2
z , where K�=K. To argue that the physical prop-

erties of a such a model are quite distinct from the Ising case
where K�=0, we employ the well-established mapping to a
two-impurity Kondo model.2,36 In our case, it turns out that
the transverse part of the coupling is invariant under this
mapping, and the Ising component renormalizes to Kr

z=K
+4�c�1−2�	�. As shown in Refs. 36, 78, and 79 for the
isotropic two-impurity Kondo model, the behavior of a
Kondo system with K��0 greatly differs from the pure
Ising case. In particular, in the absence of particle-hole sym-
metry the phase transition is replaced by a smooth crossover,
whereas in the presence of particle-hole symmetry a phase
transition occurs, but it is not of Kosterlitz-Thouless type.79

A detailed �numerical� analysis of the SU�2�-symmetric two-
spin-boson system is left for further studies.

Here, we have then investigated the behavior of the Ising
two-spin-boson system close to the localization phase transi-
tion, which is in different universality classes for s=1 and
s�1. In the Ohmic case, we find that coherence in the
ground state is lost prior to localization. This is reflected in a
plateau in the entanglement entropy, which describes the en-
tanglement between spins and bath. Eventually at a critical
coupling strength, the spin is localized where the entangle-
ment entropy quickly drops to zero. We have reported that
the size of the plateau shrinks considerably for larger values
of the Ising coupling constant K��c, indicating that, in this
case, spin coherence is lost only close to the phase transition.
Whereas the transition is in the Kosterlitz-Thouless univer-
sality class for the Ohmic system, it is of continuous type for
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FIG. 18. �Color online� Spin dynamics ��1,2
z �t�� for different

values of 	 in the regime of strong spin-bath coupling for an Ohmic
�upper part� and a sub-Ohmic bath with s=1 /2 �lower part�. Other
parameters read �=0.1�c, K=0.2�c, and �1,2=0. For this choice of
K the localization phase transition occurs at 	c
0.25�0.043� in the
Ohmic �sub-Ohmic� system.
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a sub-Ohmic bath, where we have studied the scaling of the
spin magnetization ��1,2

z � close to the transition. We have
extracted critical exponents using NRG and compared them
to analytical mean-field exponents. The agreement is reason-
able though not perfect, which shows that NRG goes beyond
the mean-field approximation that we have used.

In the last part, we have discussed a number of different
nonequilibrium scenarios. First, we have investigated the ex-
actly solvable case of zero transverse fields where TD-NRG
agrees perfectly with the exact analytical solution. For weak
spin-bath coupling, we have provided quantitative limits on
the applicability of the commonly used perturbative Bloch-
Redfield method.

The coupling to the bath can be exploited to dynamically
synchronize spin oscillations, which can prove useful in
cases where a direct coupling between the spins is unavail-
able. Since the bath induced Ising coupling scales with the
large bath cutoff frequency �c, synchronization even occurs
at small 	 where decoherence is weak. Nevertheless, this
phenomenon could not be observed within the perturbative
and Markovian Bloch-Redfield approach.

We have then investigated the dynamics of the two-spin-
boson model for Kr=0 and have pointed out similarities and
differences with the case of a single spin. We have derived
the mapping of the two-spin-boson model to a fermionic
resonant-level model, which contains two levels on the dot.
In contrast to the single-spin case, this model remains inter-
acting at the Toulouse point due to an additional interaction
term that arises from the Jordan-Wigner transformation of
the spins.

We have further studied ��1,2
z �t�� in the crossover from

weak to strong coupling where perturbative approaches can-
not be applied. For strong coupling we have found that while
spin transitions do not occur in the localized regime for the
Ohmic system, coherent spin oscillations persist into the lo-
calized regime for a sub-Ohmic bath.

Finally, we have shown that the system features an inter-
esting steady state if we initially prepare it in an antiferro-
magnetic spin configuration within the localized regime. In
this state, the spins are highly entangled with the bath de-
grees of freedom and still develop and maintain coherence
between different spin states.
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APPENDIX: MAPPING OF THE TWO-SPIN-BOSON
MODEL TO THE FERMIONIC RESONANT-

LEVEL MODEL

In this appendix we provide details of the mapping of the
two-spin-boson model to the fermionic resonant-level model.
Due to the Jordan-Wigner string, the corresponding fermi-
onic model remains interacting at the Toulouse point in the
case of two spins.

Using bosonization techniques,2,36,75 one can map the
two-spin-boson Hamiltonian in Eq. �1� with an Ohmic spec-
tral density J���=2�	� exp�−� /�c� onto a fermionic
resonant-level model, which describes a central region �dot�
coupled via tunneling to free spinless electrons in the lead.
The number of spins in the spin-boson model is equal to the
number of levels on the dot, and the number of bosonic baths
is equal to the number of leads.

