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The density-matrix renormalization-group method is used to investigate the spin-Peierls transition for
Heisenberg spins coupled to quantized phonons. We use a phonon spectrum that interpolates between a gapped,
dispersionless �Einstein� limit to a gapless, dispersive �Debye� limit. A variety of theoretical probes are used to
determine the quantum phase transition, including energy gap crossing, a finite-size scaling analysis, bond-
order autocorrelation functions, and bipartite quantum entanglement. All these probes indicate that in the
antiadiabatic phonon limit a quantum phase transition of the Berezinskii-Kosterlitz-Thouless type is observed
at a nonzero spin-phonon coupling, gc. An extrapolation from the Einstein limit to the Debye limit is accom-
panied by an increase in gc for a fixed optical �q=�� phonon gap. We therefore conclude that the dimerized
ground state is more unstable with respect to Debye phonons with the introduction of phonon-dispersion
renormalizing the effective spin-lattice coupling for the Peierls-active mode. We also show that the staggered
spin-spin and phonon displacement order parameters are unreliable means of determining the transition.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity in doped antiferromagnets there has been a marked in-
crease in interest—both theoretical and experimental—in
low-dimensional quantum magnetism. However, the effect of
the interaction of quantum spins with further degrees of free-
dom such as disorder, phonons, and holes produced by dop-
ing remains relatively poorly understood.

The instability of the spin-1
2 antiferromagnetic Heisenberg

chain to a static uniform distortion gives rise to the so-called
spin-Peierls �SP� transition. This occurs because the explicit
dimerization opens a gap, �, in the spin-excitation spectrum,
lowering the total magnetic energy by an amount that offsets
the accompanying increase in lattice energy.

The SP instability is itself the antiferromagnetic analog of
the Peierls transition:1 a half-filled one-dimensional metallic
phase is unstable with respect to a commensurate periodic
lattice distortion of wave vector q=2kF. Indeed, SP models
represent the large on-site coupling limit of the correspond-
ing half-filled Hubbard-Peierls Hamiltonian: for infinite in-
terelectron repulsion, charge degrees of freedom are effec-
tively quenched resulting in the loss of electron itinerancy
for a half-filled band. For linear chains under open boundary
conditions �OBCs� the Jordan-Wigner transformation maps
the Heisenberg-SP model onto a spinless fermion-Peierls
�FP� model with nearest-neighbor repulsion, highlighting the
decoupling of spin and charge degrees of freedom and ex-
plaining the SP nomenclature.

The SP instability is well understood in the static-lattice
limit for which the frequency, ��, of the Peierls-active mode
is taken to be much smaller than the antiferromagnetic ex-
change integral, J. In this adiabatic phonon limit the ground
state �GS� is known to have a broken-symmetry staggered
dimerization for arbitrary electron-phonon �e-ph� coupling.
Experimentally, such behavior was first observed in the
1970s for the organic compounds of the TTF and TCNQ
series.2 For many quasi-one-dimensional materials, however,

the zero-point fluctuations of the �quantized� phonon field
are comparable to the amplitude of the Peierls distortion.3–5

In CuGeO3,6 for example, Cu2+ ions form well separated
spin-1

2 chains with an exchange interaction that couples to
high-frequency optical phonons ���O�J�. CuGeO3 has
since become a paradigm of inorganic antiadiabatic SP be-
havior, stimulating several numerical studies of dynamical
phonon models.7–9

Using both the density-matrix renormalization-group
�DMRG� method �Ref. 9� and RG methods within a
bosonization scheme,10 it has been demonstrated that quan-
tum fluctuations destroy the Peierls state for small, nonzero
couplings in both the spinless and spin-1

2 Holstein models at
half filling. Analogous results for the XY-SP model with
gapped, dispersionless �Einstein� phonons were also obtained
by Caron and Moukouri,11 using finite-size scaling analysis
of the spin gap to demonstrate a power law relating the criti-
cal coupling and the Peierls-active phonon frequency: gc

XY

���
0.7. For models with sufficiently large Einstein frequency,

gapped phonon degrees of freedom can be integrated away to
generate a low-energy effective-fermion Hamiltonian charac-
terized by instantaneous, nonlocal interactions.12 For spinless
models, RG equations indicate that unless the nonlocal con-
tribution to the umklapp term has both the right sign and a
bare �initial� value larger than a certain threshold, the um-
klapp processes are irrelevant and the quantum system is
gapless.13 Conversely, if the threshold condition is satisfied,
the umklapp processes and vertex function grow to infinity,
signaling the onset of gapped excitations and a dimerized
lattice.

