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We comprehensively study nonequilibrium relaxation and aging processes in the two-dimensional random-
site Ising model through numerical simulations. We discuss the dynamical correlation length as well as scaling
functions of various two-time quantities as a function of temperature and of the degree of dilution. For already
modest values of the dynamical correlation length L deviations from a simple algebraic growth, L�t�� t1/z, are
observed. When taking this nonalgebraic growth properly into account, a simple aging behavior of the auto-
correlation function is found. This is in stark contrast to earlier studies where, based on the assumption of
algebraic growth, a superaging scenario was postulated for the autocorrelation function in disordered ferro-
magnets. We also study the scaling behavior of the space-time correlation as well as of the time integrated
linear response and find again agreement with simple aging. Finally, we briefly discuss the possibility of
superuniversality in the scaling properties of space- and time-dependent quantities.
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I. INTRODUCTION

Understanding the effect of randomness and disorder re-
mains one of the main challenges in condensed-matter phys-
ics and materials science. One issue that has attracted much
attention recently concerns ordering processes, relaxation
phenomena, and the formation of domains in disordered sys-
tems. Examples include vortex lines in disordered type-II
superconductors,1–5 polymers in random media,6–9 coarsen-
ing of disordered magnets,10–15 and slow dynamics in spin
glasses.13,16,17

Our understanding of relaxation phenomena and aging
processes in nonfrustrated systems with slow dynamics has
greatly progressed during the last decade, mainly through the
systematic study of critical and coarsening ferromagnets �see
Ref. 18 for a review of the field�. Whereas aging in perfect,
i.e., nondisordered, systems is now very well understood,
this is different for disordered systems where almost every
aspect of nonequilibrium relaxation remains under debate.

Already the growth law governing the coarsening process
of disordered ferromagnets below their critical temperatures
is at the center of some controversy. Monte Carlo simulations
of various disordered ferromagnetic Ising models10–15 found
for the dynamical correlation length L�t� a power-law in-
crease, L�t�� t1/z, with a nonuniversal dynamical exponent z
that depends on temperature and on the nature of the disor-
der. This behavior can be explained by assuming that the
energy barriers grow logarithmically with L.10,11 As a conse-
quence, it follows that the dynamical exponent z should be
inversely proportional to the temperature: z�1 /T. Whereas
this temperature dependence has been observed in the Cardy-
Ostlund model,19 a careful study14 has revealed that in the
random-bond Ising model the temperature dependence of the
dynamical exponent is more complicated. This fact points to
the existence of conceptual problems in the approach of Paul
et al.10,11 In addition, an algebraic growth law is in strong
contrast to the classical theory of activated dynamics that,
under the assumption of energy barriers growing as a power
of L, predicts a slow logarithmic increase20 in this length:
L��ln t�1/�, with the barrier exponent ��0. New insights

into this matter have come very recently through a series of
papers on the dynamics of elastic lines in a random
potential.7–9 These papers provide convincing evidence for a
dynamic crossover between a transient regime, characterized
by a power-law growth with an effective dynamical exponent
that depends on the disorder, and the asymptotic regime
where the growth is logarithmic in time. This result strongly
suggests the possibility that a similar crossover could take
place in disordered ferromagnets and that the observed
power-law regime with nonuniversal dynamical exponents is
not the asymptotic regime. However, as the transient regime
is already extremely long lived for the elastic line,7,8 it is
expected that the asymptotic regime is not easily accessible
in simulations of coarsening ferromagnets. Nevertheless, it
can well be that on the time scales accessible in relaxation
measurements a crossover takes place.

Another question concerns the scaling behavior of two-
time quantities encountered in disordered ferromagnets re-
laxing toward equilibrium. In many systems it is empirically
observed that in the aging regime the autocorrelation func-
tion C�t ,s�, where s is the waiting time and t�s is the ob-
servation time, behaves like18

C�t,s� = C� h�t�
h�s��, h�t� = h0 exp� 1

c0

t1−� − 1

1 − �
� , �1�

where C is a scaling function, � is a free parameter, and h0
and c0 are constants.21 Depending on the value of �, differ-
ent situations are summarized by Eq. �1�. If 0���1, a sub-
aging behavior prevails, as is, for example, observed in soft
matter22,23 or in living biological matter,24 with ��0.3–0.8.
For �=1, one recovers a standard simple aging behavior
where the autocorrelation is only a function of the ratio t /s.
This is the behavior encountered in many systems and, in
particular, in the perfect ferromagnets undergoing phase or-
dering. Finally, for ��1 one has a superaging behavior. This
is a rather hypothetical scenario as Kurchan has proven an
exact lemma25 that states that under very general conditions
a superaging behavior of the autocorrelation cannot exist
�this prove can also be extended to response functions18�. It
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is therefore intriguing that a study of the autocorrelation in
the two-dimensional random-site Ising model12 yielded data
to which one can fit the superaging scaling form