Our starting point is the two-spin-boson Hamiltonian in
Eq. �1�,

HSB = �
j=1

2 �� j

2
� j

x +
� j

2
� j

z +
� j

z

2 �
k�0

�k�bk
† + bk�� +

K

4
�1

z�2
z

+ �
k�0

�kbk
†bk. �A1�

To obtain the mapping to the resonant-level model �and simi-
larly to the Kondo model�, where the bath consists of free
fermions, we choose the oscillator dispersion to be linear
�k=vFk, with the Fermi velocity vF, and the coupling con-
stants

�k = − �	2vF��k

L
�1/2

e−�k/2�c. �A2�

The bath spectral density J���=��k�0 �k
2���−�k� is then of

Ohmic form J���=2�	� exp�−� /�c� up to an exponential
cutoff at �c. If we insert this into Eq. �A1�, the spin-bath
coupling term becomes

�
j=1

2

�� j
z�
k�0

�− �2	vF�� k

2�L
�1/2

e−ak/2�bk
† + bk� , �A3�

where we have defined the small distance cutoff a=kc
−1

=vF /�c.
We now apply a unitary �Luther-Emery� transformation to

the Hamiltonian: H̃SB=U#HSBU#
−1, where U#

=exp� #
2 � j=1

2 � j
z�� with

� = �
k�0

e−ak/2�4�

kL
�1/2

�bk − bk
†� . �A4�

Evaluating this transformation term by term and performing
the sum over wave vectors ��vF /L��k�0 e−ak=vF /2a=�c /2,
one finally obtains the Hamiltonian

H̃SB = vF�
k�0

kbk
†bk + �

j=1

2 �� j

2
�� j

+e#� + H.c.� +
� j

2
� j

z

+ �vF��2# − �2	�� j
z�
k�0

e−ak/2� k

2�L
�1/2

�bk + bk
†��

+ �K + 4�c#
2 − 8�c

�	#�
�1

z�2
z

4
. �A5�

One can show that a particular combination of the Bose op-
erators bk ,bk

† can be made into an anticommuting Fermi field
"�x�= 1

�2�a
exp j�x� with2
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j�x� = �
k�0

e−ak/2�2�

kL
�1/2

�bke
ikx − bk

†e−ikx� . �A6�

The coefficients have been chosen such that �j�x� , j�y��=
−i� sgn�x−y� for a→0 and thus �exp� j�x� , exp� j�y�
=0
for x�y. Choosing #=1 /�2, one can thus identify the expo-
nential exp�� /�2� which multiplies �1,2

+ in Eq. �A5� as a
localized spinless fermionic field "�0�= �2�a�−1/2 exp � /�2.
The bosonic oscillator degrees of freedom are then inter-
preted as the density excitations ��k�=�p cp+k

† cp, ��−k�
=�†�k� of the fermions "�x�=L−1/2�k�0 cke

ikx via the
bosonization identity bk= � 2�

kL �1/2��−k�.2
Using refermionization we can replace the free bosonic

with a free fermionic Hamiltonian vF�k�0 kbk
†bk

→vF�k�0 kck
†ck and

�
k�0

e−ak/2� k

2�L
�1/2

�bk + bk
†�

= �
k�0

e−ak/2

L
���− k� + ��k�� ¬ "†�0�"�0�: , �A7�

where :"†�0�"�0�ª"†�0�"�0�− �"†�0�"�0�� denotes normal
ordering. Finally, we write the spin operators in terms of
fermionic dot operators using the Jordan-Wigner transforma-
tion �in symmetric form�,

�1
− = �1 − �1 − i�n2�d1, �A8�

�2
− = �1 − �1 + i�n1�d2, �A9�

� j
z = 2nj − 1, for j = 1,2. �A10�

We note that a less symmetric form of the transformation is
equivalent. Hamiltonian �A1� thus reads in terms of fermi-
onic fields as

HRL = vF�
k�0

kck
†ck + �

j=1

2

Vj�dj
†"�0� + H.c.�

− �V2�1 − i�n1d2
†"�0� + V1�1 + i�n2d1

†"�0� + H.c.�

+ �
j=1

2

� jdj
†dj + 2U�

j=1

2 �dj
†dj −

1

2
�:"†�0�"�0�:

+ KRL�d1
†d1 −

1

2
��d2

†d2 −
1

2
� , �A11�

with tunneling coupling constant Vj = �� j /2��1 /��c�1/2, dot-
lead interaction U= �1−�2	� /2�, and onsite coupling KRL

=K+2�c�1−2�2	�. The interaction parameters U and KRL
vanish at the Toulouse point 	=1 /2 and K=2�c. The addi-
tional interaction term �V2�1− i�n1d2

†"�0�+V1�1+ i�n2d1
†"�0�

+H.c.�, however, is proportional to the tunneling couplings
Vj and remains present at the Toulouse point. As a result, the
fermionic model cannot be solved exactly.
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