For the Su-Schrieffer-Heeger �SSH� model, Fradkin and
Hirsch undertook an extensive study of spin-1

2 �n=2� and
spinless �n=1� fermions using world-line Monte Carlo �MC�
simulations.14 In the antiadiabatic limit �i.e., vanishing ionic
mass M�, they mapped the system onto an n-component
Gross-Neveu model, known to exhibit long-ranged dimeriza-
tion for arbitrary coupling for n�2 �although not for n=1�.
For M �0 an RG analysis shows the low-energy behavior of
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the n=2 model to be governed by the zero-mass limit of the
theory, indicating that the spinful model presents a dimerized
GS for arbitrarily weak e-ph couplings. The spinless model,
on the other hand, has a disordered phase for small coupling
if M is finite, with an ordered phase realized for bare cou-
pling in excess of a certain threshold. As M→� the size of
the disordered region shrinks to zero, reconnecting with the
adiabatic result of Peierls and Frölich.1 Later work by Zima-
nyi et al.15 on one-dimensional models with both electron-
electron �e-e� and e-ph interactions showed they were found
to develop a spin gap if the combined backscattering ampli-
tude g1

T=g1���+ g̃1����0, where g1��� is the contribution
from e-e interactions and g̃1����0 is the e-ph contribution
in the notation of Ref. 15. Hence, for the pure spinful SSH
model, g1=0 and g1

T�0 for any nonzero e-ph coupling, im-
plying a Peierls GS for arbitrary e-ph coupling, in agreement
with the earlier MC results.14

In this paper we study the influence of gapless, dispersive
antiadiabatic phonons on the GS of the Heisenberg-Peierls
chain. That this model is yet to receive the same level of
attention as its gapful, dispersionless counterpart is due in
part to the presence of hydrodynamic modes, resulting in
logarithmically increasing vibrational amplitudes with chain
length. To this end, the authors of Refs. 14 and 15 assumed
acoustic phonons to decouple from the low-energy spin
states involved in the SP instability, motivating the retention
of only the optical phonons close to q=�. In this regard,
optical phonons have been expected to be equivalent to fully
quantum mechanical SSH phonons. For pure Einstein
phonons, Wellein, Fehske, and Kampf,8 however, found that
the singlet-triplet excitation is strongly renormalized when
phonons of all wave number are taken into account, the re-
striction to solely the q=� modes leading to a substantial
overestimation of the spin gap. Physically, this implies that
the spin-triplet excitation is accompanied by a local distor-
tion of the lattice, necessitating a multiphonon mode treat-
ment of the lattice degrees of freedom. We anticipate, then,
that truncating the Debye-phonon spectrum to leave only
those modes which couple directly to the SP phase may be
not be physically reasonable.

In this work we use the DMRG technique to numerically
solve the Heisenberg-Peierls model with a generalized
gapped, dispersive phonon spectrum. The phonon spectrum
interpolates between a gapped, dispersionless �Einstein� limit
and a gapless, dispersive �Debye� limit. We proceed by con-
sidering a system of Heisenberg spins dressed with pure Ein-
stein phonons for which we observe a Berezinskii-Kosterlitz-
Thouless �BKT� quantum phase transition �QPT� at a
nonzero spin-lattice coupling. Progressively increasing the
Debye character of the phonon dispersion �at given phonon
adiabaticity� results in an increase in the critical value of the
spin-lattice coupling with the transition remaining in the
BKT universality class �see Sec. III C�. These findings are
corroborated by an array of independent verifications:
energy-gap crossings in the spin-excitation spectra �see Sec.
III A�, finite-size scaling of the spin-gap �see Sec. III B�,
bond-order autocorrelation functions �see Sec. III D�, and
quantum bipartite entanglement �see Sec. III E�.

We note that earlier DMRG investigations of the
Heisenberg-SP Hamiltonian with Debye phonons indicated a

dimerized GS for arbitrary coupling.16 This conclusion was
based on the behavior of the staggered phonon order param-
eter, mp, �defined in Sec. III D�. In this paper we show that
mp is an unreliable signature of the transition. In the next
section we describe the model, before discussing our results
in Sec. III.

II. MODEL

The Heisenberg spin-Peierls Hamiltonian is defined by

H = Hs-p + Hp. �1�

Hs-p describes the spin degrees of freedom and the spin-
phonon coupling,

Hs-p = �
l

�J + 	�ul+1 − ul��Sl · Sl+1, �2�

where Sl is the Pauli spin operator, ul is the displacement of
the lth ion from equilibrium, and 	 is the spin-phonon cou-
pling parameter.