C�t,s� = C�exp� �t − s�1−� − s1−�

1 − �
�� �2�

with � slightly larger than 1. However, in the random-bond
Ising model the autocorrelation displays a simple aging
behavior14 in full analogy to what is observed in the pure
model.26 These differences in the observed scaling behavior
of different disordered ferromagnets remains to be explained.

Finally, some coarsening ferromagnets with weak
randomness27 �as, for example, the random-bond or the
random-field Ising models� have been shown to display a
superuniversal behavior: scaling functions of space- and
time-dependent quantities are independent of disorder and
temperature provided that distances are measured in units of
the dynamical correlation length L�t�.28 This has been veri-
fied in various coarsening systems both for one-time13,15,29–32

and two-time quantities14 but it is an open question how
general this result really is.

In this paper we are revisiting the random-site Ising
model in two dimensions. Our simulations reveal that for this
system the apparent power-law growth of the dynamical cor-
relation length L�t� only holds in the early stages of the
coarsening process and that notable deviations are already
encountered for moderate values of the correlation length. As
a consequence one cannot naively assume that L�t�� t1/z, as
done in previous studies,11,12 but instead the correct time
dependence L�t� has to be used in the investigation of the
scaling behavior of two-time quantities. When doing this, a
simple aging behavior emerges for the autocorrelation func-
tion in the scaling limit, thereby showing that the previously
proposed superaging scenario is not appropriate for the de-
scription of aging in diluted ferromagnets relaxing toward
equilibrium.

We extend our study to the time integrated linear response
and to the space-time correlation function and find that both
quantities also show a simple aging scaling. Finally, we also
investigate a possible superuniversal behavior in diluted fer-
romagnets and show that the space-time correlation functions
for a fixed degree of dilution but different temperatures fall
approximately on a common master curve. This is in contrast
to data obtained for different dilutions for which a data col-
lapse is not observed.

Our paper is organized in the following way. In the next
section we introduce the model and the quantities �autocor-
relation, space-time correlation, autoresponse� that we study
in order to elucidate the aging and dynamical scaling prop-
erties of diluted ferromagnets. In Sec. III we present the re-
sults from our extensive numerical simulations. As a function
of dilution and temperature we determine the dynamical
growth law as well as nonequilibrium exponents and estab-
lish the scaling behavior of the various quantities. Finally,
Sec. IV gives our conclusions.

II. MODEL AND MEASURED QUANTITIES

We consider in the following the two-dimensional
random-site Ising model33 on a square lattice �we set the

lattice constant to one� with the Hamiltonian:

H = − 	

x,y�

�x�ySxSy, �3�

where the sum is over nearest-neighbor pairs. Sx= �1 are the
usual Ising spins and �x are quenched random variables
taken from the distribution P���= p��,1+ �1− p���,0. For
p=1 we of course recover the standard Ising model on a
square lattice. If the system is diluted, i.e., if p�1, one still
observes a phase transition between a disordered high-
temperature phase and an ordered low-temperature phase for
all p� pc�0.593.

In our simulations we prepare the system in a fully disor-
dered state, corresponding to infinite temperature, and then
bring it in contact with a heat bath at a temperature
T�Tc�p�, where Tc�p� is the critical temperature for the di-
lution p. After the quench, the system is evolved with the
standard single spin-flip Metropolis algorithm �in order to
check that our conclusions are independent of the update
scheme we also did a large number of runs with the heat-bath
algorithm�, and the relaxation of the system toward equilib-
rium is monitored through the study of the autocorrelation,
the space-time correlation, and the thermoremanent suscep-
tibility. The two-time autocorrelation function is given by the
expression

C�t,s� =
1

N
	

x

Sx�t�Sx�s�� , �4�

where the sum is over the N=L2 lattice sites and Sx�t� is the
value of the spin at site x at time t. For all studied quantities
we have to average over both the thermal noise �indicated by


¯ �� and the site disorder �indicated by ¯̄�. In order to get
a more complete picture of the relaxation processes, we ex-
tend our study to the two-time space-time correlation func-
tion

C�t,s;r� =
1

N
	

x

Sx+r�t�Sx�s�� . �5�

Finally, we also investigate how the system reacts to a per-
turbation by adding a small spatially random magnetic field
hx=H0	x, 	x= �1, at the moment of the quench.34 This field
is turned off after the waiting time s after which we measure
the decay of the time-dependent thermoremanent susceptibil-
ity


�t,s� =
1

N
	

x
�
	xSx�, t � s , �6�

where an additional average over the random field, indicated
by �¯ , has to be performed.

The results reported in the next section have been
obtained for systems composed of N=300�300 spins. We
carefully checked that no finite-size effects show up in our
simulations for this system size. We considered three
different degrees of dilution: p=0.9, 0.8, 0.75, and three
different temperatures for every p value: T=0.7Tc�p�,
0.5Tc�p�, 0.4Tc�p� with Tc�0.9��1.914, Tc�0.8��1.50,
Tc�0.75��1.30. For the autocorrelation and the space-time
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correlation we averaged typically over at least 1000 indepen-
dent runs, thereby considering waiting times s up to 20 000
Monte Carlo steps �MCSs�, with a total running time of
t=50s MCS �as usual, time is measured in MCSs, one MCS
corresponding to N=L2 proposed updates of the system�. We
also studied the corresponding quantities with s=0, i.e.,
C�t ,s=0� and C�t ,s=0,r�, as well as the one-time quantity
C�t ,r��C�t , t ,r�. For the autoresponse we used H0=0.05
�we checked that we are in the linear-response regime for
that strength of the random field� and averaged at least over
10 000 independent runs. We thereby considered waiting
times up to s=800 and observation times again up to
t=50s.

Before closing this section, we briefly summarize for later
the scaling forms expected for our quantities in case of a
simple aging scenario. In the aging regime we have that t, s,
and the difference t−s are large compared to any micro-
scopic time scale. If simple aging prevails, one expects that
the autocorrelation scales as

C�t,s� = s−bfC�t/s� , �7�

where b is a nonequilibrium exponent and fC�y� is a scaling
function which displays a power law in the long-time limit:
fC�y��y−�C/z for y1. Here �C is the autocorrelation
exponent28 and z is the dynamical exponent. For systems
undergoing phase ordering �as, for example, the perfect ki-
netic Ising model� it is usually found that b=0, see Ref. 18
but some other classes of systems, for example, nonequilib-
rium growth systems,35,36 are known to have b�0.

It is important to note that the scaling form �Eq. �7�� as-
sumes a power-law growth law of the dynamical correlation
length: L�t�� t1/z. However, as we shall see, deviations from
a simple power-law growth of the dynamical correlation
length already show up for moderate values of L. A more
general scaling form in terms of the correlation length, valid
in the scaling regime 1�L�s��L�t�, is given by

C�t,s� = �L�s��−Bf̃C� L�t�
L�s�� �8�

with f̃C�y��y−�C for y1.
For the space-time correlation function one then expects

the following scaling behavior:

C�t,s,r� = �L�s��−BF̃C� L�t�
L�s�

,
�r�

L�t�� , �9�

where F̃C�y ,z� is a space- and time-dependent scaling func-
tion. In case of a power-law increase in L, the length L�t�,
respectively, L�s� can be replaced by t1/z, respectively, s1/z,
yielding the relation b=B /z. Finally, for the thermoremanent
susceptibility, which as a time integrated response is related
to the autoresponse R�t ,s� by 
�t ,s�=�0

sR�t ,u�du, one should
have that


�t,s� = �L�s��−Af̃M�L�t�/L�s�� �10�

in the dynamical scaling regime. The scaling function f̃
�y�
is asymptotically given by a power-law decay, f̃
�y��y−�R

for y1, with the autoresponse exponent �R.37 Again, in

case L�t�� t1/z, one can write this in the widely used form


�t,s� = s−af
�t/s� , �11�

where a=A /z and f
�y��y−�R/z for y1. In the perfect two-
dimensional Ising model, one has that a=1 /z.18 This is dif-
ferent for the random-bond Ising model, as here one finds
that a�1 /z.14,38

III. NUMERICAL RESULTS

In the following we first discuss the time dependence of
the correlation length before studying in a systematic way
the scaling behavior of the various two-time quantities intro-
duced in the previous section.