Hp describes the lattice degrees of freedom. In the Ein-
stein model the ions are decoupled,

Hp
E = �

l

Pl
2

2M
+

1

2
K�

l

ul
2. �3�

In the Debye model, however, the ions are coupled to nearest
neighbors,

Hp
D = �

l

Pl
2

2M
+

1

2
K�

l

�ul+1 − ul�2. �4�

For the Einstein phonons it is convenient to introduce
phonon creation, bl

†, and annihilation operators, bl, for the lth
site via

ul = � 


2M�X
�1/2

�bl
† + bl� �5�

and

Pl = i�M
�X

2
�1/2

�bl
† − bl� , �6�

where

�X = �E = 	K/M 
 �b. �7�

Making these substitutions in Eqs. �2� and �3� gives

Hs-p = J�
l
�1 + gE�
�E

J
�1/2

�Bl − Bl+1��Sl · Sl+1 �8�

and

Hp
E = 
�E�

l
�bl

†bl +
1

2
� , �9�

where Bl=
1
2 �bl

†+bl� is the dimensionless phonon displace-
ment and
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gE = 	� 2

M�E
2J
�1/2

= 	� 2

KJ
�1/2

�10�

is the dimensionless spin-phonon coupling parameter.
For the Debye phonons we introduce phonon creation and

annihilation operators defined by Eqs. �5� and �6� where

�X = �D = 	2K/M 
 	2�b. �11�

Making these substitutions in Eqs. �2� and �4� gives

Hs-p = J�
l
�1 + gD�
�D

J
�1/2

�Bl − Bl+1��Sl · Sl+1 �12�

and

Hp
D = 
�D�

l
�bl

†bl +
1

2
� − 
�D�

l

Bl+1
† Bl, �13�

where

gD = 	� 2

M�D
2 J
�1/2

= 	� 1

KJ
�1/2

. �14�

Hp
D may be diagonalized by a Bogoluibov transformation17 to

yield

Hp
D = 
�

q

�D�q��q
†�q, �15�

where �D�q� is the dispersive, gapless phonon spectrum,

�D�q� = 	2�D sin�q

2
� , �16�

for phonons of wave vector q.
We now introduce a generalized spin-phonon model with

a dispersive, gapped phonon spectrum, via

Hs-p = J�
l
�1 + g�
��

J
�1/2

�Bl − Bl+1��Sl · Sl+1 �17�

and

Hp = 
��E + �D��
l
�bl

†bl +
1

2
� − 
�D�

l

Bl+1
† Bl. �18�

Again, Eq. �18� may be diagonalized to give

Hp = 
�
q

��q��q
†�q + constant, �19�

where

��q� = ��E + �D��1 − � �D

�E + �D
�cos q�1/2

�20�

is the generalized phonon dispersion, as shown in Fig. 1.
The q=0 phonon gap frequency is

��q = 0� 
 �0 = ��E��E + �D��1/2 �21�

and the q=� optical-phonon frequency is

��q = �� 
 �� = ��2�E + �D���E + �D��1/2. �22�

We now define the dispersion parameter � as

� = �0/��. �23�

� is a mathematical device that interpolates the generalized
model between the Einstein ��=1� and Debye ��=0� limits
for a fixed value of the q=� phonon frequency, ��. The
dimensionless spin-phonon coupling, g, as well as �� /J and
� are the independent parameters in this model. �E and �D,
on the other hand, are determined by Eqs. �21�–�23�.

The generalized model can be mapped onto the Einstein
and Debye models by the observation that in the Einstein
limit,

�� = �E 
 �b = 	K/M ,

g = gE, �24�

while in the Debye limit,

�� = 	2�D 
 2�b,

g = gD/21/4. �25�

The introduction of a generalized phonon Hamiltonian
avoids the problems associated with hydrodynamic modes
and places a criterion on the reliability of the gap-crossing
characterization of the critical coupling �as described in Sec.
III A�. Starting from the Heisenberg-SP Hamiltonian in the
Einstein limit ��=1�, the effect of dispersive lattice fluctua-
tions can be investigated via a variation in �. The Debye
limit is then found via an extrapolation of �→0.

The model is solved using the DMRG method18 with pe-
riodic boundary conditions �PBCs� throughout. Our imple-
mentation of the DMRG method, including a description of
the adaptation of the spin-phonon basis and convergence, is
given in the Appendix.