A. Dynamical correlation length

We obtain the dynamical correlation length L�t� in the
usual way39 by monitoring the one-time space-dependent
correlation function

C�t,r� =
1

N
	

x

Sx+r�t�Sx�t�� . �12�

We define the correlation length L�t� as the distance at which
C�t ,r� drops to half of the value it has at r=0, see the inset
in Fig. 1. The main part of Fig. 1 shows in a log-log plot L as
a function of t for some of the cases studied in this work. In
all cases the initial behavior can be described by a power law

1000 10000 100000
t

2

10

40

L
(t

)

p=0.75
p=0.80
p=0.90

0 100r
0

1

C
(r

)

FIG. 1. �Color online� Dynamical correlation length L�t� vs
time. For every degree of dilution, data for two temperatures are
shown: T=0.4TC�p� and 0.5TC�p� �from bottom to top�. After an
early time regime where L�t� is effectively described by a power
law in time, deviations from a simple algebraic growth start to be
manifest already for moderate values of L�t�. For some selected
times we represent the data by dots. The inset shows for p=0.90
and T=0.4TC�0.90� the decay of the spatial correlation function for
t=500, 5000, 50 000, and 500 000 �from left to right�. L�t� is ob-
tained from these curves by their intersections with the dashed line
C�r�=0.5.
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but deviations from this algebraic growth already show up
when the correlation length is on the order of a few lattice
constants. These deviations indicate a slowing down of the
domain growth after an initial transient behavior. For ex-
ample, when plotting for p=0.90 �the case where the devia-
tions are the most notable� ln L as a function of ln�ln t�, one
observes that the data for large times approach a straight line
with an effective slope of approximately 2.5 at the end of the
run. Even though this slope is smaller than the value
1 /�=4 expected from the work of Huse and Henley,20 it is
worth stressing that the observed behavior is indeed compat-
ible with a slow crossover to a logarithmic growth
L�t���ln t�1/�. Still, much longer times are needed in order
to unambiguously characterize this asymptotic regime.

As the power-law increase is only a transient one, it is not
really meaningful to determine an effective dynamical expo-
nent z from this time-dependent length, as this would only be
valid in a certain time window.40 In fact, as we shall see in
the following, it is the naive use of an effective algebraic
growth law that is responsible for much of the confusion
surrounding the scaling behavior of disordered systems. In-
deed, the correct scaling forms are only revealed when the
correct growth law L�t� is properly taken into account.

B. Autocorrelation function

In diluted ferromagnets the scaling properties of the auto-
correlation function are strikingly different to those in the
perfect ferromagnets. For the latter systems the data for dif-
ferent waiting times collapse on a single master curve when
plotted as a function of t /s,41 in accordance with the simple
aging scaling form �Eq. �7�� with b=0. For the random-site
system, however, no data collapse is observed when plotting
the two-time autocorrelation as a function of t /s, see Figs.
2�a� and 2�b�. One could try to bring the data to a collapse by
letting b to differ from 0, but this yields the unphysical result
that b�0, implying that C would grow without bounds when
s→�.12 This observation led Paul et al.12 to fit their numeri-
cal data to the superaging scaling ansatz �Eq. �2��. As shown
in Figs. 2�c� and 2�d�, this fitting ansatz with one free param-
eter, the exponent �, indeed yields a data collapse which
seems rather convincing. A closer look, however, reveals
some problems with this ansatz. Choosing � such that the
collapse is best for the two largest waiting times considered,
one observes systematic and increasing deviations when go-
ing to lower waiting times. As shown in the inset of Fig. 2�c�
for the case p=0.90 and T=0.77, whereas for small values of
the scaling variable the data for the smaller waiting times are
lying below the s=20 000 data �the largest waiting time con-
sidered in our study�, for larger values of the scaling variable
the same data lie above the s=20 000 data. This is also seen
in the inset of Fig. 2�d� where we show for the case
p=0.80 and T=0.75 the autocorrelation function for the dif-
ferent waiting times and large values of the scaling variable.
The same behavior being observed for all studied cases, it
follows that the superaging scaling ansatz �Eq. �2�� �which,
we recall, is problematic by itself as Kurchan’s lemma25 for-
bids a superaging behavior of the autocorrelation� is a rea-
sonable good fitting function but that it does not capture the

true scaling behavior of the two-time autocorrelation.
Faced with this problem, one should remember that the

simple aging scaling form �Eq. �7��, which obviously does
not work in Figs. 2�a� and 2�b�, assumes an algebraic growth
of the dynamical correlation length. For a nonalgebraic
growth, as we have in our system, see Fig. 1, the correct
scaling form should be the scaling form �Eq. �8�� where the
correlation lengths L�t� and L�s� at times t and s are used. We
test this scaling form in Fig. 3 for the same data as in Fig. 2
and indeed find a perfect scaling behavior with B=0. As
shown in the inset, no systematic deviations show up when
subtracting from the s=20 000 data the data obtained for the
smaller waiting times. Therefore, also in the random ferro-
magnets a simple aging behavior is observed for the autocor-
relation function, provided that the correct growth L�t� is
taken into account.

Based on this result, we can now give a simple explana-
tion for the origin of the apparent differences in the scaling
properties of the autocorrelation in the random-bond and
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FIG. 2. �Color online� Scaling plots of the two-time autocorre-
lation function for ��a� and �c�� p=0.90, T=0.77 and ��b� and �d��
p=0.80, T=0.75. In traditional full aging plots �where a power-law
growth of the correlation length is assumed�, see �a� and �b�, data
for different waiting times s are plotted as a function of t /s. In the
superaging scaling plots, as proposed in Ref. 12, see �c� and �d�, the
fitting parameter � is chosen such that the data collapse is optimal
The inset of �c� shows systematic deviations when subtracting from
the s=20 000 data, the data obtained for s=16 000 �red line and
open squares�, s=12 000 �green line and diamonds�, or s=8000
�blue line and open circles�. Choosing � such that the data collapse
is best for the two largest waiting times, systematic deviations are
observed both for small and for large values of the scaling variable.
This is illustrated in the inset of �d� where we show the waiting
time-dependent correlation function for the largest values of the
scaling variable. Here and in the following error bars in the main
panels are much smaller than the sizes of the symbols.
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random-site models. Whereas in the random-site model de-
viations from an algebraic growth law already show up when
the correlation length is on the order of a few lattice con-
stants, this could be different for the random-bond model, as
various investigations have revealed for that model an effec-
tive algebraic growth over many time decades for most of
the studied cases. When both the waiting and observation
times are in the time window where the growth is effectively
algebraic, a simple aging scaling C�t ,s�= f�t /s� can be
expected.14 In some case, however, the algebraic power-law
growth is presumably not valid during the whole simulation,
which would explain why deviations from the t /s scaling
show up.42 A thorough investigation of the random-bond
Ising model, where the numerically determined length L�t� is
used in the scaling, would fully clarify the situation and help
to understand whether or not there are any fundamental dif-

ferences between the scaling properties of the random-bond
and the random-site Ising models.

It is also of interest to determine the autocorrelation ex-
ponent that governs the scaling function of the autocorrela-
tion function for large arguments,

C�t,s� � � L�t�
L�s��−�C

�13�

for L�t� /L�s�1. However, in order to reliably measure �C
one usually looks at C�t ,0� which for long times decays as
�L�t��−�C. Figure 4�a� shows C�t ,0�=C�L�t�� for all studied
cases in a log-log plot. C�t ,0� rapidly approaches a power
law which makes the measurement of �C very easy. A simple
inspection already reveals that the curves for a given value of
the disorder p decay with similar slopes in the log-log plot,
the slopes being steeper for smaller values of p. In order to
make this better visible we have shifted in Fig. 4�b� the
curves for 0.5Tc�p� and 0.4Tc�p� by multiplying C�t ,0� by a
constant thus that these curves fall on the 0.7Tc�p� curves for
larger values of L�t�. The measured values of �C gathered in
Table I indeed show that within error bars the autocorrelation
exponent is independent of the temperature for a fixed value
of the dilution.