-1 0 1
0

1

q/�

�
/�

�

1-�

�

�(q)

FIG. 1. Generalized phonon dispersion, ��q�, defined in Eq.
�20�. �1−���� is the phonon “bandwidth” �which vanishes in the
Einstein limit� while ��� is the phonon “mass gap” �which van-
ishes in the Debye limit�. The dispersion parameter, �, and the
optical-phonon frequency, ��, are model parameters.
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III. RESULTS AND DISCUSSION

A. Gap crossing

For the Einstein model with a nonvanishing value of �E
the critical spin-phonon coupling, gc, may be determined us-
ing the gap-crossing method of Okamoto and Nomura,19 as
shown in Fig. 2 for an 80-site chain. If the N-site system has
quasilong-range Néel order for 0
g
gc�N�, the lowest ex-
citation is a triplet state, i.e., �st��ss and limN→� �st
= limN→� �ss=0, where �st and �ss are the triplet and singlet
gaps, respectively. Conversely, for g�gc�N�, the system is
dimerized with a doubly degenerate singlet GS in the
asymptotic limit �corresponding to the translationally equiva-
lent “A” and “B” phases�, while the lowest energy triplet
excitation is gapped. However, for finite systems the two
equivalent dimerization phases mix via quantum tunneling,
and now �ss��st, with limN→� �ss=0 and limN→� �st�0.
The gap-crossing condition �st=�ss therefore defines the
finite-lattice crossover coupling gc�N�.

For the Debye model, however, the gap-crossing method
fails because of the q→0 phonons that form a gapless vi-
bronic progression with the ground state. The hybrid spec-
trum �shown in Fig. 1� allows us to extrapolate from the pure
Einstein limit to the Debye limit, as the lowest vibronic ex-
citation is necessarily ���. Provided that �ss���q=0�

���, the gap-crossover method unambiguously determines
the nature of the GS. We can confidently investigate Eq. �1�
for �0.1
�
1� with �� /J� �1,10�, thereby determining
gc�N ,��. A polynomial extrapolation of 1 /N→0 generates
the bulk-limit critical coupling gc

� for a given � �as illustrated
in Fig. 2�. A subsequent polynomial extrapolation determines
the �=0 �Debye� limit. A phase diagram for the
Heisenberg-SP chain found in this way is shown in Fig. 3.
Notice that for a fixed �� the critical coupling is larger for
the Debye model than for the Einstein model, showing that
the quantum fluctuations from the q�� phonons �as well as
the q=� phonon� destabilize the Peierls state.

Following Caron and Moukouri11 we tentatively propose
a general power law for the Heisenberg-SP model, relating

the bulk-limit critical coupling to �� for a given �,

gc
����,�� = �������/J�����. �26�

The infinite-chain values of � and �, and gc
� for �� /J=10

are given in Table I. We find a nonzero critical coupling for
all phonon regimes �, with the absolute value of gc

� increas-
ing as �→0, as shown in the inset of Fig. 3.

B. Finite-size scaling

In order to ascertain the analytic behavior of the spin gap
from the numerical data it is necessary to account for finite-
size effects. We assume that the �singlet-triplet� gap �N

�st for a finite system of N sites obeys the finite-size scal-
ing hypothesis20,21

�N =
1

N
F�N��� �27�

with �� the spin gap in the bulk limit. Recalling that gc
�


 limN→� gc�N�, it follows that ���gc
��=0 and so curves of

N�N versus g are expected to coincide at the critical point
where the bulk-limit spin gap vanishes, as confirmed in Figs.
4 and 5.

The finite-size scaling method is more robust than the
gap-crossing approach, being applicable to the SP Hamil-
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g
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�
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�
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g
c
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FIG. 2. Gap-crossing construction for the �=1 �Einstein�
Heisenberg-SP model for N=80. Inset: the infinite-chain critical
coupling gc

� is determined by extrapolation.
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1.6

�
�
/J

g
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0 0.5 1
0.5

1

1.5

�

g
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FIG. 3. Phase diagram in the gc
�-�� plane for the infinite

Heisenberg-SP chain for �=1 �diamonds� and �=0.5 �triangles�;
extrapolation to �=0 generates the Debye limit �open circles�. In-
set: variation in gc

� with � for the antiadiabatic limit, �� /J=10.

TABLE I. Gap crossing determined bulk-limit values of ����
and ���� �defined by Eq. �26��, and gc

� for �� /J=10. The Debye
limit ��=0� is obtained by extrapolation of �→0.