It is worth noting that for all studied cases the value of the
autocorrelation exponent is in agreement with the lower
bound d /2 derived in Refs. 28 and 43. This is in marked
contrast to the claim in Ref. 12 that this lower bound is
violated in the random-site Ising model. In fact, in their
analysis the authors of that paper not only assumed that
C�t ,s�� t−�C/z, which is not valid in the absence of an alge-
braic growth law, they also tried to extract the autocorrela-
tion exponent from C�t ,s�, which is a notoriously difficult
task. This is shown in Fig. 4�c� where we plot for the differ-
ent cases C�t ,s� as a function of L�t� /L�s� for s=8000 and t
up to 50s. One immediately remarks that the values of
L�t� /L�s� remain very small and that the autocorrelation dis-
plays a marked curvature for even the largest values of t.
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FIG. 3. �Color online� Two-time autocorrelation as a function of
the ratio L�t� /L�s�, where L�t� is the value of the correlation length
at time t: �a� p=0.90, T=0.77 and �b� p=0.80, T=0.75. This
parameter-free scaling yields a data collapse superior to the super-
aging scaling, see inset in �a� where the data obtained for
s=16 000 �red line and open squares�, s=12 000 �green line and
diamonds�, and s=8000 �blue line and open circles� have been sub-
tracted from the s=20 000 data. In order to facilitate a direct com-
parison, the range of values along the y axis is the same for this
inset than for the inset in Fig. 2�c�.
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T=Tc�0.5�, open triangles T=Tc�0.4�� are guide for the eyes. In all cases the data rapidly display a simple power-law decay. �b� The slopes
of C�t ,0� are the same for a fixed value of the dilution p but different temperatures, see Table I. In order to illustrate this, we multiplied the
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with s=8000 and t up to 50s. The two-time autocorrelation function has not yet reached the asymptotic power-law regime L�t�L�s� at the
end of the run.
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Obviously, one is not yet in the scaling regime where L�t�
L�s�, and a naive measurement at the end of the run would
yield effective values for the autocorrelation exponent that
are systematically lower than the asymptotic values readily
measured when using C�t ,0�.

C. Space-time correlation function

It has been noted in the past14,35 that space- and time-
dependent quantities are often better suited than quantities
that only depend on time if one aims at studying the scaling
properties of an aging system. Taking into account what we
learned from the autocorrelation, namely, that the correct
growth law L�t� has to be used and that the observed simple
scaling behavior means that the exponent B=0, we should
have that the autocorrelation function C�t ,s ,r� is only a
function of L�t� /L�s� and r /L�t� �or, alternatively, of
L�t� /L�s� and r /L�s��,

C�t,s,r� = F̃C� L�t�
L�s�

,
r

L�t�� �14�

with r= �r�. We probe this simple scaling in Fig. 5 for the
cases p=0.90, T=0.77 and p=0.80, T=0.75 �we obtain the
same behavior for the other studied cases� where we plot the
space-time correlation as a function of the reduced length
r /L�t� for fixed values of L�t� /L�s�. The observed data col-
lapse again proves that the correlation function in the
random-site Ising model displays a simple aging scaling be-
havior.

At this point one might pause a moment and wonder
whether our system has a superuniversal scaling behavior.
Here superuniversality means that the scaling functions
should be independent of disorder and temperature once the
unique reference length scale has been chosen to be L�t�.28

This intriguing behavior has indeed been observed in sys-
tems with weak randomness as, for example, the random-
bond Ising model or the random-field Ising model. For our
model, the disorder has a very strong impact on the coarsen-
ing process, as too much disorder completely destroys phase
ordering, and it is a priori not clear whether a superuniversal
behavior is to be expected. As shown in Fig. 6�a� for the

temperature T=0.4Tc�p�, systems with different dilutions p
and fixed value of the ratio L�t� /L�s� do not show a common
master curve when plotting the space-time correlation as a
function of r /L�t�. This is in agreement with an earlier study
by Iwai and Hayakawa44 of a diluted system where, using a
cell-dynamical system method, the scaling function of the
structure factor was found to depend on the degree of dilu-
tion. Interestingly, we achieve an approximate data collapse,
which gets better the lower the temperatures, when the dilu-
tion is kept fixed and the temperature is changed, see Fig.
6�b� for the case p=0.8. This approximate superuniversal
behavior is in agreement with the expectation that the dy-
namics for fixed disorder only weakly depends on tempera-
ture, as long as one is not too close to the critical point. Still,
the observed strong dependence of the scaling function of the
space-time correlation on the degree of dilution indicates that
some aspects of the phase ordering of diluted systems remain
to be better understood.