� � � gc
�

0 �Debye� 0.511 0.437 1.397

0.5 0.452 0.392 1.103

1 �Einstein� 0.350 0.337 0.761
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tonian for all values of �. On the other hand, its use as a
quantitative method is limited by the accuracy with which
plots may be fitted to Eq. �27�. In practice, plots of N�st�N�
versus g become progressively more kinked about the critical
point as �→0. Nevertheless, we find F to be well approxi-
mated by a rational function and the resulting gc

���� to be in
accord with the predictions of the gap-crossover method.

C. Berezinskii-Kosterlitz-Thouless transition

For a BKT transition the spin gap �
 limN→� �st is ex-
pected to exhibit an essential singularity at gc

� with plots of
�st versus g for N→� found to be well fitted by the Baxter
form22 �as shown in Fig. 6�,

� � af�g�exp�− b�f�g��2� , �28�

where9

f�g� 
 �g − gc
��−1/2. �29�

Extrapolating �st�N� for 1 /N→0 generates � for a given
� and it is possible, in principle, to distinguish dimerized
from spin-fluid GSs by examining the scaling behavior of
�st�N�, which tends to zero in the bulk limit for the spin fluid
and to a nonzero � for the gapped phase. However, not only
must three parameters �a, b, and gc

�� be obtained from a
nonlinear fit �shown in Table II� but there is considerable
difficulty in determining � accurately near the critical point:
the spin gap is extremely small even for values of g substan-
tially higher than gc

� due to the essential singularity in Eq.
�28�. Determining such small gaps from finite-size scaling is
highly problematic with very large lattices required to ob-
serve the crossover from the initial algebraic scaling �in the
critical regime� to exponential scaling �for gapped systems�.
Hence the gap-crossover method is expected to be substan-
tially more accurate than a fitting procedure for the determi-
nation of the critical coupling, the latter tending to overesti-
mate gc

� �see Ref. 9�, as confirmed by a comparison of Tables
I and II.

D. Correlation functions and order parameters

The q=� structure factor �SF�, S�q�, of the bond-order
autocorrelation function can be used to determine the phase
transition. S�q� is defined by
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0
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180

g

N
�

s
t

g
c

�=1.103

FIG. 4. N�st�N� versus the spin-phonon coupling, g, for the �
=0.5 Heisenberg-SP model for N=16 �diamonds�, 40 �squares�, 80
�triangles�, and 160 �open circles� for �� /J=10. The curves con-
verge at gc

� �the value shown is obtained via gap crossing�.
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30

g

N
�
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t

g
c
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FIG. 5. N�st�N� versus the spin-phonon coupling, g, for the �
=0 �Debye� Heisenberg-SP model for N=16 �diamonds�, 40
�squares�, 80 �triangles�, and 160 �open circles� for �� /J=10. The
curves converge at gc �the value shown is obtained via gap
crossing�.
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g

�

FIG. 6. Bulk-limit singlet-triplet gap, �, as a function of the
spin-phonon coupling, g, with �=1 �Einstein� �diamonds� �=0.5
�open squares�, and �=0 �Debye� �open circles� for �� /J=10. Plots
are fitted to the BKT form �Eq. �28��.

TABLE II. Baxter-equation parameters obtained by fits to Eq.
�28� for �� /J=10.

� a b gc
�

0 1.014 1.505 1.422

0.5 4.110 2.101 1.120

1 14.206 3.042 0.731
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S�q� = �
m

exp�iqm�
C�m�� , �30�

where

C�m� =
1

N
�

l

�Ol − 
Ol���Ol+m − 
Ol+m�� . �31�

The “bond-order” operator, Ol, is given by

Ol = �Sl
zSl+1

z spin spin,

�ql − ql+1� phonon displacement.
�

The transition to a dimerized state is marked by the de-
velopment of a staggered kinetic-energy modulation and
quasilong-range order in the spin-spin bond order. It is sig-
naled by a divergent peak in S�q=�� at the critical coupling
in the asymptotic limit, as shown in Fig. 7. �We note, how-
ever, that the structure factor associated with the phonon dis-
placement bond-order autocorrelator, Ol= �ql−ql+1�, fails to
resolve the transition, instead increasing monotonically with
g for all �.�

Following Refs. 16 and 23 we also consider staggered
spin-spin, ms, and phonon displacement, mp, order param-
eters,

ms =
1

N
�

l

�− 1�l
Sl
zSl+1

z � �32�

and

mp =
1

N
�

l

�− 1�l
Bl+1 − Bl� . �33�

For linear chains under OBC, the end sites break the ener-
getic degeneracy between the otherwise equivalent �A� and
�B� states, which are related by a translation of one repeat
unit. Physically, however, PBC are strongly preferable to
OBC as boundary effects are eliminated and finite-size ex-
trapolations can be performed for much smaller N. In addi-

tion, greater accuracy can be obtained by investigating cyclic
chains, although it is necessary to explicitly break the degen-
eracy between the A and B phases through inclusion of a
symmetry-breaking term H� in Eq. �1�,

H� = ��
l

�− 1�l
Sl · Sl+1� �34�

and extrapolating �→0.
Our results indicate that both ms and mp scale to zero as

N→�, suggesting gc
�=0+ for all �, accounting for the earlier

findings of Ref. 16. These predictions are incomplete devia-
tion to the other positive signatures of a phase transition for
g�0. We attribute this discrepancy to the action of the per-
turbation H� �Eq. �34�� on the fixed-point behavior of the
Heisenberg-SP Hamiltonian for an insufficiently small per-
turbation and thus conclude that the staggered order param-
eters must be treated with caution when determining the
phase transition.

E. Quantum bipartite entanglement

It has recently been conjectured that quantum entangle-
ment plays an important role in the QPTs of interacting quan-
tum lattices. At the critical point—as in a conventional ther-
mal phase transition—long-range correlations pervade the
system. However, because the system is at T=0 �and assum-
ing no ground-state degeneracy� the GS is necessarily a pure
state. It follows, then, that the onset of �long-range�
correlations—being the principal experimental signature of a
QPT—is due to entanglement in the GS on all length scales.

For an N-site lattice, bipartite entanglement is quantified
through the von Neumann �vN� entropy,24

SL = − TrS̄ �S�L�log2 �S�L� = − �
	

�	 log2 �	, �35�

where �S�L� is the reduced-density matrix of an L-site block

�typically coupled to an L-site environment S̄ such that 2L
=N� and the �	 are the eigenvalues of �S�L�. It is clear from
Eq. �35� that a slow decay of the reduced density-matrix
eigenvalues corresponds to a large block entropy. Provided
the entanglement is not too great and the �	 decay rapidly, a
matrix-product state is then a good approximation to the
GS.25 We note here the utility of the DMRG prescription in
determining SL
SN/2.26

Wu et al.27 argued, quite generally, that QPTs are signaled
by a discontinuity in some entanglement measure of the in-
finite quantum system. For finite one-dimensional gapped

TABLE III. Consistency of the various probes of the transition:
critical spin-phonon couplings determined by gap-crossing �gap�,
q=� SF of the bond-order autocorrelation function, and vN entropy
for N=20, 40, and 80 sites. �=0 �Debye� and �� /J=10.

N gc
gap gc

SF gc
vN

20 1.441 1.441 1.443

40 1.419 1.420 1.422

80 1.400 1.402 1.403

1.3 1.35 1.4 1.45 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

g

S
(�

)

FIG. 7. Structure factor for the spin-spin bond-order autocorre-
lation function at q=� for the �=0 �Debye� model with �� /J=10
for N=20 �squares�, N=40 �triangles�, and N=80 �open circles�.
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systems the noncritical entanglement is characterized by the
saturation of the von Neumann entropy with increasing L:
the entropy of entanglement either �i� vanishes for all L or
�ii� grows monotonically with L until it reaches a saturation
value for some block length L0.28 Noncritical entanglement
in the GS corresponds, thus, to a weak, semilocal29 form of
entanglement driven by the appearance of a length scale L0
due to, e.g., a mass gap in the Hamiltonian. For any L, the
reduced-density matrix �S�L� is effectively supported on just
a small, bounded subspace of the L-spin Hilbert space. Criti-
cal models, on the other hand, are expected to exhibit loga-
rithmic divergence in SL at large L: SL=k log2 L+constant.

For a given total system size N and phonon dispersion �,
the block entropy is found to be maximal for a nonzero spin-
phonon coupling gc�N�, close to the corresponding gap cross-
ing and bond-order structure factor values �as shown in Table
III�. As shown in Fig. 8, in the critical regime, g�gc�N�, the

block entropy is indeed found to scale logarithmically with
system-block length, while in the gapped phase, g�gc�N�, it
is characterized by the emergence of a saturation length scale
L0 that varies with �. These findings are in agreement with
Ref. 28 and consistent with the observation that the transition
belongs to the BKT universality class.30

F. Phase diagram

To conclude this section we discuss the phase diagram of
the Heisenberg spin-Peierls model. Figure 3 shows the phase
diagram as a function of the model parameters g and the q
=� phonon gap, ��, as defined in Eqs. �17� and �19�. Evi-
dently, for a fixed value of �� the spin-Peierls state is less
stable to dispersive, gapless quantum lattice fluctuations than
to gapped, nondispersive fluctuations, implying that the q
�� phonons also destabilize the Peierls state.