TABLE I. Values of the autocorrelation exponent �C, the auto-
response exponent �R, and the scaling exponent A of the response
for all studied cases.

p T �C �R A

0.75 0.4TC�0.75� 1.21�3� 1.32�3� 0.30�1�
0.5TC�0.75� 1.21�2� 1.31�3� 0.26�1�
0.7TC�0.75� 1.18�2� 1.22�3� 0.15�2�

0.80 0.4TC�0.80� 1.11�1� 1.14�2� 0.47�1�
0.5TC�0.80� 1.10�1� 1.12�2� 0.38�1�
0.7TC�0.80� 1.10�1� 1.11�2� 0.30�1�

0.90 0.4TC�0.90� 1.06�1� 1.05�2� 0.65�1�
0.5TC�0.90� 1.05�1� 1.04�2� 0.63�1�
0.7TC�0.90� 1.05�1� 1.06�2� 0.53�1�
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D. Thermoremanent susceptibility

Finally, we have also extended our study to the thermore-
manent susceptibility �Eq. �6��. In order to measure this in-
tegrated response one applies a small magnetic field when
quenching the system to the temperature T. This field is re-
moved after the waiting time s and the relaxation to equilib-
rium is then monitored by measuring the decay of the mag-
netization. It is numerically convenient to apply a spatially
random magnetic field as a spatially homogeneous field
could easily push the �finite� system into one of the two
competing equilibrium states.

Figure 7 and Table I summarize the observed scaling be-
havior of the thermoremanent susceptibility. In all cases we
have the simple aging scaling �Eq. �10��, provided that we
use the correct dynamical correlation length L�t�. The non-
equilibrium exponent A is thereby found to depend on the
dilution and on the temperature. For a given dilution, A in-
creases when decreasing the temperature, whereas for a fixed
value of T /Tc�p� the value of A decreases when decreasing
p.

As usual the scaling regime is accessed for the response
much earlier than for the correlation function. Whereas for
the correlation function finite time corrections start to be
negligible for waiting times of s=1000 and larger, for the
integrated response waiting times of s=100 and larger al-
ready yield a perfect data collapse. This is similar to what is
observed in the perfect Ising model and in the random-bond
Ising model, for example.

We could try to extract from the data shown in Fig. 7 the
autoresponse exponent �R, which governs the power-law de-
cay of the scaling function in the limit L�t�L�s� but we are
confronted with the same problem as we encountered when
trying to extract the autocorrelation exponent �C from the
two-time correlation function C�t ,s�: even for an observation
time t that is 50 times larger than the waiting time s, we have
that L�t� is only on the order of 2L�s�. Consequently, our data
still show a slight curvature in a log-log plot, and this only
allows to obtain a very rough estimate of �R. For that reason
we determined �R for the smaller waiting time s=5 and t
=200s. This allows us to enter the asymptotic power-law
regime in most cases. The only exceptions are for p=0.75
and small temperatures, where the growth is the slowest, as
here we still have a slight curvature at the end of the run. The

values of �R measured in this way are gathered in Table I.
These values show the same dependence on the degree of
dilution than �C and are, in general, consistent with �R=�C.

Finally, let us briefly comment on the values of the expo-
nent A as this quantity has been of some interest recently.
Thus it has been proposed that A=1 /2 for coarsening in two
dimensions,45 and a numerical study of the random-bond
Ising model, that seems to support this claim, has been pub-
lished recently.38 For the random-site Ising model, we can
unambiguously conclude that A is not identical to 1/2. It has
been argued in Ref. 38 that the thermoremanent magnetiza-
tion �which is proportional to the thermoremanent suscepti-
bility� suffers from crossover effects that make a reliable
estimate of the value of A difficult. However, in our analysis,
where we do not assume a power-law growth but use the
correct growth law L�t�, we do not have any crossover ef-
fects, as seen in Fig. 7, but instead have a very clean scaling
behavior with an exponent A that differs from 1/2. We find
that A depends on temperature and on the degree of dilution,
which is similar to what has been found in an earlier study of
the random-bond Ising model.14 Interestingly, systematic de-
viations from the value 1/2 are also seen in Fig. 5 of Ref. 38,
where the exponent A has been determined for the random-
bond model under the assumption of an algebraic growth
law. Again, a careful study of the random-bond case using
the correct growth law L�t� should clarify whether there are
any qualitative differences between the random-bond and the
random-site models.