It is also instructive, however, to plot the phase diagram
as a function of the physical parameters 	 and �b=	K /M, as
defined in Eqs. �2�–�4�. The mapping between model and
physical parameters is achieved via Eqs. �10�, �14�, �24�, and
�25� �and setting K=1�. Since ��=�b for the Einstein model,
whereas ��=2�b for the Debye model, the Debye model is
further into the antiadiabatic regime for a fixed value of �b.
We also note that for a given model electron-phonon cou-
pling parameter, g, the physical electron-phonon coupling
parameter, 	, is larger in the Debye model than the Einstein
model �see Eqs. �10� and �14��. Consequently, we expect the
dimerized phase to be less robust to quantum fluctuations in
the Debye model for fixed values of �b and 	, as confirmed
by Fig. 9.31

IV. CONCLUSIONS

The coupling of spin and lattice degrees of freedom with
reduced dimensionality results in the instability of a one-
dimensional Luttinger liquid toward lattice dimerization and

TABLE IV. Estimates of the antiferromagnetic exchange, J,
dimerization phonon frequency, ��, and spin gap, �, for various SP
materials. All units are in kelvins.

Material J �� �

CuGeO3 100 300 20

TTFCuS4C4�C3F�4 70 10a 20

�MEM��TCNQ�2 50 100 60

aValue deduced by comparison of experimental values of J, the
transition temperature, and � to mean-field theoretical expressions
in Ref. 32.

TABLE V. GS energy, Eg /J, average phonon occupation num-
ber, nl= 
bl

†bl�, and standard deviation, �n, for a 40-site chain with
�=1 �Einstein�, �� /J=10, and m oscillator levels per site.

m Eg /J nl �n

2 −18.746372 0.00291 0.0468

5 −18.747323 0.00221 0.0470

8 −18.747323 0.00221 0.0470

10 −18.747367 0.00221 0.0470

1.3 1.4 1.5 1.6 1.7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

g

S
N

FIG. 8. von Neumann entropy, SL, for the �=0 �Debye� model
with �� /J=10 for lattice sizes N=20 �squares�, 40 �triangles�, and
80 �open circles�; L=N /2.
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FIG. 9. Phase diagram in the 	c
�-�b plane for the infinite

Heisenberg-SP chain for �=1 �Einstein�, diamonds; and �=0 �De-
bye�, squares.
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the opening of a gap at the Fermi surface. Coupling to the
lattice gives rise to a BKT transition from a spin liquid with
gapless spinon excitations to a dimerized phase characterized
by an excitation gap.

For the quantum Heisenberg chain in the antiadiabatic
limit �J /���1�, the spin-fluid phase becomes unstable with
respect to lattice dimerization above a nonzero spin-phonon-
coupling threshold for all phonon gaps, ���. This observa-
tion holds for �� /J�1. Increasing the contribution of dis-
persive phonons to Hp gives rise to an increase in the critical
coupling, supporting the intuition that gapless phonons more
readily penetrate the GS �with the q�� phonon modes
renormalizing the dispersion at the Peierls-active modes�.
This observation has been corroborated by an array of inde-
pendent verifications. The behavior of the Debye model is
qualitatively different from the Einstein model with different
exponents and prefactors for the critical coupling versus pho-
non frequency, Eq. �26�, and the Baxter expression for the
spin gap, Eq. �28�.

We note that staggered order parameters are an unreliable
means of determining the phase transition16 because of the
use of a symmetry-breaking perturbation for PBCs that
changes the fixed point of the Hamiltonian for insufficiently
small perturbations.

Placing these findings in the context of experiment, esti-
mates of the model parameters for a number of spin-Peierls
compounds are listed in Table IV �reproduced from Ref. 9�.
Clearly, the static approximation is not applicable to
CuGeO3. In addition, it is also questionable as to whether the
listed organic spin-Peierls compounds are themselves truly
static lattice materials, thereby justifying a dynamical pho-
non treatment. The most physically relevant region of the
phonon spectrum, however, appears to be one of intermedi-
ate frequency, dividing the adiabatic and antiadibatic limits.
Nevertheless, even though �� /J=3 for CuGeO3, referring to
the phase diagram of Fig. 3 we note the applicability of the

generalized power law for small �� /J, and hence the occur-
rence of a finite critical coupling in the regime applicable to
CuGeO3. Examination of intermediate phonon frequencies
and their extension to spinful fermion models with Coulomb
repulsion23 is straightforward and currently in progress.
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APPENDIX: DMRG AND IN SITU OPTIMIZATION

We solve Eqs. �17� and �18� using the real-space DMRG
method,18 with ten oscillator levels per site, typically �200
block states and approximately 106 superblock states. Finite
lattice sweeps are performed at target chain lengths under
PBC. The convergence indicators are shown in Tables V–IX
with additional convergence tables in Ref. 16 for the same
model.

The DMRG algorithm typically proceeds through the aug-
mentation of an �L−1�-site system block S by a single site ia.

TABLE VI. GS energy, Eg /J, average phonon occupation num-
ber, nl, and standard deviation, �n, for a 40-site chain with �=0
�Debye�, �� /J=10, and m oscillator levels per site.

m Eg /J nl �n

2 −27.198068 0.0331 0.179

5 −31.795996 0.1477 0.437

8 −31.991408 0.1717 0.481

10 −31.991541 0.1719 0.484

TABLE VII. GS energy, Eg /J, average phonon occupation num-
ber, nl, and standard deviation, �n, for a 40-site chain with �=0
�Debye�, �� /J=1, and m oscillator levels per site.

m Eg /J nl �n

2 −18.882263 0.0318 0.175

5 −19.358486 0.1368 0.420

8 −19.371279 0.1520 0.451

10 −19.371877 0.1522 0.452

TABLE VIII. GS energy, Eg /J, of Heisenberg-SP model as a
function of the density-matrix eigenvalue product cutoff, �, number
of system block states, M, and the superblock Hilbert space size
�SBHSS� for a 40-site chain with ten oscillator levels per site and
�=0.5.

� Eg /J M SBHSS

10−10 −24.266060 176 14572

10−11 −24.350806 278 32328

10−12 −24.377641 300 60054

10−15 −24.377646 350 172654

TABLE IX. DMRG convergence of the singlet, �ss, and triplet,
�st, gaps of the Heisenberg-SP model for �=0 with density-matrix
eigenvalue product cutoff, �, for various N-site periodic lattices,
where �� /J=10 and g=0.4

N � �ss �st

8 10−12 0.924728 0.513871

8 10−15 0.924726 0.513869

8 10−20 0.924726 0.513869

20 10−12 0.343794 0.215902

20 10−14 0.343792 0.215900

20 10−16 0.343792 0.215899

40 10−12 0.183655 0.113428

40 10−13 0.183641 0.113405

40 10−14 0.183640 0.113403

40 10−15 0.183640 0.113403

160 10−12 0.046367 0.030776

160 10−13 0.046163 0.030550

160 10−14 0.046161 0.030528

160 10−15 0.046163 0.030526
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The augmented system block S� �L sites� is coupled to an
augmented L-site environment block E�, formed analogously
to S�. The system and environment comprise the superblock
�2L=N sites�, whose state vector, ���, is readily obtained by
a suitable diagonalization routine. By tracing over the de-
grees of freedom in E�, the reduced-density matrix of S�
��S��L�=TrE����
��� is obtained; a predetermined propor-
tion of the largest-eigenvalue eigenstates of �S��L� is re-
tained, forming the system-block basis for the next iteration.
The DMRG prescription results in O�N� growth of the su-
perblock Hilbert space.

In addition �and prior� to the effective truncation and ro-
tation of the system-block basis, we employ a single-site
optimization at each DMRG step. All superblock degrees of

freedom, save those belonging to ia, are traced over and the
resulting single-site reduced-density matrix �a is diagonal-
ized, generating an optimal single-site basis in the correct
physical environment with which to augment S.5,16,23,33,34

This local Hilbert space adaptation generates single-site
bases, the principal utility of which is the solution of many-
body problems with large numbers of degrees of freedom. A
controlled truncation of a large Hilbert space therefore al-
lows a small �for our purposes six-dimensional� optimal ba-
sis to be used without significant loss of accuracy, making it
ideally suited to spin-phonon problems, where the number of
phonons is not conserved and the phonon Hilbert space is, in
principle, infinite.
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