IV. DISCUSSION AND CONCLUSION

The law governing the growth of the dynamical correla-
tion length is a crucial quantity in any investigation of the
dynamical scaling in an aging system. In many systems, no-
tably in nondisordered systems, an algebraic growth rapidly
prevails.18 This is expected to be different in disordered sys-
tems as here a crossover from a transient, preasymptotic,
power-law regime to an asymptotic regime with a slower,
logarithmic, growth is predicted to happen.20 There is mount-
ing evidence, due to recent studies of elastic lines in disor-
dered media,7–9 that this crossover indeed takes place. Obvi-
ously, this crossover has to be taken into account in order to
elucidate the scaling properties of disordered systems relax-
ing toward equilibrium.
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FIG. 7. �Color online� Scaling of the thermoremanent susceptibility for �a� p=0.90 and T=0.77, �b� p=0.80 and T=1.05, and �c�
p=0.75 and T=0.91. In all cases a simple aging scaling is observed.
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In our study of the two-dimensional random-site Ising
model, deviations from an algebraic growth law, compatible
with a crossover to a slower, logarithmic growth, indeed
show up on time scales that are accessible in numerical re-
laxation studies. As a consequence, we do not assume in our
scaling analysis any specific form of the growth law but di-
rectly use the numerically determined dynamical correlation
length L�t�. In doing so, a surprisingly simple picture of the
relaxation properties of the random-site Ising model
emerges. Indeed, for all the studied quantities �autocorrela-
tion, space-time correlation, and autoresponse function� the
simple aging scaling behaviors �Eqs. �8�–�10�� are observed
when plotting the two-time quantities as a function of the
ratio of the correlation lengths at times t and s: L�t� /L�s�.
The autocorrelation has been studied previously in Ref. 12
where a superaging scaling ansatz has been used to fit the
numerical data. As we showed in this work, this superaging
scaling ansatz, which anyhow is in conflict with very general
theoretical considerations, is hampered by systematic devia-
tions which do not vanish when optimizing the value of the
free parameter �.

The scaling relations �Eqs. �8�–�10�� are characterized by
the values of some scaling exponents as well as by the scal-
ing functions themselves. In Table I we report our estimates
for the autocorrelation exponent �C, for the autoresponse ex-
ponent �R, as well as for the exponent A of the response
function �in addition, we found that the value B=0 for the
exponent of the correlation function, as expected for a phase-
ordering system�. Interestingly, the values of �C and �R for a
fixed dilution are within error bars independent of the tem-
perature, with �C��R. This is in agreement with the intui-
tive picture that the dynamical correlations in the diluted
ferromagnets are mainly governed by the average size and
shape of clusters that are occupied by spins. The values of �C
are always found to be larger than the lower bound d /2 de-
rived in Refs. 28 and 43, similar to what is observed in the
random-bond model.14 This corrects an earlier claim12 that in
diluted magnets this bound is violated. For the exponent A,
on the other hand, we find that its value depends on the
dilution as well as on the temperature. This is similar to the
reported behavior of that exponent in the random-bond Ising
model,14,38 even though one has to view these results for the

random-bond system with some caution as in that analysis a
simple algebraic growth of the correlation length has been
assumed. In any case, due to our high-quality data and our
careful analysis, we can exclude for the random-site model
that the values of A are independent of dilution and tempera-
ture and that they are equal to 1/2.

The attentive reader will have noticed that we did not try
to compare the numerically determined scaling functions
with theoretical predictions, as, for example, those coming
from the theory of local scale invariance.18,46,47 The reason
for that is the nonalgebraic growth that prevails in our sys-
tem. Indeed, the theory of local scale invariance, which gives
explicit predictions for scaling functions in aging systems,
predictions that have been found to be valid in many theo-
retical and numerical studies,18 assumes in its present formu-
lation the presence of a unique length scale that grows as a
power law of time. It is an open and important question
whether that theoretical approach can be generalized to in-
clude cases where the growth is nonalgebraic.

Besides the disordered magnets, many other disordered
systems, as, for example, vortex glasses in high-temperature
superconductors,4 Coulomb glasses,48 or spin glasses,49 are
undergoing ordering processes which have been character-
ized by an �effective� growth law with a temperature and
disorder-dependent exponent. Our results indicate that one
has to be very careful in this type of situation as the effective
dynamical exponent presumably only masks the presence of
a transient initial time regime, followed by a crossover to a
slower asymptotic growth regime. When studying the dy-
namical scaling behavior one should not naively assume an
effective growth law, but instead the correct growth law, de-
termined numerically if the exact expression is unknown,
should be used. A revisitation of these models and a careful
analysis along the lines done here for the random-site Ising
model seems needed in order to fully clarify the scaling
properties of the various disordered systems.
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